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Abstract: We study the collective motion of autonomous mobile agents in a ringlike environment. The
agents’ dynamics are inspired by known laboratory experiments on the dynamics of locust swarms.
In these experiments, locusts placed at arbitrary locations and initial orientations on a ring-shaped
arena are observed to eventually all march in the same direction. In this work we ask whether, and
how fast, a similar phenomenon occurs in a stochastic swarm of simple locust-inspired agents. The
agents are randomly initiated as marching either clockwise or counterclockwise on a discretized, wide
ring-shaped region, which we subdivide into k concentric tracks of length n. Collisions cause agents
to change their direction of motion. To avoid this, agents may decide to switch tracks to merge with
platoons of agents marching in their direction. We prove that such agents must eventually converge to
a local consensus about their direction of motion, meaning that all agents on each narrow track must
eventually march in the same direction. We give asymptotic bounds for the expected time it takes
for such convergence or “stabilization” to occur, which depends on the number of agents, the length
of the tracks, and the number of tracks. We show that when agents also have a small probability of
“erratic”, random track-jumping behavior, a global consensus on the direction of motion across all
tracks will eventually be reached. Finally, we verify our theoretical findings in numerical simulations.

Keywords: mobile robotics; swarms; crowd dynamics; natural algorithms; locusts

1. Introduction

Birds, locusts, human crowds, and swarm-robotic systems exhibit interesting collective
motion patterns. The underlying autonomous agent behaviors from which these patterns
emerge have attracted a great deal of academic interest over the last several decades [1–6].
In particular, the formal analysis of models of swarm dynamics has led to varied and deep
mathematical results [7–10]. Rigorous mathematical results are necessary for understanding
swarms and for designing predictable and provably effective swarm-robotic systems.
However, multi-agent swarms have a uniquely complex and “mesoscopic” nature [11], and
relatively few standard techniques for the analysis of such systems have been established.
Consequently, the analysis of new models of swarm dynamics is important for advancing
our understanding of the subject.

In this work, we study the dynamics of “locust-like” agents moving on a discrete
ringlike surface. The model we study is inspired by the following well-documented exper-
iment [12]. Place many locusts on a ringlike arena at random positions and orientations.
They start to move around and bump into the arena’s walls and into each other, and as they
do, remarkably, over time, they begin to collectively march in the same direction–either
clockwise or counterclockwise (see Figure 1). Inspired by observing these experiments,
we asked the following question: What are simple and reasonable myopic rules of be-
havior that might lead to this phenomenon? Our goal is to study this question from an
algorithmic perspective by considering a swarm of autonomous and identical discretized
mobile agents that act according to a local algorithm. The precise mechanisms underlying
locusts’ behaviors are very complex and subject to intense ongoing research, e.g., [3,12–15].
Consequently, as with much of the literature on swarm dynamics [7,16,17], our goal is
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not to study an exact mathematical model of locusts in particular, but to study the kinds
of algorithmic local interactions that lead to collective marching and related phenomena.
The resulting model is idealized and simple to describe, but the patterns of motion that
emerge while the locusts progress toward a “stabilized” state of collective marching are
surprisingly complex.

Figure 1. Image from locust experiments, courtesy of Amir Ayali. The collective clockwise marching
of locusts in a ring arena is shown. Locusts were initiated at random positions and orientations in the
arena but converged to clockwise marching over time.

The starting point for this work is the following postulated “rationalization” of what
a locust-like agent wants to do. It wants to keep moving in the same direction of motion
(clockwise or counterclockwise) for as long as possible. We can therefore consider a model
of locust-like agents that never change their heading unless they collide head-on with
agents marching in the opposite direction and are forced to do so due to the pressure which
is exerted on them. When possible, these agents prefer to bypass agents that are headed
toward them rather than collide with those agents. This is accomplished by changing lanes,
moving in an orthogonal manner between concentric narrow tracks which partition the
ringlike arena. The formal description of this “rationalized” model is given in Section 3,
and will be our subject of study.

Contribution

We describe and study a stochastic model of locust-inspired agents in a 2D discretized
ringlike arena which is subdivided into k tracks, each consisting of n locations. We show
that our agents eventually reach a “local consensus” about the direction of marching,
meaning that all agents on the same track will march in the same direction. We give
asymptotic bounds for the time this takes based on the number of agents and the physical
dimensions of the arena. Due to the idealized deterministic nature of our model, a global
consensus where all locusts walk in the same direction is not guaranteed, since locusts in
different tracks might never meet. However, we show that when a small probability of
“erratic”, random behavior is added to the model, such a global consensus must occur. We
verify our claims via simulations and make further empirical observations that may inspire
future investigations into the model.

Despite being simple to describe, analyzing the model proved tricky in several respects.
Our analysis strategy is to show that the model oscillates between two phases: one in which
it is “chaotic”, and locusts are moving about without a discernible pattern; and one in which
it is “orderly”, and all locusts are stuck in dense deadlock situations where collisions are
frequent. We derive our asymptotic bounds from studying orderly phases while bounding
the amount of time the locusts can spend in the chaotic phases.

Previous works in the literature (e.g., [18,19]) have explained collective marching by
appealing to a principle of local averaging, wherein each agent attempts to average its
direction of motion with its neighbors’. It is interesting to note that our model attains
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collective marching from nearly the opposite set of assumptions. Our agents’ primary
motivation is to avoid changing their direction of motion, and any change to it is thus the
result of an unavoidable conflict. We refer the reader to the Related Work section below for
further discussion.

2. Related Work

Some of our results were presented at DARS2021 [20]. Here we extend our work by
improving the time bounds for reaching consensus (Theorem 2) by substantially expanding
and restructuring the technical analysis to include the full details which were omitted
in [20] and by adding new simulation results, technical figures, and references.

The locust experiments inspiring our work are discussed in [3,12–14,18,19]. The
phenomenon was originally studied by Buhl et al. [18]. They show that above a certain
critical density, a rapid transition occurs from disordered movements of locust nymphs to
highly aligned collective motion. Buhl et al., and subsequently Yates et al. [19], hypothesize
that a main cause of this behavior is the locusts’ tendency to change their direction to
align with neighbors within a local interaction range (a common modeling assumption in
multi-agent dynamics [9]) and that individual behavior does not change in relation to group
density. In this work, we show how collective marching might emerge from almost the
opposite set of assumptions; the locust-like agents we describe try to avoid changing their
direction of motion for as long as possible, going as far as actively avoiding locusts that
are headed in the opposite direction However, consensus eventually occurs as a result of
unavoidable conflicts where locusts bump into each other. The assumption that locusts want
to maintain their direction of motion is critical for enabling collective marching in our model,
since it characterizes the stable states of the system. Bazazi et al. [21] hypothesize collective
marching occurs due to a model of cannibalistic pursuit wherein locusts attempt to pursue
locusts in front of them and evade locusts behind them to bite and avoid being bitten. Our
model includes an element of evasion, too, but it is motivated by the locusts’ desire to
avoid changing their direction of motion. All previous models assume local interactions
between locusts, i.e., locusts are only affected by neighboring locusts. Interactions in our
model consist of conflicts between adjacent locusts and track changes that occur as a result
of trying to avoid said conflicts. Conflicts are by definition local. Track-changing rules can
be assumed either local or global, and our analysis applies in both cases.

Notably, in [18,19], it is observed that at intermediate densities swarms of locusts
exhibit periodic directional switching, and at low densities the directions of motion are
random. Our model does not replicate these phenomena; we show that our locust-like
agents converge to local consensus at every density (or global consensus, assuming noise).
Interestingly, we note that if we assume each locust has a small probability r > 0 of
randomly flipping their heading at the beginning of a time step, such directional switching
becomes possible. The probability of directional switching under such a postulate is
inversely proportional to the density, thus likelier at low and intermediate densities than at
high densities. We emphasize, however, that unlike works such as Buhl et al., replicating
all features of locust swarms is not the goal of this work. Whereas the works we discussed
seek to model actual locusts, our work can be characterized as trying to find a minimalistic
locust-inspired set of assumptions that provably attains collective marching and to study it
analytically for the sake of deepening our understanding of multi-agent systems.

More generally, the mathematical modeling of the collective motion of natural organ-
isms, such as birds, locusts, and ants, and the convergence of such systems of agents to
stable formations, has been discussed in numerous works including [5,9,10,22]. The most
relevant to us among these are works within the field of natural algorithms, which assert that
the behavior of natural organisms can be understood using concepts from the theory of
robotics and computer science [11,16,17], such as complexity analysis, look-compute-move
phases, and decision-making based on discrete internal states. Natural algorithms open
up interplay between biology and computer science, allowing us to study nature via the
language of algorithms and vice versa, allowing us to translate principles, algorithms, and
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mechanisms gleaned from nature to the design of systems that are meant to service or
interact with humans, such as autonomous vehicles and warehouse robots.

The central focus of this work regards consensus. Do the agents eventually converge to
the same direction of motion, and how long does it take? These questions bear mathematical
and conceptual resemblance to questions in the field of opinion dynamics [23–25]. If the
agents’ direction of motion (clockwise or counterclockwise) is considered an “opinion”,
and the agents’ interactions that cause changes in the direction of motion are considered
social pressure, we can ask how long it takes for the agents to arrive at a consensus of
opinions. Building on this analogy, we note that when there are no empty locations in the
environment, our agent model is distinctly similar to the voter model on a ring network
with two opinions. The voter model is a classical model in opinion dynamics explored in
numerous works (we refer the reader to the survey [26]).

The comparison to the voter model breaks when we introduce empty locations and
multiple ringlike tracks at which point we must take into account the agents’ dynamically
changing positions. Unlike the voter model, where only an agent’s static neighborhood
can influence its opinion, in our model, an agent’s current location determines which
agents can influence it. Several works have explored models of opinion dynamics in a ring
environment where the agents’ physical location is taken into account [27,28]. Our model
is distinct from these in several respects. First, in our model, an agent’s internal state—its
direction of motion—plays an active part in the algorithm that determines which locations
an agent may move to. Second, we partition our ring topology into several narrow rings
(“tracks”) that agents may switch between, and an agent’s decision to switch tracks is
influenced by the presence of platoons of agents moving in its direction in the track that
it wants to switch to. In other words, we model agents that actively attempt to “swarm”
together with agents moving in their direction of motion. We believe our work is unique in
that we study, in a single model, both how an agent’s physical location affects its opinion
(via conflicts with nearby agents), and how an agent’s opinion affects its physical location
(via the desire to swarm with agents of the same opinion or equivalently, evade those of a
different opinion).

Protocols for achieving consensus about a value, location, or the collective direction of
motion have also been investigated in swarm robotics and distributed algorithms [29–32].
The purpose of these protocols is typically to be as efficient as possible in terms of parame-
ters such as time, computational load, and distance traveled. However, in this work, we
are not searching for a protocol that is designed to efficiently bring about consensus; we are
investigating a protocol that is inspired by natural phenomena and want to see whether it
leads to consensus and how long this process is expected to take.

Broadly speaking, some mathematical similarities may be drawn between our model
and interacting particle systems such as the simple exclusion process, which has been used
to understand biological transport and traffic phenomena [33,34]. Such particle systems
have been studied on rings [35]. In these discrete models, as in our model, agents possess a
physical dimension, which constrains the locations they might move to in their environment.
These are not typically multi-agent models where agents have an internal state (such as a
persistent direction of motion), but rather models of particle motion and diffusion, and the
research focus is quite different. The main point of similarity to our model is in the way
that a given discrete location can only be occupied by a single agent and in the random
occurrence of “traffic shocks” where agents line up one after the other and are prevented
from moving for a long time.

3. Model and Definitions

We postulate a locust-inspired model of marching in a wide 2D ringlike arena which
is discretized into k narrow concentric rings, each consisting of n locations. Each narrow
concentric ring is called a track. This discretized environment is topologically equivalent to
the surface of a discretized cylinder of height k partitioned into k narrow rings of length
n which are layered on top of each other. For example, the environment of Figure 2
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corresponds to k = 3, n = 8 (3 tracks of length 8). The coordinate (x, y) refers to the xth
location on the yth track (which can also be seen as the xth location of a ring of length n
wrapped around the cylinder at height y). We define ∀x, (x + n, y) ≡ (x, y).

Figure 2. One step of the locust model with k = 3, n = 8 split into horizontal and vertical movements:
(a) shows the initial configuration at the beginning of the current time step t; (b) illustrates changes
to the configuration after conflicts and horizontal movements; and (c) is the configuration at the
beginning of time t + 1 (or equivalently the end of time t) after vertical movements. The front and
back of the blue locust are the red and green locusts, respectively. The purple locusts conflict with
each other. Since conditions (1)–(3) are fulfilled, the blue locust may switch tracks, and it does so in
the illustration.

A swarm of m identical agents, or “locusts”, which we label A1, . . . , Am, are dispersed
at arbitrary locations and move autonomously at discrete time steps t = 0, 1, . . .. A given
location (x, y) can contain at most one locust. Each locust Ai is initiated with either a
“clockwise” or “counterclockwise” heading, which determines their present direction of
motion. We define b(Ai) = 1 when Ai has clockwise heading, and b(Ai) = −1 when Ai
has a counterclockwise heading.

The locusts move synchronously at discrete time steps t = 0, 1, . . .. At every time
step, locusts try to take a step in their direction of motion. If locust A is at (x, y), it will
attempt to move to (x + b(A), y). A clockwise movement corresponds to adding 1 to x,
and a counterclockwise movement corresponds to subtracting 1. The locusts have physical
dimension, so if the location a locust attempts to move to already contains another locust at
the beginning of the time step, the locust instead stays put. If Ai and Aj are both attempting
to move to the same location, one of them is chosen uniformly at random to move to the
location, and the other stays put.

Locusts that are adjacent exert pressure on each other to change their heading. If
Ai has a clockwise heading and Aj has a counterclockwise heading, and they lie on the
coordinates (x, y) and (x + 1, y), respectively, then at the end of the current time step, one
locust (chosen uniformly at random) will flip its heading to the other locust’s heading. An
equivalent way to model these dynamics is as follows: at the start of a conflict, each of the
two locusts uniformly samples a random number ri, rj ∈ (0, 1) called ’pressure’. The locust
with lower pressure “loses” the conflict and changes its heading (noting that the probability
of ri = rj is 0). Such an event is called a conflict between Ai and Aj. A conflict is “won” by
the locust that successfully converts the other locust to their heading.

Let A be a locust at (x, y). If the locust A has a clockwise heading, then the front of A
is the first locust after A in the clockwise direction, and the back of A is the first locust in the
counterclockwise direction. The reverse is true when A has a counterclockwise heading.
Formally, let i > 0 be the smallest positive integer such that (x + b(A)i, y) contains a locust,
and let j > 0 be the smallest positive integer such that (x− b(A)j, y) contains a locust. The
front of A is the locust in (x + b(A)i, y), and the back of A is the locust in (x− b(A)j, y). The
locusts in the front and back of A are denoted A→ and A←, respectively, and are called A’s
neighbors; these are the locusts that are directly in front of and behind A. Note that when
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a track has two or less locusts, A→ = A←. When a track has one locust, i = j = n, and
A = A→ = A←.

At any given time step, besides moving in the direction of their heading within their
track, locust A at (x, y) can switch tracks, moving vertically from (x, y) to (x, y + 1) or
(x, y− 1) unless this would cause it to go above track k or below track 1. Such vertical
movements occur after the horizontal movements of locusts along the tracks but on the
same time step where those horizontal movements took place. Locusts are incentivized
to move vertically when this enables them to avoid changing their heading (“inertia”).
Specifically, A may move to the location E = (x, y± 1) at time t when:

1. At the beginning of time t, A and A→ are not adjacent to each other and b(A) 6=
b(A→).

2. Once A moves to E, the updated A← and A→ in the new track will have heading
b(A).

3. No locust will attempt to move horizontally to E at time t + 1.

Condition (1) states that there is an imminent conflict between A and A→ which is
bound to occur. Condition (2) guarantees that, by changing tracks to avoid this conflict, A
is not immediately advancing toward another collision; A’s new neighbor will have the
same heading as A. Condition (3) guarantees that the location A wants to move to on the
new track is not being contested by another locust already on that track. Together, these
conditions mean that locusts only change tracks if this results in avoiding collisions and
in “swarming” together with other locusts marching in the same direction of motion. If a
locust cannot sense that all three conditions (1)–(3) are fulfilled, it does not switch tracks.

Besides these conditions, we make no assumptions about when locusts move vertically.
In other words, locusts do not always need to change tracks when they are allowed to by
rules (1)–(3); they may do so arbitrarily, say with some probability q or according to any
internal scheduler or algorithm, and we may impose visibility range constraints on the
locusts such that they only switch tracks when they can see that rules (1)–(3) are fulfilled.
We do not determine in any sense the times when locusts move between tracks, but only
determine the preconditions required for such movements. Our results in the following
sections remain true regardless. This makes our results general in the sense that they hold
for many different track-switching “swarming” rules, as long as those rules do not break
the conditions (1)–(3).

Figure 2 illustrates one time step of the model, split into horizontal and vertical
movement phases.

To slightly simplify our analysis of the model, we assume that every track has at least
two locusts at all times, although our results remain true without this assumption.

Although we work in a discrete time model where movement is instantaneous, it
is helpful for the sake of formal analysis to define the beginning of a time step as the
configuration of the swarm at that time step before any locusts moved, and the end of a
time step as the configuration at that time step after all locust movements are complete.
Somewhat idiosyncratically, the end of time t is precisely the beginning of time t + 1—both
terms refer to the same thing. By default and unless stated otherwise, the words “time step
t” refer to the beginning of that time step.

4. Stabilization Analysis

We will mainly be interested in studying the stability of the headings of the locusts
over time. Does the model reach a point where the locusts stabilize and stop changing their
heading? If so, are their headings all identical? How long does it take?

In the case of a single track (k = 1), we shall see that the locusts all eventually stabilize
with identical heading and bound the expected time for this to happen in terms of m and
n. In the multi-track case, we shall see that the locusts stabilize and agree on a heading
locally (i.e., all locusts on the same track eventually have the identical heading and thereafter
never change their heading) and bound the expected time to stabilization in terms of
m, n, k. In the multi-track case, we further show that adding a small probability of “erratic”
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track-switching behavior to the model induces global consensus: all locusts across all tracks
eventually have the identical heading.

4.1. Locusts on Narrow Ringlike Arenas (k = 1)

We start by studying the case k = 1; that is, we study a swarm of m locusts marching
on a single track of length n. Throughout this section, we assume this is the case, except in
Definition 1, which is also used in later sections.

For the rest of this section, let us call the swarm non-stable at time t if there are two
locusts Ai and Aj such that b(Ai) 6= b(Aj); otherwise, the swarm is stable. A swarm which
is stable at time t remains stable thereafter. We wish to bound the number of time steps
it takes for the system to become stable, which we denote Tstable. Our goal is to prove
Theorem 1, which tells us that the expected time to stabilization grows quadratically in the
number of locusts m and linearly in the track length n.

Theorem 1. For any configuration of m locusts on a ring with a single track, E[Tstable] ≤ m2 +
2(n − m). This bound is asymptotically tight; there are initial locust configurations for which
E[Tstable] = Ω(m2 + n−m).

Theorem 1 tells us that all locusts must have identical bias within a finite expected
time. This fact in isolation (without the time bounds in the statement of the theorem) is
relatively straightforward to prove by noting that the evolution of the locusts’ headings
and locations can be modeled as a finite Markov chain, and the only absorbing classes in
this Markov chain are ones in which all locusts have the same heading (see [36]).

Next we define segments: sets of consecutive locusts on the same track which all have
the same heading. This allows us to partition the swarm into segments such that every
locust belongs to a unique segment (see Figure 3). Although this section focuses on the case
of a single track (and claims in this section are made under the assumption that there is
only a single track), the definition is general, and we will use it in subsequent sections.

Definition 1. Let A be a locust for which b(A←) 6= b(A) at time t, and consider the sequence of
locusts B0 = A, Bi+1 = B→i . Let Bq be the first locust in this sequence for which b(Bq) 6= b(B0).
The set {B0, B1, . . . Bq−1} is called the segment of the locusts B0, . . . Bq−1 at time t. The locust
Bq−1 is called the segment head, and A is called the segment tail of this segment.

Figure 3. A locust configuration with n = 8, k = 3. Locusts are colored based based on the segment
they belong to (Definition 1). There are 8 segments in total.

Only locusts which are segment heads at the beginning of a time step can change their
heading by the end of that time step. When the heads of two segments are adjacent to each
other, the resulting conflict causes one to change its heading, leave its previous segment,
and instead become part of the other segment. If the head of a segment is also the tail of
a segment, the segment is eliminated when it changes heading. Two segments separated
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by a segment of opposite heading merge if the opposite-heading segment is eliminated,
which decreases the number of segments by two. No other action by a locust can change
the segments. Hence, the number of segments and segment tails can only decrease.

Since our model is stochastic, different sequences of events may occur and result in
different segments. However, by the above argument, we can conclude that in any such
sequence of events, there must always exist at least one locust which remains a segment
tail at all times t < Tstable and never changes its heading (since at least one segment must
exist as long as t < Tstable). Arbitrarily, we denote one such segment tail “AW”.

Definition 2. The segment of AW at the beginning of time t is called the winning segment at
time t and is denoted SW(t). The head of SW(t) is labelled HW(t). For convenience, if at time t0
the swarm is stable (i.e., t0 ≥ Tstable), then we define SW(t0) as the set that contains all m locusts.

Lemma 1. The expected number of time steps t < Tstable in which |SW(t)| changes is bounded
by m2.

Proof. Let Cm denote the number of changes to the size of SW(t) that occurs before time
Tstable. Note that Tstable is the first time step where |SW(t)| = m. |SW(t)| can only decrease,
by one locust at a time, if HW(t) conflicts with another locust and loses. |SW(t)| can
increase in several ways, for example, when it merges with other segments. In particular,
|SW(t)| increases by at least one whenever HW(t) conflicts with a locust and wins, which
happens with probability at least 1

2 . Hence, whenever SW(t) changes in size, it is more
likely to grow than to shrink. We can bound E[Cm] by comparing the growth of |SW(t)| to
a random walk with absorbing boundaries at 0 and m:

Consider a random walk on the integers which starts at |SW(0)|. At any time step
t, the walker takes a step left with probability 1

2 , otherwise it takes a step right. If the
walker reaches either 0 or m, the walk ends. Denote by C∗m the time it takes the walk to
end. Using coupling (cf. [37]), we see that E[Cm] ≤ E[C∗m|the walker never reaches 0], since
per the previous paragraph, |SW(t)| clearly grows at least as fast as the position of the
random walker (note that |SW(t)| > 0 is always true, which is analogous to the walker
never reaching 0).

Let us show how to bound E[C∗m|the walker never reaches 0]. Since the walk is memo-
ryless, we can think of this quantity as the number of steps the random walker takes to get to
m, assuming it must move right when it is at 0, and assuming the step count restarts when-
ever it moves from 0 to 1. If we count the steps without resetting the count, we realize that
this is simply the expected number of steps it takes a random walker walled at 0 to reach po-
sition m, which is at most m2 (cf. [38]). Hence E[C∗m|the walker never reaches 0] ≤ m2.

Lemma 2. The expected number of time steps t < Tstable in which |SW(t)| does not change is
bounded by 2(n−m).

Lemma 2 will require other lemmas and some new definitions to prove.

Definition 3. Let A and B be two locusts or two locations which lie on the same track. The
clockwise distance from A to B at time t is the number of clockwise steps required to get from A’s
location to B’s location and is denoted distc(A, B). The counterclockwise distance from A to B is
denoted distcc(A, B) and equals distc(B, A).

For the rest of this section, let us assume without loss of generality that the winning
segment’s tail AW has a clockwise heading. Label the empty locations in the ring at time
t = 0 (i.e., the locations not containing locusts at time t = 0) as E1, E2, . . . En−m, sorted by
their counterclockwise distance to AW at time t = 0, such that E1 minimizes distcc(Ei, AW),
E2 has the second smallest distance, and so on. We will treat these empty locations as
having persistent identities. Whenever a locust A moves from its current location to Ei, we
will instead say that A and Ei swapped, and so Ei’s new location is A’s old location.
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We say a location Ei is inside the segment SW(t) at time t if the two locusts which have
the smallest clockwise and counterclockwise distance to Ei, respectively, are both in SW(t).
Otherwise, we say that Ei is outside SW(t). A locust or location A is said to be between Ei
and Ej, j > i, if distc(Ei, A) < distc(Ei, Ej).

Definition 4. All empty locations are initially blocked. A location Ei becomes unblocked at
time t + 1 if all empty locations Ej such that j < i are unblocked at time t, and a locust from
SW(t) swapped locations with Ei at time t. Once a location becomes unblocked, it remains that
way forever.

Lemma 3. There is some time step t∗ ≤ n−m such that:

1. Every blocked empty location E is outside SW(t∗) (if any exist)
2. At least t∗ empty locations are unblocked.

Proof. If E1 is outside SW(0), then the same must be true for all other empty locations,
so t∗ = 0 and we are finished. Otherwise, E1 becomes unblocked at time t = 1. If Ei
becomes unblocked at time t, then at time t, it cannot be adjacent to Ei+1, since the locust
that swapped with Ei in the previous time step is now between Ei and Ei+1. By definition,
there are no empty locations Ej between Ei and Ei+1. Consequently, if Ei+1 is inside SW(t)
at time t, it will swap with a locust of SW(t) at time t, and become unblocked at time t + 1.
If Ei+1 is outside the segment at time t, it will become unblocked at the first time step t′ > t
that begins with Ei+1 inside SW(t′). Hence, if Ei becomes unblocked at time t, then Ei+1
becomes unblocked at time t + 1 or Ei+1 is outside SW(t + 1) at time t + 1.

Let t∗ be the smallest time where there are no blocked empty locations inside SW(t∗).
By the above, at every time step t ≤ t∗ an empty location becomes unblocked; hence there
are at least t∗ unblocked empty locations at time t∗. Moreover, since there are n−m empty
locations, this implies t∗ ≤ n−m.

Lemma 4. There is no time t < Tstable where an unblocked location is clockwise-adjacent to HW(t)
(i.e., there is no time t where an unblocked empty location E is located one step clockwise from
HW(t)).

Proof. First consider what happens when E1 becomes unblocked: it swaps its location with
a locust in SW(t), and since E1 is the clockwise-closest empty location to AW , the entire
counterclockwise path from E1 to AW consists only of locusts from SW(t). Hence E1 will
move counterclockwise at every time step until it swaps with AW . Once it swaps with AW ,
E1 will not swap with another locust at all times t < Tstable, since for that to occur we must
have that b(A←W ) = b(AW), which is impossible since by definition AW remains a segment
tail until t = Tstable. E1 does not swap with HW(t) while E1 moves counterclockwise toward
AW nor after E1 and AW swap as long as the swarm is unstable; hence there is no time step
t < Tstable when E1 is unblocked and swaps with HW(t).

Now consider E2. E2 becomes unblocked at least one time step after E1, and there is
at least one locust in SW(t) which is between E1 and E2 at the time step E1 that becomes
unblocked (in particular, the locust in SW(t) that swapped with E1 must be between E1
and E2 at that time). Since E1 subsequently moves toward AW at every time step until they
swap, E2 cannot become adjacent to E1 until they both swap with AW . Hence the location
one step counterclockwise to E2 must always be a locust until E2 swaps with AW , meaning
that similar to E1, E2 also moves counterclockwise toward AW at every time step after E2
becomes unblocked until they swap locations. Consequently, just like E1, there is no time
step t < Tstable when E2 is unblocked and swaps with HW(t).

More generally, by a straightforward inductive argument, the exact same thing is true
of Ei: once it becomes unblocked, it moves counterclockwise toward AW at every time step
until it swaps with AW . Thus, upon becoming unblocked, Ei does not swap with HW(t) as
long as t < Tstable.
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Using Lemmas 3 and 4, let us prove Lemma 2.

Proof. If, at the beginning of time step t, HW(t) is adjacent to a locust from a different
segment, then |SW(t)| will change at the end of this time step due to the locusts’ conflict.
Hence, to prove Lemma 2, it suffices to show that out of all the time steps before time Tstable,
HW(t) is not adjacent to the head of a different segment in at most 2(n−m) different steps
in expectation.

If all empty locations are unblocked at time n−m, then by Lemma 4, HW(t) conflicts
with the head of another segment at all times t ≥ n−m. Therefore, |SW(t)| will change at
every time step n−m < t < Tstable, which is what we wanted to prove.

If there is a blocked location at time n−m, then by Lemma 2, there must be some time
t∗ ≤ n−m where at least t∗ empty locations are unblocked and all blocked empty locations
are outside SW(t∗). Let Ej be the minimal-index blocked location which is outside SW(t∗)
at time t∗. Since there are no blocked empty locations inside SW(t∗), all locations Ei with
i < j are unblocked. Hence, Ej will become unblocked as soon as it swaps with the head of
the winning segment. Since (by the clockwise sorting order of E1, E2, . . .) Ej+1 cannot swap
with the winning segment head before Ej is unblocked, Ej+1 will also become unblocked
after the first time step where it swaps the winning segment head. The same is true for
Ej+2, . . . En−m. Hence, every empty location that HW(t) swaps with after time t∗ becomes
unblocked in the subsequent time step. By Lemma 2, the total swaps HW(t) could have
made before time Tstable is thus most t∗+(n−m− j) ≤ n−m. Whenever an empty location
is one step clockwise from HW(t), they will swap with probability at least 0.5 (the swap
is not guaranteed, since it is possible the location is also adjacent to the head of another
segment, and hence a tiebreaker will occur in regards to which segment head occupies the
empty location in the next time step). Consequently, the expected number of time steps
HW(t) is not adjacent to the head of another segment is bounded by 2(n−m).

The proof of Theorem 1 now follows.

Proof. Lemma 2 tells us that before time Tstable, |SW(t)| does not change in at most 2(n−m)
time steps in expectation, whereas Lemma 1 tells us that the expected number of changes
to |SW(t)| before time Tstable is at most m2. Hence, for any configuration of m locusts on a
ring of track length n, E[Tstable] ≤ m2 + 2(n−m).

Let us now show a locust configuration for which E[Tstable] = Ω(m2 + n), so as
to asymptotically match the upper bound we found. Consider a ring with k = 1, m
divisible by 2, and an initial locust configuration where locusts are found at coordinates
(0, 1), (1, 1), . . . (m/2, 1) with a clockwise heading and at (−1, 1), (−2, 1), . . . (−m/2− 1, 1)
with a counterclockwise heading, and the rest of the ring is empty. This is a ring with
exactly two segments, each of size m/2. Since after every conflict, the segment sizes are
offset by one in either direction, the expected number of conflicts between the heads of
the segments that is necessary for stabilization is equal to the expected number of steps a
random walk with absorbing boundaries at m/2 and −m/2 takes to end, which is m2/4
(see [39]). Since the heads of the segments start at distance n−m from each other, it takes
Ω(n − m) steps for them to reach each other. Hence the expected time for this ring to
stabilize is Ω(m2 + n−m).

4.2. Locusts on Wide Ringlike Arenas (k > 1)

Let us now investigate the case where m locusts are marching on k > 1 tracks of length
n. The first question we should ask is whether, just as in the case of the k = 1 setting,
there exists some time T where all locusts have identical heading. The answer is “not
necessarily”: consider for example the case k = 2 where on the k = 1 track, all locusts
march clockwise, and on the k = 2 track, all locusts march counterclockwise. According
to the track-switching conditions (Section 3), no locust will ever switch tracks in this
configuration; hence the locusts will perpetually have opposing headings. As we shall
prove in this section, swarms stabilize locally–meaning that eventually, all locusts on the
same track have identical heading, but this heading may be different between tracks.
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Let us say that the yth track is stable if all locusts whose location is (·, y) have the
identical heading. Note that once a track becomes stable, it remains this way forever, as by
the model, the only locusts that may move into the track must have the same heading as
its locusts. Let Tstable be the first time when all the k tracks are stable. Our goal will be to
prove the following asymptotic bounds on Tstable:

Theorem 2. E[Tstable] = O(min(log(k)n2, mn)).

Recalling Definition 1, each locust in the system belongs to some segment. Each track
has its own segments. Locusts leave and join segments due to conflicts or when they pass
from their current segment to a track on a different segment. In this section, we will treat
segments as having persistent identities similar to SW in the previous section. We introduce
the following notation:

Definition 5. Let S be a segment whose tail is A at some time t0. We define S(t) to be the segment
whose tail is A at the beginning of time t. If A is not a segment tail at time t, then we will say
S(t) = ∅ (this can happen once A changes its heading or moves to another track, or due to another
segment merging with S(t) which might cause b(A←) to equal b(A), thus making A no longer
the tail).

Furthermore, define S1 to be the segment tail of S and Si+1 = S→i .

Let us give a few examples of the notation in Definition 5. Suppose at time t1 we have
some segment S. Then the tail of S is S1, and the head is S|S|. S(t) is the segment whose tail
is S1 at time t; hence S(t1) = S. Finally, S(t)|S(t)| is the head of the segment S(t).

In the k > 1 setting, locusts can frequently move between tracks, which complicates
our study of Tstable. Crucially, however, the number of segments on any individual track is
non-increasing. This is because, first, as shown in the previous section, locusts moving and
conflicting on the same track can never create new segments. Second, by the locust model,
locusts can only move into another track when this places them between two locusts that
already belong to some (clockwise or counterclockwise) segment.

That being said, locusts moving in and out of a given track make the technique we used
in the previous section unfeasible. In the following definitions of compact and deadlocked
locust sets, our goal is to identify configurations of locusts on a given track which locusts
cannot enter from another track. Such configurations can be studied locally, focusing only
on the track they are in. In the next several lemmas, we will bound the amount of time
that can pass without either the number of segments decreasing or all segments entering
into deadlock.

Definition 6. We call a sequence of locusts X1, X2, . . . compact if Xi+1 = X→i and either:

1. every locust in X has a clockwise heading and for every i < |X|, distc(Xi, Xi+1) ≤ 2, or
2. every locust in X has a counterclockwise heading and for every i < |X|, distcc(Xi, Xi+1) ≤ 2.

An unordered set of locusts is called compact if there exists an ordering of all its locusts that
forms a compact sequence.

Definition 7. Let X = {X1, X2, . . . Xj} and Y = {Y1, Y2, . . . Yk} be two compact sets, such that
the locusts of X have a clockwise heading and the locusts of Y have a counterclockwise heading. X
and Y are in deadlock if distc(Xj, Yk) = 1. (See Figure 4).

A compact set of locusts X is essentially a platoon of locusts all on the same track
which are heading in one direction and are all jammed together with at most one empty
space between each consecutive pair. As long as X remains compact, no new locusts can
enter the track between any two locusts of X because the model states that locusts do not
move vertically into empty locations to which a locust is attempting to move horizontally,
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and the locusts in a compact set are always attempting to move horizontally to the empty
location in front of them.

Figure 4. Two segments in deadlock, colored green and red (Definition 7).

Definition 8. A maximal compact set is a set X such that for any locust A /∈ X, X ∪ A is not
compact.

A straightforward observation is that locusts can only belong to one maximal compact set:

Observation 1. Let A be a locust. If X and Y are maximal compact sets containing A, then
X = Y.

Lemma 5. Let X and Y be two sets of locusts in deadlock at the beginning of time t. Then at every
subsequent time step, the locusts in X ∪Y can be separated into sets X′ and Y′ that are in deadlock,
or the locusts in X ∪Y all have identical heading.

Proof. Let X = {X1, X2, . . . Xj} and Y = {Y1, Y2, . . . Yk} be compact sets such that Xi+1 =
X→i , Yi+1 = Y→i . It suffices to show that if X and Y are in deadlock at time t, they will
remain that way at time t + 1, unless X ∪ Y’s locusts all have identical heading. Let us
assume without loss of generality (“w.l.o.g.”) that X has a clockwise heading, and therefore
Y has a counterclockwise heading. By the definition of deadlock, at time t, Xj and Yk
conflict, and the locust that loses joins the other set. Suppose w.l.o.g. that Xj is the locust
that lost. If |X| = 1, then the locusts all have an identical heading, and we are finished.
Otherwise, set X′ = {X1, . . . Xj−1} and Y′ = {Y1, Y2, . . . Yk, Xj}. Note that since X and Y
are compact at time t, no locust could have moved vertically into the empty spaces between
pairs of locusts in X ∪Y. Furthermore the locusts of X and Y all march toward Xj and Yk,
respectively; hence the distance between any consecutive pair Xi, Xi+1 or Yi, Yi+1 could not
have increased. Thus X′ and Y′ are compact.

To show that X′ and Y′ are deadlocked at time t + 1, we just need to show that
distc(Xj−1, Xj) is 1 at time t + 1. Since the distances do not increase, if distc(Xj−1, Xj) was
1 at time t, we are finished. Otherwise distc(Xj−1, Xj) = 2 at time t, and since Xj did not
move (it was in a conflict with Yk), Xj−1 decreased the distance in the last time step, hence
it is now 1.

Lemma 6. Suppose P and Q are the only segments on track K at time t0, and P’s locusts have a
clockwise heading. Let d = distc(P1, Q1). After at most 3d time steps, P(t0 + 3d) and Q(t0 + 3d)
are in deadlock, or the track is stable.

Proof. The track K consists of locations of the form (x, y) for some fixed y and 1 ≤ x ≤
n. For brevity, in this proof we will denote the location (x, y) simply by its horizontal
coordinate, i.e., x, by writing (x) = (x, y).

We may assume w.l.o.g. that t0 = 0 and that P1 is initially at (0). Note that this
means Q1 is at (d) at time 0. If at any time t ≤ 3d the track is stable, then we are finished,
so we assume for contradiction that this is not the case. This means that P1 and Q1 do
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not change their headings before time 3d. This being the case, we get that distc(P1, Q1) is
non-increasing before time 3d. Since the segments P(t) and Q(t) move toward each other
at every time step t ≤ 3d, we may focus only on the interval of locations [0, d], i.e., the
locations (0), (1), . . . (d). We then define the distance dist(·, ·) between two locusts in this
interval whose x-coordinates are x1 and x2 as |x1 − x2|.

At any time t ≤ 3d, we may partition the locusts in [0, d] into maximal compact sets
of locusts. This partition is unique, by Observation 1. Let us label the maximal compact
sets of locusts that belong to P(t) as C t

1, C t
2, . . . C t

ct , where the segments are indexed from
1 to ct, sorted by increasing x coordinates, such that C t

1 contains the locusts closest to (0).
Analogously, we label the maximal compact sets that belong to Q(t) asW t

1,W t
2, . . .W t

wt ,
with indices running from 1 to wt, sorted by decreasing x-coordinates such thatW t

1 contains
the locusts that are closest to (d) (see Figure 5). In this proof, the distance between two sets
of locusts X, Y, denoted dist(X, Y), is defined simply as the minimal distance between two
locusts A ∈ X, B ∈ Y. Our proof will utilize the functions:

L1(t) =
ct−1

∑
i=1

dist(C t
i , C t

i+1), L2(t) =
wt−1

∑
i=1

dist(W t
i ,W t

i+1)

L3(t) = dist(C t
ct ,W

t
wt), L(t) = L1(t) + L2(t) + L3(t)

(1)

L1(t) is the sum of distances between consecutive clockwise-facing sets in the partition
at time t. L2(t) is the sum of distances between the counterclockwise sets. L3(t) is the
distance between the two closest clockwise and counterclockwise facing sets. The function
L(t) is the sum of distances between consecutive compact sets in the partition. When
L(t) = 1, there are necessarily only one clockwise and one counterclockwise facing sets in
the partition, which must equal P(t) and Q(t), respectively. Furthermore, L(t) = 1 implies
that the distance between P(t) and Q(t) is 1. Hence, when L(t) = 1, P(t) and Q(t) are both
in deadlock. The converse is true as well; hence L(t) = 1 if and only if P(t), Q(t) are in
deadlock. We will use L(t) as a potential or “Lyapunov” function [40] and show it must
decrease to 1 within 3d time steps. By Lemma 5, once P and Q are in deadlock they will
remain in deadlock until one of them is eliminated, which completes the proof.

Figure 5. A partition into maximal compact subsets as in our construction. In this configuration,
L1(t) = 3, L2(t) = 3, L3(t) = 1, and L(t) = 7. Note that although C1, C2 are compact, P(t) = C1 ∪ C2

is not compact, and similarly Q(t) is not compact; thus P(t) and Q(t) are not in deadlock, and
L(t) 6= 1.

Let us denote by max(X) the locust with maximum x-coordinate in X, and by min(X)
the locust with minimal x-coordinate. We may also use max(X) and min(X) to denote
the x coordinate of said locust. Note that dist(C t

i , C t
i+1) is the distance between max(C t

i )

and min(C t
i+1).

Recall that in the locust model, every time step is divided into a phase where locusts
move horizontally (on their respective tracks), and a phase where they move vertically.
First, let us show that the sum of distances L1(t) does not increase due to changes in either
the horizontal or vertical phase. Since L1(t) is the sum of distances between compact
partition sets whose locusts move clockwise, and for all C t

i except perhaps C t
ct , max(C t

i )
always moves clockwise, the distance dist(C t

i , C t
i+1) does not increase as a result of locust

movements (note that clockwise movements of max(C t
i ) do not result in a new compact set

because the rest of the locusts in Ct
i follow it). Furthermore, since conflicts cannot result in

a new maximal compact set in the partition, conflicts do not increase L1(t). Hence, L1(t)
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does not increase in the horizontal phase. In the vertical phase, clockwise-heading locusts
entering the track either create a new set in the partition, which does not affect the sum of
distances (as they then merely form a “mid-point” between two other maximal compact
sets), or they join an existing compact set, which can never increase L1(t). By the locust
model, the only locusts that can move tracks are max(C t

ct) and min(W t
wt), since these are

the only locusts for which the condition b(A) 6= b(A→) is true, so locusts moving tracks
cannot increase L1(t) either. In conclusion, L1(t) is non-increasing at any time step. By
analogy, L2(t) is non-increasing.

Similar to L1 and L2, the distance L3(t) cannot increase as a result of locusts entering
the track. It can increase as a result of a locust conflict which eliminates eitherW t

wt or C t
ct ,

but such an increase is compensated for by a comparable decrease in either L1(t) or L2(t).
It is also simple to check that, since P(t) and Q(t) are always moving toward each other
when they are not in deadlock (i.e., when L(t) > 1), there will be at least two compact sets
in the partition that decrease their distance to each other; hence L1, L2 or L3 must decrease
by at least one in the horizontal phase.

To conclude: L1(t) and L2(t) are non-increasing. L3(t) is non-increasing during the
horizontal phase and as a result of new locusts entering K. If L(t) > 1, L(t) decreases
during each horizontal phase. Hence, L(t) decreases in every time step where L(t) > 1,
and no locusts in K move to another track.

What happens when locusts in K do move to another track? As proven, L1(t) and
L2(t) do not increase. However, the distance L3(t) will increase, since the only locusts that
can move tracks are max(C t

wt) and min(W t
ct). It is straightforward to check that when C t

ct
contains more than one locust, L3(t) will increase by at most two as a result of max(C t

wt)
moving tracks. When C t

ct contains exactly one locust, L3(t) can increase significantly (as
L3(t) then becomes the distance between Ct

ct−1 and Wwt ), but any increase is matched by
the decrease in L1(t) as a result of C t

ct being eliminated. Analogous statement hold forW t
wt ,

and hence L3(t) can increase by at most two as a result of one locust moving out of the
track. We need to bound, then, the number of locusts in K that move tracks before time 3d.
We define the potential function F(t):

F(t) =
ct−1

∑
i=1

(dist(C t
i , C t

i+1)− 1) +
wt−1

∑
i=1

(dist(W t
i ,W t

i+1)− 1) + |P(t) ∪Q(t)|

= L1(t) + L2(t)− ct − wt + |P(t) ∪Q(t)|
(2)

F(t) is the sum of the empty locations between consecutive compact sets in the par-
tition whose locusts have the same heading plus the number of locusts in K. Note that
F(t) ≥ 0 at all times t. We will show F(t) is non-increasing and that it decreases whenever
a locust leaves the track. Hence, at most F(0) locusts can leave the track.

Let us show that F(t) is non-increasing. We already know L1 and L2 are non-increasing.
In the horizontal phase, |P(t) ∪Q(t)| is of course unaffected. Then ct and wt can decrease
as a result of maximal compact sets merging, hence increasing F, but this can only happen
when the distance between two such sets has decreased; hence the resulting increase to
F is undone by a decrease in L1 and L2. Hence, F(t) does not increase because of locusts’
actions during the horizontal phase.

Likewise, locusts leaving K can decrease ct or wt when they cause a maximal compact
set to be eliminated, but this is matched by a comparable decrease in L1 or L2 which means
that F does not increase due to locusts moving out of the track. Furthermore, |P(t) ∪Q(t)|
decreases when this happens. Hence, a locust moving out of the track decreases F(t) by at
least one. Finally, let us show that locusts entering the track does not increase F(t).

At time t, locusts can only enter the track at empty locations that are found in intervals
of the form [max(W t

i ), min(W t
i+1)] or [max(C t

i+1), min(C t
i )] for some i. In particular, locusts

cannot enter empty locations that are between two locusts belonging to the same compact
set (because a locust in that set will always be attempting to move to that location in the
next time step, and the model disallows vertical movements to such locations), nor can
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they enter the track on the empty locations between min(C t
ct) and max(W t

wt). Thus, locusts
entering the track at time t decrease the amount of empty locations between two clockwise
or counterclockwise compact partition sets (and perhaps cause the sets between which they
enter to merge into a single compact set). This will always decrease L1(t) + L2(t)− ct − wt
by at least one and increase |P(t) ∪Q(t)| by 1. On net, we see that new locusts entering K
either decrease or do not affect F.

In conclusion, F(t) is non-increasing, and any time a locust moves to another track,
F(t) decreases by one. Thus, at most F(0) locusts can move from K to another track. Recall
that locusts moving out of the track can increase L(t) by at most two. Hence after at most
L(0) + 2F(0) ≤ d + 2d = 3d time steps, L(t) = 1.

Lemma 7. Let seg(t) denote the set of segments in all tracks at time t. At time t + 3n, either every
segment is in deadlock with some other segment, or |seg(t + 3n)| < |seg(t)|.

Proof. Consider some track K and a segment P which is in that track at time t. Let us
assume that |seg(t + 3n)| = |seg(t)|, and show that P(t + 3n) must be in deadlock with
another segment. At any time t′ ≥ t, as long as the number of segments on K does not
decrease, the locusts of P(t′) will be marching toward locusts of another segment, which
we will label Q(t′). They cannot collide or conflict with locusts belonging to any segment
other than Q(t′). Hence, other segments in K do not affect the evolution of P(t) and Q(t)
before time t + 3n, and we can assume w.l.o.g. that P(t) and Q(t) are the only segments in
K at time t. Let d be as in the statement of Lemma 6. Since n ≥ d, Lemma 6 tells us that at
some time t ≤ t∗ ≤ t + 3n, P(t∗) and Q(t∗) must be in deadlock. Since by Lemma 5, P and
Q must remain in deadlock until one of them is eliminated, we see that at time t + 3n they
must still be in deadlock, since we assumed |seg(t)| = |seg(t + 3n)|.

Theorem 3. E[Tstable] = O(mn).

Proof. Let |seg(t)| denote the number of segments at time t. E[Tstable] can be computed as
the sum of times E[T2 + T4 + . . . + T|seg(0)|], where Ti is the expected time until the number
of segments drops below i, if it is currently i (we increment the index by two since segments
are necessarily eliminated in pairs).

Let us estimate E[T2i]. Suppose that at time t, the number of segments is 2i. Then
after 3n steps at most, either the number of segments has decreased, or all segments are
in deadlock. There are in total i pairs of segments in deadlock, and as there are m locusts,
there must be a pair P, Q that contains at most min(m/i, n) locusts at time t + 3n. By
Lemma 5, P, Q remain in deadlock until either P or Q is eliminated. We can compute
how long this takes in expectation, since at every time step after time t + 3n, the heads
of P and Q conflict, resulting in one of the segments increasing in size and the other
decreasing. Hence, the expected time it takes P or Q to be eliminated is precisely the
expected time it takes a symmetric random walk starting at 0 to reach either |P| or −|Q|,
which is |P| · |Q| ≤ min((m

2i )
2, ( n

2 )
2). Hence, E[T2i] ≤ 3n + min((m

2i )
2, ( n

2 )
2).

Let us first assume m ≥ n. Using the fact that min((m
2i )

2, ( n
2 )

2) = ( n
2 )

2 for i ≤ bm/nc,
we have:

E[T2 + T4 + . . . + T|seg(0)|] ≤ 3n · |seg(0)|
2

+ bm/nc(n
2
)2 +

∞

∑
i=dm/ne

(
m
2i
)2

≤ 3
2

mn +
1
4

mn +
1
4

m2
∞

∑
i=0

(
1

m/n + i
)2

≤ 7
4

mn +
1
4

m2(
n2

m2 +
n
m
) ≤ 9

4
mn

(3)
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where we used the inequalities ∑∞
i=0(

1
m/n+i )

2 ≤ n2

m2 +
∫ ∞

i=0(
1

m/n+i )
2 = n2

m2 +
n
m and |seg(0)| ≤

m. If m < n, by using the identity ∑∞
i=1(

1
i )

2 = π2

6 we obtain:

E[T2 + T4 + . . . + T|seg(0)|] ≤ 3n · |seg(0)|
2

+
∞

∑
i=1

(
m
2i
)2 ≤ 3

2
mn +

π2

24
m2 ≤ (

3
2
+

π2

24
)mn (4)

So we see that E[Tstable] = O(mn).

Next we wish to show that E[Tstable] = O(log(k)n2). For this, we require the
following result:

Lemma 8. Consider k independent random walks with absorbing barriers at 0 and 2n, i.e., random
walks that end once they reach 0 or 2n. The expected time until all k walks end is O(n2 log(k)).

Proof. First, let us set k = 1 and estimate the probability that the one walk has not ended
by time t. Let P be the transition probability matrix of the random walk, and let v be the
vector describing the initial probability distribution of the location of the random walker.
Then vPt is the probability distribution of its location after t time steps [41]. The evolution
of vPt is well-studied and relates to “the discrete heat equation” [42]. The probability that
the walk has not ended at time t is the sum ∑2n−1

i=1 v(i). Asymptotically, this sum is bounded
by O(λt), where λ = cos( π

2n ) is the second largest eigenvalue of P (cf. [42]).
Returning to general k, let Tk be a random variable denoting the time when all k

walks end. By looking at the series expansion of cos(1/x), we may verify that for n > 1,
cos( π

2n ) < 1− 1
n2 . From the previous paragraph, and because the walks are independent,

we therefore see that

Pr(Tk ≥ t) = 1− Pr(T1 < t)k = 1−
(
1−O(λt)

)k
= 1−

(
1−O((1− 1

n2 )
t)
)k (5)

Consequently, for t� n2, the following asymptotics hold for some constant C:

Pr(Tk ≥ t) < 1− (1− Ce−t/n2
)k (6)

where we used the fact that (1+ x/n)n → ex as n→ ∞. Note that Pr(Tk ≥ t+ n2 log(C)) <
1− (1− e−t/n2

)k. Hence:

E[Tk] =
∫ ∞

0
Pr(Tk > t)dt ≤ n2 log(C) +

∫ ∞

0
1− (1− e−t/n2

)kdt

= n2 log(C) +
∫ ∞

0
1−

k

∑
j=0

(
k
j

)
(−1)je−tj/n2

dt

= n2 log(C) +−
k

∑
j=1

(
k
j

)
(−1)j

∫ ∞

0
e−tj/n2

dt

= n2 log(C) +−n2
k

∑
j=1

(
k
j

)
(−1)j

j
= O(n2 log(k))

(7)

where we used the equality ∑k
j=1 (

k
j)

(−1)j

j = −∑k
j=1

1
j ≈ log(k).

Theorem 4. E[Tstable] = O(log(k) · n2).

Proof. Let segi(t) denote the number of segments in track i at time t, and defineMt =
max1≤i≤k segi(t). Let us bound the expected time it takes forMt to decrease. Define the
set K(t) to be all tracks that have |Mt| segments at time t. ThenMt decreases at the first
time t′ > t when all tracks in K(t) have had their number of segments decrease. We may
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bound this with the following argument: slightly generalizing Lemma 7 to hold for subsets
of tracks (Lemma 7 holds not just for the set seg(t) but for the segments in a given subset of
tracks, with the proof being virtually identical. Here we apply the Lemma to the subset
K(t + 3n).), ifMt does not decrease after 3n time steps (i.e.,Mt =Mt+3n), all tracks in
K(t + 3n) now have all their segments in deadlock. The number of deadlocked segment
pairs at every track in K(t + 3n) isMt/2, so in every such track there is such a pair with at
most 2n/Mt locusts. By Lemma 8, using a similar argument as Theorem 3, these pairs of
deadlocked segments resolve into a single segment after at most c · log(k)

( 2n
Mt

)2 expected
time for some constant c. Hence, the number of expected time steps forMt to decrease is
bounded above by 3n + c log(k)

( 2n
Mt

)2.
Tstable is the first time when Mt = 0. Let us assume n is even for simplicity (the

computation will hold regardless, up to rounding). We have that M0 ≤ n, and Mt
decreases in leaps of two or more (since segments can only be eliminated in pairs). Hence,
Tstable is bounded by the amount of time it takesMt to decrease at most n/2 times. By
linearity of expectation, this time can be bounded by summing 3n + c log(k)

( 2n
Mt

)2 over
Mt = n, n− 2, n− 4, . . . 2:

E[Tstable] ≤
n
2
· 3n + c log(k)

(2n
n
)2

+ c log(k)
( 2n

n− 2
)2

+ . . . + c log(k)
(2n

2
)2

≤3
2

n2 + 4c log(k)n2
∞

∑
i=1

(
1
2i
)2 =

3
2

n2 +
π2

6
c log(k)n2 = O(log(k)n2)

(8)

as claimed.

The proof of Theorem 2 follows immediately from Theorems 3 and 4 by taking the
minimum.

Erratic Track Switching and Global Consensus

Theorem 2 shows that, after finite expected time, all locusts on a track have an identical
heading. This is a stable local consensus, in the sense that two different tracks may have
locusts marching in opposite directions forever. We might ask what modifications to the
model would force a global consensus, i.e., make it so that stabilization occurs only when
all locusts across all tracks have the identical heading. There is in fact a simple change that
would force this to occur. Let us assume that at time step t any locust has some probability
of acting “erratically” in either the vertical or horizontal phases:

1. With probability r, a locust might behave erratically in the horizontal phase, staying
in place instead of attempting to move according to its heading.

2. With probability p, a locust may behave erratically in the vertical phase, meaning that
even if the vertical movement conditions (1)–(3) of the model (see Section 3) are not
fulfilled, the locust attempts to move vertically to an adjacent empty space on the
track above or below them (if such empty space exists).

These behaviors are independent, and so a locust may behave erratically in both the
vertical and horizontal phases, in just one of them, or in neither.

The next theorem shows that the existence of erratic behavior forces a global consensus
of locust headings. The goal is to prove that there is some finite time after which all locusts
must have the same heading. Note that the bound we find for this time is crude and is not
intended to approximate Tstable. We study the question of how p affects Tstable empirically
in the next section.

Theorem 5. Assuming there is at least one empty space (i.e., m < nk), and the probability of
erratic track switching is 0 < r, p < 1, the locusts all have identical heading in finite expected time.

Proof. Our goal is to show that all locusts must have identical heading in finite expected
time. We will find a crude upper bound for this time. It suffices to show that as long as there
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are two locusts with different headings in the system (perhaps not on the same track), there
is a bounded-above-zero probability q that within a some constant, finite number of time
steps C (and shall show C = O(log(k)n2 + nk)), the number of locusts with a clockwise
heading will increase. This amounts to showing that there is a sequence of events, each
individual event happening with non-zero probability, that culminates in a conflict between
two locusts occurring (since any conflict has probability 0.5 of increasing the number of
clockwise locusts). Since q > 0, the only stable state of locust headings is the state where all
locusts have the identical heading, as otherwise there is always some probability that all
locusts will have a clockwise heading after m · C time steps. This completes the proof.

Let us show such a sequence of events. First let us consider the case where there is a
track in which two locusts have non-identical headings. In this case, assuming no locusts
behave erratically forO(log(k)n2) steps (which occurs with a tiny but bounded-above-zero
probability since p, r > 0), Theorem 2 tells us that in expected O(log(k)n2) steps, locusts
on the same track will have the identical heading. Hence, there is a sequence of events that
happens with non-zero probability which leads to local consensus in the tracks.

If any conflict occurs during this sequence, we are finished. Otherwise, we need to
show a sequence of events that leads to a conflict, assuming all tracks are stable. The
only thing that causes locusts in local consensus to move tracks is erratic behavior. If two
adjacent tracks have locusts with non-identical heading, and there is at least one empty
space in one of them, then (since r > 0) with some probability within at most n time steps
an empty space in one track will be vertically adjacent to a locust in the other track. At this
point, with probability p, that locust will move from one track to the other. This creates
a situation where in one track there are locusts of different headings again. If the erratic
locust moves tracks at the right time, upon moving it will be adjacent to another locust in
its new track, whose heading is different. Hence, the erratic locust will enter a conflict in
the next time step, which will increase the number of clockwise locusts with probability 0.5.

Now let us consider a pair of two adjacent tracks with locusts of different headings
such that there no empty space in one of them. We note that since there is at least one empty
location in some track, erratic behavior can cause that empty location to move vertically in
an arbitrary fashion until, after at most k movements, it enters a track from the pair. With
non-zero probability, this can take at most nk time steps, after which we are reduced to the
situation in the previous paragraph.

A pair of adjacent tracks that have locusts with different headings must exist unless
there is global consensus. Hence, in every O(log(k)n2 + nk) time steps where there is no
global consensus, there is a some probability q > 0 that the number of clockwise-heading
locusts will increase.

5. Simulation and Empirical Evaluation

Let us explore some questions about the expected value of Tstable through numerical
simulations. Certain aspects of the locusts’ dynamics were not studied in our formal
analysis, the most interesting of which is the helpful effects of track switching on Tstable.
Recall that our model allows locusts to switch tracks if this would enable them to avoid a
conflict and join a track where locally, locusts are marching in their same direction. At least
in principle, this seems like it should help our locusts achieve local stability faster, hence
decrease Tstable. However, recall also that we do not specify when locusts switch tracks,
which means that some locusts might never switch tracks, or they might choose to do so
in the worst possible moments. Hence, the positive effect track-switching usually has on
Tstable cannot be reflected in the bounds we found for E[Tstable], since these bounds must
reflect all possible locust behaviors. Under ordinary circumstances, however, it seems as
though frequent track switching should noticeably decrease the time to local stabilization.
As we shall see numerically, this is indeed the case. This justifies the track-switching
behavior as a mechanism that, despite being highly local, enables the locusts to achieve
local consensus about the direction of motion sooner.
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In Figure 6a,b, we measure Tstable as it varies with n and k, assuming the probabilities
of erratic behavior are 0 (i.e., r = p = 0). We simulate two different locust configurations:
a “dense” configuration and a “sparse” configuration. In the dense configuration, 50% of
locations are initiated with a locust, with the locations chosen at random. In the sparse
configuration, 10% of locations are initiated with a locust (or slightly more, to guarantee all
tracks start with two locusts). The locusts are initiated with random heading. We measure
the effect of track switching on Tstable; the opaque lines measure Tstable when locusts switch
tracks as often as they can (while still obeying the rules of the model), and the dotted
lines measure Tstable when locusts never switch tracks. For every value of n, k, we ran the
simulation 2000 times and averaged Tstable over all simulations.

As we can see, in the sparse configuration, track-switching has a significantly positive
effect on time to stabilization. For example, with k = 30, n = 30, Tstable is approximately
13.5 when locusts switch tracks as soon as they can and approximately 25 when they never
switch tracks—nearly double. In the dense configuration, we see that enabling locusts to
move tracks has little to no effect, since the locust model rarely allows them to do so due to
the tracks being overcrowded.

In column (c) of Figure 6, we measure how a non-zero probability p of erratic behavior
affects Tstable. We set r = 0. As we proved in the previous section, whenever p > 0,
stabilization requires global rather than local consensus. Hence, we cannot directly compare
the Tstable of these graphs with columns (a) and (b), where Tstable measures the time to local
consensus. We note that the expectation and variance of Tstable approach ∞ as p goes to 0,
since when p = 0, global stability can never occur in some initial configurations. E[Tstable]
decreases sharply as p goes to some critical point around 0.1, and decreases at a slower rate
afterwards. It is interesting to note that low probability of erratic behavior affects E[Tstable]
significantly more in the sparse configuration, where for p = 0.02, if locusts also switch
tracks whenever the model allows them, E[Tstable] was measured as being approximately
1974, as opposed to 669 in the dense configuration. One of the core reasons for this seems to
be that in the sparse configuration, when a locust erratically moves to a track with a lot of
locusts not sharing its heading, it will often be able to non-erratically move back to its former
track, thus preventing locust interactions between tracks of different headings. When we
disabled the locusts’ ability to switch tracks non-erratically, Tstable was significantly smaller
in the sparse configuration (E[Tstable] ≈ 232 for p = 0.02).

Based on the above, we make the curious observation that, while non-erratic track
switching accelerates local consensus, for some track-switching behaviors it will in fact
decelerate the attainment of global consensus. This is seen by the fact that frequent non-
erratic track-switching was helpful in Columns (a) and (b) of Figure 6 but increased time
to stabilization in Column (c). This is perhaps a very natural observation because agents
that aggressively switch tracks will attempt to avoid conflict as often as possible, whereas
conflict is necessary to create global consensus.

To finish this section, we also verify the bounds of Theorem 1 by numerical simulation,
by fixing k = 1 and measuring Tstable as n goes from 1 to 100—see Figure 7. We again
measure both sparse and dense configurations (i.e., m ≈ 0.1n and m ≈ 0.5n, respectively).
The average expected time appears asymptotically bounded by m2, as expected. We also
simulated the asymptotic worst-case locust configuration in the proof of Theorem 1 (not
illustrated in Figure 7) and confirmed its stabilization time is asymptotically Ω(m2 + n−m),
verifying that the bounds of Theorem 1 are asymptotically tight.
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Figure 6. Simulations of the locust model. The y axis is Tstable. Column (a) measures Tstable for
k = 1 . . . 30, with n fixed at 30. Column (b) measures Tstable for n = 1 . . . 60, with k fixed at 5. Column
(c) measures Tstable with n = 30, k = 5, and p (the probability of erratic behavior) going from 0 to
1. The top row measures Tstable in sparse locust configurations (m ≈ 0.1n), while the bottom row
does so for dense configurations (m ≈ 0.5n). The dashed red line estimates Tstable when locusts never
switch tracks (except while behaving erratically in column (c)); the blue line estimates Tstable when
locusts switch tracks as often as the model rules allow. Error bars show the standard deviations.

Figure 7. Simulations of the locust model fixing k = 1 and letting n run from 1 to 100. The y axis is
Tstable. The orange line denotes dense locust configurations (m ≈ 0.5n), and the green line denotes
sparse configurations (m ≈ 0.1n). Error bars show the standard deviations.

6. Concluding Remarks

We studied collective motion in a model of discrete locust-inspired swarms, and
bounded the expected time to stabilization in terms of the number of agents m, the number
of tracks k, and the length of the tracks n. We showed that when the swarm stabilizes, there
must be a local consensus about the direction of motion. We also showed that, when the
model is extended to allow a small probability of erratic behavior to perturb the system,
global consensus eventually occurs.

A direct continuation of our work would be to find upper bounds on time to stabi-
lization when there is some probability of erratic behavior. Furthermore, our empirical
simulations suggest several curious phenomena related to erratic behavior. First, there
seems to be a clash between “erratic” and non-erratic, “rational” track-switching, as when
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locusts switch tracks non-erratically to avoid collisions. This seems to accelerate the at-
tainment of local consensus but mostly hinder the attainment of global consensus. Second,
increasing the probability of erratic track-switching p behavior was helpful in accelerating
global consensus up to a point, but in simulations, its impact seemed to fall off past a
small critical value of p. In future work, it would be interesting to investigate these “phase
transition” aspects of the model.

As discussed in the Related Work section, in [18,19] it is observed that at intermediate
densities, swarms of locusts exhibit periodic directional switching, and at low densities the
directions of motion are random. Although this phenomenon does not occur in our model,
if we assume each locust has a small probability r > 0 of randomly flipping their heading at
the beginning of a time step, such directional switching becomes possible, with probability
inversely proportional to the density (or so we expect). This extension of our model, of
course, does not have stable states, thus cannot be studied by the same methods we used in
this work. Nevertheless, we would be interested in studying it in terms of the expected time
the swarm spends in consensus or near-consensus about the direction of motion before
directional switching occurs.

For the sake of mathematical theory, the authors would be very interested in rigorous
results established over a fully asynchronous version of this model where locust wake-up
times are determined independently. In such a model, the winner of a conflict between
two locusts can be determined as the locust that wakes up first (thus exerts pressure on the
other locust first), which is perhaps more elegant. We speculate that most of the conclusions
will not be majorly affected by transitioning to an asynchronous model.

Although our agent marching model is inspired by experiments on locusts, it can be
understood in more abstract terms as a model that describes a situation where many agents
that wish to maintain a direction of motion are confined to a small space where they exert
pressure on each other. It is natural to ask what kinds of collective dynamics, if any, we
should expect when this small space has a different topology; rather than a ringlike arena,
we might consider, e.g., a square arena. We believe that rich models of swarm dynamics
can be discovered through observing natural organisms exert pressure on each other in
such environments. In the introduction, we mentioned points of similarity between our
model and models of opinion dynamics. We suspect that these points of similarity will
remain in settings with non-ringlike arenas and might provide a starting point for formally
modeling and analyzing them.
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