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Abstract. Random pairwise encounters often occur in large populations or groups of mobile
agents, and various types of local interactions that happen at encounters account for emergent
global phenomena. In particular, in the fields of swarm robotics, sociobiology, and social dynamics,
several types of local pairwise interactions were proposed and analyzed leading to spatial gathering,
clustering, agreement, or coordinated motion in teams of robotic agents, in animal herds, or in
human societies. We here propose a very simple stochastic interaction at encounters that leads to
agreement or geometric alignment in swarms of simple agents and analyze the process of converging
to consensus. Consider a group of agents whose “states” evolve in time by pairwise interactions:
the state of an agent is either a real value (a randomly initialized position within an interval) or a
vector that is either unconstrained (e.g., the location of the agent in the plane) or constrained to
have unit length (e.g., the direction of the agent’s motion). The interactions are doubly stochastic
in the sense that, at discrete time steps, pairs of agents are randomly selected and their new states
are independently and uniformly set at random in (local) domains or intervals defined by the states
of the interacting pair. We show that such processes lead, in finite expected time (measured by the
number of interactions that occurred) to agreement in case of unconstrained states and alignment
when the states are unit vectors.
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1. Introduction. We consider a group of NV agents with states described by the
set {x1,...,2n}. The states x; can be either real scalar values in some interval I C R,
vectors in a D-dimensional box C' C RP, or unit vectors on the circle S. Typical agents
could be people in a social group or a large population, ants in a colony, man-made
robots designed to act in a swarm, fish in a school, gas molecules moving around in a
container, or even software bots migrating from computer to computer on a network
like the internet.

The “state” of an agent may therefore be the opinion of a person on some issue,
which can be measured by a real value on R, such as how much you like a product on
a (continuous) scale from 0 to 10, where on the political spectrum you are from the far
left (—o0) to the far right (+00), the location of an ant or a robot in a planar domain
C C R?, or the direction of motion of a mobile robot. Of course, “state” might also
stand for the classical memory content of a (finite-state) machine or a bot-program,
but we shall not consider such discrete states here.

We assume that agents are identical in their capabilities and behavior and their
states change in time only due to interactions with other agents. The interaction rules
must be given and depend only on the current states of the interacting agents, not on
their identities. We say that the agents are identical, anonymous, and oblivious. Given
some rules of interaction and their timing schedule, we are interested in the evolution
of the states of the agents, the evolution reflecting some “emergent behaviors” of the
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swarm of agents, like agreement in a community of people, or gathering, grouping, or
clustering of robotic agents, or coordinated motion due to the alignment of directions
of movement in some herd of animals such as bison or insects like locusts.

In this paper we shall analyze a novel, doubly stochastic rule of interaction: we
assume that each agent can interact with any other agent at all times, i.e., the com-
plete interaction graph, and that interactions are pairwise only between randomly
selected agents and occur at distinct and discrete times, denoted sequentially as ¢, for
k=0,1,2.... At the interaction moments, two randomly selected agents exchange in-
formation about their states and decide to randomly and independently update their
own state. This leads to an evolution of the set of states in time and hopefully to
convergence to some interesting globally emergent swarming pattern.

2. An overview of previous results. To set the stage for our proposed rules
of interaction and the consequent emerging phenomena, we shall first describe sev-
eral previously proposed pairwise interaction rules and the results obtained on the
consequent global behaviors.

A fundamental problem in distributed computation, as well as in opinion dynam-
ics, is to achieve agreement or consensus via a sequence of local interactions. Suppose
that N agents have as initial states randomly selected real values and we would like
the agents to eventually agree on a common real value. If agents could see all others’
states, they could agree say on the average value of all the states. Suppose, however,
that agents can only see neighboring agents or agents connected to them, such as in
a given fixed neighborhood graph, determined by the designer of the network or by
geometrical proximity. Then agents can average sequentially but locally, only within
their neighborhood. The question is, Will this process eventually converge? This
problem is not too difficult, and we can in many cases prove that, indeed, in time,
the agents will agree on a value that is the average of the initial states thanks to
average-preserving rules of motion.

However, consider a stochastic setting in that at distinct time instances ¢, ordered
increasingly for k = 0,1,2... random pairs of agents are selected, and they replace
their states by the averages of the corresponding values. How does this random
pairwise averaging process behave? The result is a stochastic state equalizing process,
and all states will converge to the average of the initial states of the agents as the
motion rule is average preserving. This was first analyzed in [20, 17]. There is
extensive research work on such processes under the name of “distributed gossiping.”
These “gossiping” works analyze the evolution in time of the gathering process to the
average value of the initial states. They consider the moment when the normalized
distance vector of individual states to the average reaches a value less than a small
preset €. The conclusion of these results is an upper- and lower-bound on the as so
defined time to convergence proportional to log(%), where the constant factors depend
on the number of agents N and on the size of the initial spread of the states; see [3, 8].

Random pairwise interactions were also proposed as suitable models for achiev-
ing consensus in social studies on opinion dynamics in populations. Several studies
proposed to consider societies of individuals as holding initial opinions, or states,
quantified by some real values in an interval I of the real line R and the following rule
of evolution: at discrete time instants, if two random members of the society meet,
they change their opinion so as to “approach” each other by a deterministic fixed pro-
portion of the size of the difference between their opinions [12, 1, 4]. In a more com-
plex and realistic setting, this is done only if the difference between their opinions is
smaller than a certain threshold; otherwise the meeting results in no changes of opinion

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/09/23 to 132.68.36.184 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1248 THOMAS DAGES AND ALFRED M. BRUCKSTEIN

whatsoever. This later idea is the so-called pairwise interactions based “bounded con-
fidence model” considered by the “French school” of opinion dynamics led by Deffuant;
see [7, 11]. These works also lead to clustering and convergence of opinions either to
the average of the initial states (if no bounded confidence threshold is assumed) or to
several clusters in bounded confidence models [7, 13]. Recently, [10] studied a gener-
alization of the unbounded confidence model in nonconvex opinion spaces, e.g., on the
unit circle, but simplified the agent interaction graph to a ring (for a finite number
of agents) and more generally to Z (for an infinite number of agents) coined as the
“compass model.” As opposed to [10], we focus on the complete graph for interactions.
The idea of using pairwise interaction models in analyzing the emergence of var-
ious collective dynamics phenomena is also prevalent in swarm robotics. It was, for
example, proposed to model cooperative localization processes in swarms of robots, to
improve their self-location estimates by averaging those at random pairwise encoun-
ters, when the agents know that they are co-located; hence their estimates should
ideally coincide [9]. The idea of encounter averaging of self-location 2D-vector esti-
mates was there shown to significantly improve the cooperative odometric location
evaluations, even under the assumption that the pairwise agent encounters are to-
tally random, which obviously is not the case. This idea is, of course, prevalent in
physics. In thermodynamics, one considers gas particles (molecules) moving and col-
liding, their self-propelling motion manifested as thermal energy and their collisions
modeled with several types of deterministic or randomized interactions. The emergent
collective behavior in this case is quantified by globally measured properties of the
system of molecules like variations in density, temperature, and pressure as functions
of container geometry and external, perhaps even temporally changing, factors [2].

3. Overview of results. We consider here three types of problems concerning
systems with multiagent pairwise interactions. The interactions that we define are
stochastic, and we prove that a desired behavior eventually emerges. We also provide
evaluations about the expected time (measured by the number of interactions) to the
convergence to a state that is very close to the desired global behavior. The problems
are the following: systems of N agents, with states defined by either real numbers in
an interval I C R or by real vectors in a D-dimensional box in R” or by unit vectors
on the circle, are considered to evolve due to random pairwise interactions that result
in changes of the states of the interacting agents. The rules of the evolution are the
following.

1. The interaction moments are discrete times t¢1,to,... starting from tq5 = 0
when a random initialization is done.
2. At each moment t; a random pair of agents is selected uniformly from the
w possible pairs of agents.
3. The selected agents ¢ and j uniformly choose new states in the “interval”
defined by their states {z¥, xf } as follows:
e if the states are real numbers, the “interval” is just chosen to be as
[min{z}, 2%}, max{zf, 2¥}];
e if the states are D-dimensional vectors, the “interval” is then the 1-
dimensional line segment {Az} + (1 — X)z% | A € [0,1]} embedded in
RP;
o if the states are two unit vectors, the “interval” is the geodesic circle arc
between the two points defined by ¥ and mf on the unit circle.

The main question we address is, How does such a stochastic system evolve in
time, measured by the indices of the interaction times tg,t1,t2... (ie., 0,1,2...)?
We prove that, in all the cases above, the system gathers the agents’ states, with
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probability one, to a common random point on the real line in the first case, to

a single random point in R? in the second case, and to a random unit vector in

the third case. We also show that the expected time to e-convergence is finite and

provide bounds on it, where e-convergence is defined as the expected time (or number

of iterations) for which the spread of the states of all the agents is smaller than e.
We list the main results below:

e Evolution of real values in an interval. We prove that e-convergence is
achieved almost surely and in finite expected time by deriving an upper-bound
of O(N log(g)) on the expected e-gathering. We illustrate our theory with
extensive numerical simulations, and they reveal the quality and tightness of
our bound.

e Evolution of real values in a D-dimensional box. Similarly to the
1D case, we again prove almost sure e-convergence in finite expected time
by deriving an O(N log(%)) upper-bound. Extensive numerical simulations
are performed to show the quality of the bound.

e Evolution of unit vectors on the unit circle. We prove almost sure
e-convergence in finite expected time. This problem is significantly more
challenging: we here provide a simplistic approach yielding a crude upper-
bound, as revealed in extensive experiments. We also provide and detail
several promising approaches for deriving a more reasonable upper-bound
but leave the refinement issue as an open challenge.

Specifically, we proved the following bounds for the expectation of the time to
reach e-convergence 7.

THEOREM 3.1. In the 1-dimensional case, the opinions almost surely converge.
Furthermore, if the original opinions lie in a bounded interval I = [a,b], we have

oiry < v (2) + 2 (i (252 1),

THEOREM 3.2. In the D-dimensional case, the opinions almost surely converge.
Furthermore, if the original opinions lie in a bounded D-dimensional box C' = |a, b]D,

we have N (b )2
3 D 3 —a
<= =) +:= ~ 7 ) 4+1).
E(T:) < 2Nln( =2 ) 2N (ln( 5 ) 1)

LEMMA 3.3. In the circle case, the unit vector opinions reach a configuration
where they are all contained within a half-disk in finite expected time. In other words,
denote Ty p the time to reach such a configuration; then there exists a finite upper-
bound B depending only on the number of agents N such that

E(Typ) < BHP.

We prove that BEP = (3 N(N — DH)Llz) 4 2|5 ] is such an upper-bound.

THEOREM 3.4. In the circle case, the unit vector opinions almost surely converge.
Furthermore, we have

N 2
E(T.) < BHP + ;Nln (52) + gN <ln % + 1) .

To test the above results, we carry out extensive numerical simulations. They
show that the derived bounds in Theorems 3.1 and 3.2 provide a good description of
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the asymptotic behavior of the expected convergence time when either ¢ — 0 or N —
oo. However, the simulations suggest that the bound obtained in Lemma 3.3 is too
crude, as we seem to have E(Typ) = Q(N In N). The reason for the discrepancy in the
bounds is mostly likely due to our naive proof strategy. However, we have not managed
to successfully find a more elaborate approach that provides a better bound B]I\}’D . We
leave it as a challenge to reduce the gap in B{P to get closer to the empirical results.

4. 1-dimensional case. A preliminary simple model to study social gathering
is to assume that people’s opinions solely depend on a unique parameter Zopinion that
lives on the real line R. This model well suits systems where opinions exist along a
simple spectrum, with notions of “left-wing” and “right-wing” opinions. The larger
Zopinion 15, the more the opinion is “right-wing,” and the smaller z,pinion becomes,
the more the opinion is “left-wing.” It is important to note that, in this model, if
Zopinion iNcreases, then the opinion becomes more and more “right-wing.” We may
also assume that the space of opinions is either bounded, which models systems well
with limited “left-wing” and “right-wing extremism,” or unbounded, which models
better systems with unlimited “extremism” in one or both directions.

Mathematically, we define the space of opinions to be an interval I C R of the
real line. Our system comprises N > 2 indistinguishable agents, each with their own
opinion: z; € I for i € {1,..., N}. The initial opinions are random, but we will work
conditionally on them, and so they form a given set {z9}1<;<n, where 29 € I for all 4.
Opinion dynamics are modeled in discrete time, conditionally on the state of opinions

at the previous time step Xj, = (z¥,...,2%)T. The evolution law at time step tj1
forallie {1,...,N}is

(41) xf—i_l = ]]'7;¢{Ak+1;Bk+l}x§€ + ]]'i:Ak+1U1k+1 + ]]'i=Bk+1U2k+1’

where (Akt1, Bi+1) is a random uniform sampling of two indices of {1, ..., N} without

replacement independent of the past, 14 is the indicator function of the event A,
and, conditionally on Xy, Agy1, and By, U{H'l and UQIH'1 are independent random
uniform variables in the interval [min{x’jlk“ , ac’fBHl 1, maux{gcfi‘k+1 ) x%kﬂ }]. Concretely,
at each time step, two random agents Apy; and Bjyi are selected, and they then
independently and uniformly resample their opinion in the interval between their
previous opinions. See Figure 4.1 for an example.

Note that the updated agents’ opinions do not necessarily preserve “ordering.”
The problem and its analysis would be identical if we forced order preserving updates
by renaming agents Ay41 and Bg41 to be closer to Ay and By, respectively.

Before diving into a detailed analysis of our model, we would first like to point
out its novelty with respect to the existing literature.

Our model is not a Deffuant-like approach. In the Deffuant model [7], randomly
selected pairs of agents are both updated by the same constant “fraction” p of the
interval defined by their opinions. Formally, for the pair of agents i and j selected at

time step &, the opinion updates are z# 1 = (1—,u)aiff+,uxf and xf“ = umf—l—(l—u)xf.

I I T e o o A e e
| | 1 | | | ok k1 T

T T T T T T T x; Wll
k+1  k+1 k+1,_ k41, k+1, k+1 k+1

T3 Ty Te T Ty Ty Tg

Fic. 4.1. One-step opinion evolution in the 1-dimensional model.
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In a nonstandard randomized Deffuant model, the fraction p is random, typically
uniformly in [0, %] In our model, the agents also update their opinions by some
“fraction” of the interval of opinions; however, they do not share the same random
fraction. Formally, the updates in our model can be written as xf“ =(1- u)xf —l—,ua:;?
and mf“ =k 4+ (1 - /\):1:?, where A and p are independently chosen. In particular,
we almost surely no longer have A = p as in the Deffuant model. Furthermore, our
“fractions” A and p are sampled in [0,1] and not just in [0, 3]. This choice implies
that the agents cannot only flip their ordering after the update but also that the
opinions may lie in the same half of the opinion interval. Both of these behaviors are
not possible in the Deffuant-like approaches.

Our model also does not correspond to standard averaging models using doubly
stochastic matrices for updates such as in gossiping. Before presenting doubly sto-
chastic matrices, let us rewrite our update model in matrix form. Like the Deffuant
approaches, our model is linear, albeit random, in the sense that opinions may be
organized into a vector X and then updated by a product with a random matrix P:
Xi11 = PXj. In the Deffuant model, given the pair of agents for update ¢ and j, P is
equal to the identity matrix except on the ith and jth rows and columns. These rows
and columns are filled with 0 except for two terms per row and per column: P;; = p,
Pj=1—-u, Pj, =1—p, and Pj; = p, where p is either fixed in the standard
Deffuant case or random in its randomized variant. In our model, given the pair for
update, the difference is that, due to the independent choice of “fractions” for update
for each selected agent, we have P, ; = u, P, j =1—p, but Pj; =1—Xand P;; = A,
where p and A are independent and identically distributed (iid) random variables tak-
ing values in [0, 1], hence almost surely A # p. Interestingly, the Deffuant matrix P
satisfies the following property: each column and each row sum to 1. The fact that
each row sums to 1 is natural and means that updates belong to convex combinations
of the two selected opinions. However, the columns summing to 1 implies that the
selected agents contribute equally to the sum of all opinions, and thus the update is
average preserving. In our model, the update matrix P does not satisfy the property
that each column sums to 1. For that to occur, we would necessarily need to have
A = u, which is almost surely never the case.

Generally, matrices with positive entries and with rows and columns summing to
1 are called doubly stochastic matrices. If they are used in an update rule, then the
model satisfies that updates belong to convex combinations of other opinions (row
assumption) and that the random coefficients in the convex combinations cannot
be independent between agents as each agent must also equally contribute to the
update of the whole state vector (column assumption). Models using doubly stochastic
matrices for updates have been extensively studied [17, 20, 15], especially in the
gossiping literature [3, 8]. In our model, we no longer have such doubly stochastic
matrices. Our concept of “double stochasticity” is thus different. In some sense, we
have even stronger stochasticity due to both the selection of the pair of agents and
the two random and independent updates.

Our model is also different from projected consensus models considered, for ex-
ample, in [15, 18, 19]. In these approaches, a potential is defined such that consensus
is reached at its local minima. Consensus is then achieved by performing gradient de-
scent or ascent via a projected gradient step in order to maintain the opinions on the
allowable set or manifold. For instance, [18] uses implicitly the sum of squared pair-
wise distances potential and updates the agents’ opinions by subtracting the summed
difference between the agents’ current opinions and those of their neighbors in the
fixed and possibly noncomplete interaction graph. However, for all projected consen-
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sus models, due to the gradient step philosophy, given the interaction graph (which
may also randomly change), the update step is a given deterministic process. As
such, there is no double randomness in these approaches, and they fundamentally
differ from our own.

Hence, while our model shares a similar flavor to other approaches in the liter-
ature, it fundamentally differs from them as discussed above. We now focus on our
model and analyze it.

PROPOSITION 4.1. The quantity max;; |k f:cé‘?\ s a positive nonincreasing func-
tion and converges when k — 0o.

Proof. The result is immediate due to the rules of motion: no point can become
more extreme than the already most extreme points. Mathematically, in the inclusion
sense, the smallest closed interval containing all points is nonincreasing and will thus
converge to a nonempty limit interval. 0

PROPOSITION 4.2. For all k € N, we have

2N +1
k41 k4132 _ k k\2
i#] i#]
Proof. We here give an overview of the proof, for which a detailed one can be

found in the supplementary material subsection SM1.2.
Denote Eﬁ ; and LF the studied quantities

k k k\2
(4.3) LV=> "(aF —ab)? =) "rk.
i#£j i#£]

We can calculate the expected £*+! by conditioning on the chosen pair (m,!)
for (A*+1, BE*+1) and use the linearity of the expectation to focus on the conditional
expectation of the (,7) term Efjl By expanding the square in this term and once
again using the linearity of the expectation, we thus only need to know the first two
moments of the updates of the opinions, conditioned on the choice of pair for update
(m,1). These are simply given by the well-known first order moments of 1-dimensional
uniform random variables (see the supplementary material Proposition SM1.2). Some
straightforward calculations give the final result. ]

Unlike the range maxi¢j|:cf - xé‘“‘|, L* is not monotonic. Nevertheless, its usage of
the expectation rather than the maximum operator eases its analysis. Both quantities
relate to each other through the following proposition.

PROPOSITION 4.3. For all k € N, we have

. 2 N2 )
Nr?7éa]x|xf —azﬂ <ch< 71?3}’325 —xﬂ

Proof. This is a well-known result from [16] for the upper-bound and [14] for
the lower-bound after noticing that, up to normalization and a constant factor, the

Lyapunov sum of square differences of N points z1, ..., 2y is the (biased) empirical
variance of the points. We rederive the proof as supplementary material in subsec-
tion SM1.3. 0

DEFINITION 4.4. For any € > 0, we denote T, the stopping time with respect to
the natural filtration induced by the (X) sequence defined as

TE:inf{k€N|m¥ax‘xf—x§|<5}.
i#]
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DEFINITION 4.5. For any € > 0, we denote T, the stopping time with respect to
the natural filtration induced by the (Xy) sequence defined as

T!=inf{ keN| Z(mf — 2¥)? < Né?
i#]
PROPOSITION 4.6. For alle >0, T, < T..

Proof. The result follows directly from Proposition 4.3. Indeed, if £F < Ne2,
then max;; [zF — xf| < % < €2. Thus, the range of opinions at time k is smaller
than or equal to e, and we have already reached convergence. Therefore, the first
occurrence of the event {£* < Ne?} happens at the same time or later than the first
occurrence of {max;; [xf — 2% < e}, i.e., of convergence. O

THEOREM 4.7. For a system evolving according to (4.1), for any e > 0, we have

SN(N—1), [ L0\ 3N(N—-1) 3 £ .3
< =3 Nez ) Tt
E(T. | Xo) £ 5577 IH(N€2>+ N+ S yaz) el

Proof. We here give an overview of the proof, for which a detailed one can be
found in the supplementary material subsection SM1.4.

Due to Proposition 4.6, it suffices to find an upper-bound on the expectation
of T!. The idea of the proof is to write this expectation as the sum over k of tail
distributions: P(T! > k | Xo). If £ is lower than or equal to Ne2, then by definition
T! is lower than or equal to k. By contraposition, it thus suffices to find an upper-
bound on the sum over k of tails of a new distribution: P(£* > Ne? | Xj). Luckily,
we know the expectation of these variables, using Proposition 4.2, by induction on
expectations:

. IN+1 \"
(4.4) E(L Xo)_<1 3N(N1)) L.

We can then apply the Markov inequality on each term of the sum to get an
upper-bound. However, the Markov inequality tends to be of poor quality in the
first terms of the summation, as it there yields huge unrealistic bounds. We can
compensate for this by simply upper-bounding the first terms by 1. We find that,
for k > 3N(N-1) In( L0 ), the Markov inequality provides bounds lower than 1. Thus

2N+1 Nez
we split the summation into two parts, the first %}\;—11) In( J\f;) terms of the sum,

which together contribute at most to that amount, and the rest which contributes to
at most an infinite geometric series with first term that is quite small. We can show
that the second part of the sum can be upper-bounded by %}\;—11)7 which concludes

the proof. ]

We can now simply prove Theorem 3.1 by seeing it as a corollary of Theorem 4.7.

Proof. Tt follows immediately from Theorem 4.7 since using Proposition 4.3 we

have
2
(4.5) L0 < N7(b —a)?. 0

PROPOSITION 4.8. If I is bounded, say I = [a,b], and if the opinions in Xy have
uniform identical independent distributions in I, then
N(N —1)

E(L°) = G

(b—a)?.
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Proof. The result is straightforward since it uses well-known first moments of iid
uniform random variables (see Proposition SM1.2). d

THEOREM 4.9. If I is bounded, say I = [a,b], and if the initial opinions in X,
have uniform identical independent distributions in I, then

E(T. )<3N1n(N>+3N<1 <(b_6a)2>+1>

Proof. The proof is similar to that of Theorem 4.7. To remove the conditioning
on Xo, we use E(T.) = E(E(T! | Xo)). We have

€

(4.6) <E (i P(LF > Ne? | XO)> = iE(P(ﬁk > Ne? | X))

k=0

rk
(4.7 Z E | min |2X0) ,1
( { E’“ZTXO }> i 2N +1 \"E(£)

where the inversion in (4.6) is achieved by positivity of the terms. We can thus replace
LY by its expectation when removing the conditioning. We then use Proposition 4.8
and continue the proof as in Theorem 4.7 to get the desired result. O

E(TY) = E(E(T! | Xo))

THEOREM 4.10. For a system evolving according to (4.1), we have

k k
2N +1 20 2N +1 L0
| N o ) - X, 1- -T2 ) =
( 3N(N1)) NZ = (mﬁx‘x G 0) = ( 3N(N1)> N
Proof. Using Proposition 4.3, if we denote r, = max;; |[zF — :z:§| the range of
opinions at step k, then

2 g o LF

We get the final result by taking the expectation and applying Proposition 4.2.0

THEOREM 4.11. If T is bounded, say I = [a,b], and if the opinions in Xo have
uniform identical independent distributions in I, then if v is the range at time step
k,

k
(V-1 (1 - 535t

(N —1) 1 — _2N+1 i
3N(N-1 ) 9
e (b—a)".

3N ) - oy <50 <

Proof. The result immediately follows from Theorem 4.10 and Proposition 4.8.0

THEOREM 4.12. A system evolving according to (4.1) converges to a single point
Too € I almost surely.

Proof. The result immediately follows from Theorem 4.7 and Proposition 4.1.
Note that the limit point z, is random in I. 0

Denote for conciseness X = % Zf\;l x¥ € R the average opinion at step k.
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PROPOSITION 4.13. For all k € N, we have E(X}, | Xo) = Xo.

Proof. The proof is straightforward and uses the well-known first moment of uni-
form random variables (see supplementary material Proposition SM1.2). See sup-
plementary material subsection SM1.5 for a detailed proof. Note that this result is
intuitively clear as the update rule is average preserving in mean. 0

Denote 1 = (1,...,1)T the vector of ones and (2, ..., x) € RV~1 an arbitrary
orthonormal basis of the space orthogonal to the 1-dimensional space generated by

1y. Define columnwise the following unitary matrix U = (ﬁlN B2 - 5N).
Let Diag(\1,...,An) be the diagonal matrix with entries A1, ..., Ay.
PROPOSITION 4.14. For all k € N, we have

k k
. 1 1
E(Xk|X0):UDlag <1, (1-]\[_1> ,,(1—]\]__1> )UTX0~

Proof. The proof is also straightforward by working conditionally on the choice
of pair (4, ) for update. We find that

1 1
4.1 E(X X.) = U Di 1, (1——),. . ([1=-—— Tx,
(110)  E(Xpsr | Xe)=U g<( o) N—l))U .

which gives the final result by induction. A detailed proof is given in the supplemen-
tary material in subsection SM1.6. O

THEOREM 4.15. The limit point for a system evolving according to (4.1) has the
expectation:

N
- 1
E(00 | Xo) = Xo = > al
1=1

Proof. Using Theorem 4.12, all opinions converge almost surely to the same finite
but random value, and since the opinions are all bounded by the initial interval
Iy = [min Xy, max Xy|, we have by bounded convergence that

: k _
im B(a} | Xo) = E(ra | Xo),

(4-11) lim E(X; | Xo) =E X
lim E(X | Xo) = E(rae | Xo).
We then conclude using (4.11) and either Propositions 4.13 and 4.14. O

Note the following important remark: while Proposition 4.14 gives that the con-
vergence of the expectations of each opinion is exponentially fast, it does not provide
any guarantee on the speed of the convergence of sequences (Xg, X1, Xo,...). This is
given by Theorem 4.7.

We can compare our result with those from the gossip literature. Note that,
in gossiping, T, is deterministic and equals % Zf\il 2? almost surely and that the
communication graph may be assumed different from the complete graph, leading to
different convergence times.

DEFINITION 4.16. For any € > 0, we denote Tyossip(€) the “c-averaging time,”
which is the deterministic quantity studied in the gossip algorithms’ literature and
used there as the convergence time, defined as

X()) < 6} .

T

Xp— a0 (1,...,1

Tgossip(ff) = sup inf {k | P ” k JCOO( ) ”2 >
Xo€IN keN [ Xoll2
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THEOREM 4.17. Assume I is bounded, say I = [a,b], then

4 NI = qup)).

-31 In(2(N — 1)(1 — N
Tyossip(2) < 3Ine + In (2( )L —qasp)) - 3y (N
_ _ _2N41 9 el

111 1 3N(N71)

2 2
_a b
where qap = 3z La>0 + 7z ly<o-

Proof. We here give an overview of the proof, for which a detailed one can be
found in the supplementary material subsection SM1.7.

Using Proposition 4.3, we can link the squared range to the Lyapunov quantity.
Thus the tail distribution in the definition of Tgossip(s) can be upper-bounded by a
tail distribution of £¥. We can then apply the Markov inequality to get an upper-
bound of this tail distribution. Unlike us, the gossip literature is solely interested in
one tail distribution: the one that passes the e-threshold. It thus suffices to find for
which £ the bound given by the Markov inequality is smaller than e. ]

Our result is similar to those in the gossip literature. However, the quantity we
study is slightly different, and we need to add the result of the Markov inequality at
all levels and not just at a specific level depending on €. However, if unconventionally
we change the definition of Tjyossip(e) by using the squared 2-norms instead of the
plain 2-norms, then the same calculations would give an upper-bound with dominant
term %N ln(aﬂz). This suggests that the unconventional gossip convergence time is
similar to our expected convergence time. This is a general result that is due to
the fact that the quantity of interest, for us and for gossiping, is £™ and that it is
an exponentially decreasing positive supermartingale. We can prove that if (Y) is
a positive exponentially decreasing supermartingale, i.e., there is o > 0 such that
E(Yit1 | Yi) = (1 — @)Yy, and if Yy, converges to 0 almost surely, then if we slightly
change the convergence definition of T to T.,(g?) by normalizing by Yp, i.e., looking

at the first occurrence of {% < €2}, then E(T.,(¢?) | Yo) < % + 1 and

Tyossip(€) < % Thus both quantities of interested have similar upper-bounds.
In our case, Y} would be £¥, up to multiplicative factors, different in each case,
in order to get a comparison with the same threshold €. A proof of this similarity
between expected convergence time and gossiping is given as supplementary material

in subsection SM1.8.

5. Unconstrained D-dimensional case. We can generalize the previous 1-
dimensional model to a similar D-dimensional one. Now, we assume that people’s
opinions depend on several parameters. However, we will say that the space of opin-
ions is “unconstrained” in the sense that the domain for opinions is a convex set of
RP. This model well suits cases when extreme opinions correspond to at least one
“extreme” parameter, i.e., very big or very small, and any nonextreme point lying
inside the convex hull of the extreme opinions is a feasible opinion. Once again, the
space of opinions can either be bounded or unbounded.

Mathematically, we define the space of opinions to be a convex set C C RP.
Our system comprises N > 2 indistinguishable agents, each with their own opinion:
zr; = (vig,...,zip)l € C for i € {1,...,N}. The initial opinions are random,
but conditionally on them they form a given set ¥ € C. Opinion dynamics are

modeled in discrete time, conditionally on the state of opinions at the previous time

step Xp = (zf,...,2%)T € RNXP. The evolution law at time step k + 1 for all
ie{l,...,N}is
(5'1) xi‘H_l - lié{Ak+17Bk+1}xf + ]li:Ak-+1 Ulk—"_1 + ]li:Bk+1U2k+1’
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Fi1c. 5.1. One-step opinion evolution in the unconstrained 2-dimensional model.
where (Agt1, Br+1) is a random uniform sampling of two indices of {1, ..., N} without

replacement independent of the past and where, conditionally on X, Axi1, and
Bii1, UPT™ and US™! are independent random uniform variables in the line segment
{(1- )\)arljlkJrl +)\I%k+l | A €[0,1]}. Concretely, at each time step, two random agents
Agy1 and By are selected, and they then independently and uniformly resample
their opinion in the segment between both previous opinions. See Figure 5.1 for an
example when D = 2.

We define the e-convergence time T as the first time when all agents are at most
¢ distant from each other. Its definition is the same as for the 1-dimensional case in
Definition 4.4 except that |-| has been replaced by |[|-||2.

It is fairly simple to see that, along each dimension, the projected coordinates of
the opinions rigorously obey (albeit simultaneously) the 1-dimensional rules of mo-
tion (4.1). As such, we can easily generalize the proofs done in the 1-dimensional case
to the general D-dimensional unconstrained convex case by working per coordinates.
In particular, the maximum L? distance between two opinions is nonincreasing, the
opinions will almost surely converge to a random limit point z., that preserves the
initial average on mean, i.e., E(zo | Xo) = Xo, and the expectation of the time to
reach e-convergence is also finite, and we give an upper-bound for E(T.) in Theo-
rem 3.2. We provide detailed proofs on how to generalize the 1-dimensional results to
the D-dimensional case as supplementary material in section SM2. The key message
is that, thanks to the convexity of the opinion space, increasing the dimensionality
does not fundamentally change the behavior of the system nor the tools for analyzing
it.

6. Constrained 2-dimensional case. The limitation of the previous model
is the convex opinion space assumption, which is well adapted to situations where
“extreme” opinions correspond to at least one “big” opinion parameter. However, in
some cases, it is more accurate to also consider some “extreme” cases with neither
parameter being “big.” This happens when the opinion space is no longer convex.

For nonconvex opinion spaces, it is then necessary to redefine how agents inter-
act. In the convex case, we modeled an interaction along the line segment linking
the two states. In a nonconvex, yet arc-connected space, a reasonable possibility
to model interactions between opinions is to consider a geodesic between the opin-
ions in the opinion space. In this paper we will study a simple case that naturally
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generalizes the previous models: the unit circle, which is interesting from two as-
pects. First it is nonconvex in R2. Secondly, a reparametrization of S using the
oriented angle from the z-axis in [0, 27) leads to a new parameter space [0, 27) for S
which is convex. However, it fundamentally differs from the previous convex models
for the two following reasons: first, as opinions communicate along geodesics of S, if
(61,62) € [0,27)?, then, depending on the size of |#3 — 6|, communication can happen
in the [min{6;, 02}, max{6;, 62 }] interval or in its closed complement in [0, 27) which
is equal to [max{61, 02}, 2m) U [0, min{f;, f2}]. Thus convexity in the parameter space
is not enough to use the previous models, as we require convexity in the embedding
space. Secondly, if § € [0,27) increases, then as 6 reaches the right boundary of the
interval, then it simultaneously reaches the left boundary as well. This violates the
principle that we assumed in the previous cases where a more and more “right-wing”
opinion could not simultaneously become more and more “left-wing.” Furthermore,
the circle naturally appears as the opinion space when working on alignment of 2-
dimensional agents moving with unit velocities in the plane. Indeed, circular opinions
correspond to headings, and alignment only occurs when all headings are the same,
i.e., in consensus on the circle.

Mathematically, we define the space of opinions to be S € R? the unit circle
embedded in 2-dimensional space. Our system comprises N > 2 indistinguishable
agents, each with their own opinion: z; = (z; 1, (Ei’g)T following the circle constraint
27, 4z}, = 1. The opinion state is Xj = («f,...,z5)" € RV*2. It will be useful
to consider the equivalent reparametrization by angles 6, € [0,27) with (z;1,%;2) =
(cos(6;),sin(6;)). The initial opinions are random, but conditionally on them they
form a given set 9 € [0,27). Here the state-evolution dynamics are modeled in
discrete time, conditionally on the state of opinions at the previous time step Oy =
(0F,...,08)T € RN. The evolution law at time step k + 1 for all i € {1,..., N} is
now done along geodesics and is

(6'1) 917?+1 = ]li¢{x41«-¢_1,J’3k+1}95’C + ]li:Ak+1U1k+1 + ]li:Bk+1U2k+1’

where (Agt1, Br+1) is a random uniform sampling of two indices of {1, ..., N} without
replacement independent of the past and where, conditionally on O, Ax4+1, and
Bi+1, U™ and Uy ™! are independent random uniform variables in G(04, . ,,0p,,,) C
[0, 2), which is the geodesic circle arc between opinions x4, ,, and zp, , ,:

_ min{#, 8}, max{6,0 if |0—6|<m,
(6.2) G(0,0) = 16,6, maxt }} ] _
max{6, 0}, 27r) U [O,min{e,ﬁ}} if |60

\%

.

Concretely, at each time step, two random agents A1 and Bjyyq are selected,
and they then independently and uniformly resample their opinion on the shortest
circle arc between both previous opinions. See Figure 6.1 for an example.

Note that, for the pathological case of two agents at an angular distance of exactly
7, then we chose a deterministic geodesic. This work would be similar if we chose a
random geodesic in that case and even if we chose for the two agents to not necessarily
choose the same one. This is because this 7 distance configuration almost surely never
happens, as the updates are continuous random variables, except for the eventual cases
in ©g were angles are initially set to be at such a distance.

Note that, as in the convex case, we allow the updated opinions to change their
order on the circle. By simple renaming of the unit vectors,! we could preserve

INote that we do assume agents to be identical and indistinguishable anyway.
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F1G. 6.1. One-step opinion evolution in the constrained 2-dimensional model.

“ordering,” but nothing would change in our analysis of the problem. However, when
viewing the opinions as headings for agents that move with unit velocities in the
plane, “agents selected for interaction” could correspond to physical encounters of
two agents in the plane. In such cases, depending on physical assumptions on the
type of their interactions, one might wish to either keep or exchange their ordering on
the circle. As mentioned above, we account for both possibilities by not constraining
the ordering of the updated agents.

We are not the first to propose to use the circle as nonconvex opinion space
and its natural angular parametrization. Indeed, the circle is the most natural and
simplest nonconvex connected-by-arc opinion space. Notably, it was also used in [10].
Nevertheless, the assumed rules of interaction in [10] radically differ from ours. First,
the interaction graph corresponds to a predetermined ring in the finite case (and Z
in the infinite one), rather than to the complete graph like in our case. Secondly,
the dynamics are not doubly stochastic since the randomness lies only in the selected
pair of agents: once selected, the agents will update their opinions in a deterministic
way as is standard in the Deffuant model. We further incorporate randomness in the
opinion update along the geodesic between opinions. While we proposed to work in
the same domain, our work is different in both the assumed interaction graph and the
update rules as well as the tools for the analysis of convergence.

Other less relevant approaches exist for opinion dymanics on nonconvex manifolds.
Motivated by alignment of agents in the plane by considering the heading of planar
agents as their opinions, [19] uses a projected gradient approach, where agents simply
perform a given step along the gradient of a potential function involving the other
opinions (and the weighted interaction graph). However, there is no randomness in
the update whatsoever. The approach is purely deterministic, and such papers only
prove convergence, but they do not study the expected time to reach it.

We now focus on our model. Similarly to the convex case, we define the following
stopping time on the angle parametrization.

DEFINITION 6.1. For any € > 0, we denote T the stopping time, with respect to
the natural filtration induced by the (©y) sequence, defined as the first time step when
all unit vector opinions are within a circle arc of length ¢:

T. — int {k € N| i, js.t. [G(OF,05)] < e and for all 1,0F € G(6F 9’?)},

197] RR]

where |G(a, B)| = min {|a — 8], 27 — |a — B|} is the geodesic angular distance between
angles o and [3.
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DEFINITION 6.2. We denote Typ the stopping time, with respect to the natural
filtration induced by the (©y) sequence, of the event that all unit vector opinions are
within a half-disk:

Typ = min{k € N | 30%, € [0,27) for all i € {1,..., N}, cos(F — 6% ,) > 0}.

PROPOSITION 6.3. For any system evolving according to (6.1), if at time step
k € N all unit vector opinions are within a half-disk, then for all k' > k, all unit
vector opinions are within a half-disk.

Proof. This result is obvious after realizing that the rules of motion in (6.1) are
equivalent to those in the 1-dimensional case (4.1) once all opinions are within a
half-disk. To better see this, we present a detailed proof.

Let 6%, be an angle such that, for all 4, cos(6F — 6% ,) > 0. Perform the change
of angular parametrization around 6%, for all future time steps k' > k:

(6.3) gr = 0% — ok .

In this new parametrization in [—7, ), all geodesics are contained within the one
between the two most extreme opinions, i.e., G(6f,05) C G(min{f}}, max{6;}) for
all (i,5) € {1,..., N}2. Due to the rules of motion (6.1), this in turn implies that all
angles at the next step are within that same geodesic. By induction, we can claim
that, for all future time steps k' > k, 6% € G(min{#)}, max{f}}), which implies that
all angles are contained within a half-disk forever. ]

We first prove Lemma 3.3.

Proof. The proof consists in showing the existence of a sequence of finitely many
updates with probability lower-bounded by a strictly positive constant that drives the
system from any configuration that is not contained in a half-disk to a configuration
contained in one. To do this, it suffices to find a finite sequence of events leading to
the half-disk configuration from any other configuration. Due to the finite number
of agents, each of these events will have lower-bounded probabilities, and since the
sequence is finite, we have a nonzero lower-bound for the probability to have such a
sequence occur from any given configuration. In turn this gives that almost surely all
agents will be located within a half-disk and that the expected time for this to occur
is finite. A detailed proof is given as supplementary material in subsection SM3.1. O

As we later show in numerical experiments, the bound in Lemma 3.3 is rather
loose due to the proof strategy that worked. We hope that better bounds can be
derived. To also take them into account, we define the set of finite upper-bounds of
the expected time of convergence, and the bound we proved is just one of its elements.

DEFINITION 6.4. Let BEP be the set of finite upper-bounds of E(Tup | ©0):
BRP = {BRP e R | E(Tup) < BRP}.

We can now prove Theorem 3.4.

Proof. The result immediately follows from Lemma 3.3 and Theorem 4.7. Indeed,
it suffices to notice that once all agents are within a half-disk, then the dynamics of the
system using (6.1) are equivalent to the 1-dimensional dynamics (4.1) using the angles
for the opinions. Note that the “initial” 1-dimensional Lyapunov once we have reached
the state where all unit vector opinions are within a half-disk, that is, the Lyapunov
at time step Typ, is a random value: however, since the pairwise angular distance is
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then less than 7 for any pair of opinions, we have bounded it using Proposition 4.3
by

2
(6.4) LT < N77r2. 0

7. Open problems on the constrained 2-dimensional case. Many issues
remain unsolved for the constrained 2-dimensional case. We propose them in this
paper as open questions. The main problem was to obtain a better bound than the
crude O((QT‘/E)N N2N) provided in Lemma 3.3 for the expectation of the time for all
agents to get within a half-disk. We provide three interesting approaches based on
different quantities for which we do not have a final solution. Details can be found in
our technical report [6].

The first approach consists in studying the vector sum of all the unit vector
opinions S*F = ZZ]\LI xf The purpose of studying this vector is that convergence of
opinions in S is equivalent to convergence of S* in R? and to convergence of its 2-norm
to its upper-bound, N, by finiteness of the problem. Intuitively and experimentally, if
|S¥||2 is “large,” then there is a “large” number of opinions positively oriented with
S*, and furthermore opinions positively oriented with S* tend to be updated in a way
that further increases the norm of S*. However, ||S¥||3 is upper-bounded by N which
can only happen for opinions arbitrarily close to each other. Therefore, we can simply
study the evolution of ||S¥||3, which is an upper-bounded random real quantity, show
that it converges to its upper-bound, and study its speed of convergence. Another
possibility would be to analyze (Sk11,Sk) in order to take into account reinforcement
drift in the direction of Sy when its norm is sufficiently large. We propose to introduce
the geodesic bisectors ﬁvk ; between each pair of agents {i,j} and the half angle aﬁ j
of the geodesic circle arc between them. Many interesting properties and formulae
can be derived; unfortunately we are faced with summations of quantities that are
difficult to bound.

The second approach consists in analyzing the evolution of the maximal empty
angle % . which is the angle of the longest circle arc between two consecutive opin-
ions on the circle. Note that this arc is not necessarily geodesic. Obviously, there
is equivalence between 7% > 7, and all unit vector opinions are within a half-disk.
Thus we could study 7%, as a random walk on [0, 27) starting in [0, 7) and look for
the first time it passes the 7 threshold. Ideally, 7% would be a submartingale which
would then give us almost sure convergence and convergence time bounds. We can
show that, while the opinions are not yet contained within a half-disk, 7%, is biased
to increase and in particular that P(y5EL < 4% |4k ) <1(1— %). Unfortunately,
simply having that the probability of decrease is upper-bounded by a value strictly
smaller than % is not enough; we need to study with more detail the probability
distribution of ¥ for its expectation. The proof provides a reasonable approach
to bound the entire distribution of the decrease event of the maximal empty angle.
However, analyzing the increase is significantly harder and remains an open challenge.

The third approach consists in designing and analyzing Markov chains. We stud-
ied a Markov chain with n +1 = L%J + 1 states, which is an extension of the naive
proof in Lemma 3.3. Tt is essentially a doubly chained graph with probability ¢ of in-
crease and 1 — ¢ of decrease, and the last state is absorbing. On average, reaching the
absorbing state takes longer than reaching a half-disk configuration. In Lemma 3.3,
we analyze n successive increases. In reality, we tolerate some decreases in the process.
Explicit calculation of the expected time to reach the absorbing state is possible by
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inverting an almost tridiagonal Toeplitz matrix using the Sherman—-Morrison formula
and the well-known invert of a tridiagonal Toeplitz matrix [5]. Asc = m < %,
the expected time is approximately (%)” This yields a bound similar to the one
given in Lemma 3.3. The problem is that ¢ was derived using a pessimistic worst case
geometry per state. In practice, closer to half-disk configurations, thus with higher
state number, the geometry is biased far away from the worst case scenario giving
on average significantly higher state increase probabilities. We believe that it should
be possible to find an alternative simple Markov chain with higher probabilities for

getting to the absorbing state that provides a reasonable upper-bound .

8. Numerical results. While the theory provides a guarantee of finite expected
time convergence in all previous cases, it also provides explicit bounds, which we can
compare to empirical results in numerical simulations.

8.1. 1-dimensional case. The chosen domain is the unit interval I = [0, 1].
The initial opinions in X follow an iid uniform distribution on I. We tested the grid
of configurations defined by the number of agents N € {5, 10, 100, 250, 500, 750, 1000}
and convergence threshold ¢ € {0.0001,0.0005,0.001,0.005,0.01,0.05,0.1}. For each
configuration, nyq;s = 1000 independent trials were performed. Each trial ran until
we reached e-convergence. We denote 7. the natural estimator of E(T.) by simply
taking its empirical average.

A summary of the empirical dependency of the average convergence time on the
convergence threshold ¢ is done in Figure 8.1, where we plot 1. against € and against
—Ine. We find that TE has a minus logarithmic dependency on ¢ as expected from
Theorem 4.9. Furthermore, the slopes of the curves and their respective bounds
from Theorem 4.9 in Figure 8.1(b) seem to be approximately the same for high N,
suggesting that in fact the convergence time is not only upper-bounded but also lower-
bounded by a similar term with approximately the same dominant coefficient: T, ~
en 2N In(%)+0(1), where O(1) represents a function bounded with respect to & (but
not with respect to N) and ¢y € [0, 1] represents a constant depending on N such that
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Fi1G. 8.1. 1-dimensional evolution: Dependency of the empirical mean convergence time on the
convergence threshold €. Left: € abscissa. Right: —Ine abscissa. The plain curves correspond to the
empirical results, whereas the dashed ones correspond to the theoretical bounds. We superimpose on
the empirical curves the classic unbiased estimator of the standard deviation of each data point.
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Fic. 8.2. D-dimensional evolution: Dependency of the empirical mean convergence time on the
convergence threshold € in the 2-, 3-, and 4-dimensional cases from left to right. Top: € abscissa.
Bottom: —1Ine abscissa. The plain curves correspond to the empirical results, whereas the dashed
ones correspond to the theoretical bounds. We superimpose on the empirical curves the traditional
unbiased estimator of the standard deviation of each data point.

CN —Nooo 1 and ¢y = 1 when N > 100. A further analysis of the dependency
on N of 1. gives that empirically 7= ~ —3¢cy N Ine 4 0.89N In N —2.3N +5.8. This is
done in the supplementary material subsection SM4.1, as we are primarily interested
in the e-dependency in this paper.

8.2. Unconstrained D-dimensional case. The chosen domain is the unit
cube C' = [0,1]P, where the dimension D ranges in {2,3,4}. The initial opinions
in Xo follow an iid uniform distribution on C'. We tested the grid of configurations
defined by the number of agents N € {5, 10, 50,100,250} and convergence threshold
e € {0.0005,0.001,0.005,0.01,0.05,0.1}. For each configuration, nsmqs = 1000 in-
dependent trials were performed. Each trial ran until we reached e convergence. A
similar estimator was used as in the 1-dimensional case.

A summary of the empirical dependency of the average convergence time on the
convergence threshold ¢ is done in Figure 8.2. Once again, we find that T. has a
minus logarithmic dependency on ¢ and the slopes approximately correspond to those
derived in the upper-bound. On the other hand, for the tested values of D, the
displacement between the true convergence time and the bounds seems to be the
same. Furthermore, we see a slight increase in convergence time with respect to D.
However, it would require extensive trials with high D to be able to claim that the
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dependency is indeed logarithmic, which would be computationally too expensive for
our purposes. These three observations lead us to generalize naturally the conjecture
made in the 1-dimensional case: T, ~ CN%Nln(Ds—zN) + O(1), where O(1) represents a
function bounded with respect to € (and perhaps also with respect to D but not with
respect to V). See the supplementary material subsection SM4.2 for an analysis of
the dependency on N and in particular for the confirmation of the presence of cy.

8.3. Constrained 2-dimensional case. The initial opinions in ©q follow an
iid uniform distribution on [0,27). We tested the grid of configurations defined by
the number of agents N € {5, 10, 100, 250, 500, 750, 1000} and convergence threshold
e € {0.0001,0.0005,0.001,0.005, 0.01, 0.05,0.1}. For each configuration, n4piqs = 1000
independent trials were performed. Each trial was stopped as soon as e-convergence
was reached, i.e., v£_ > 27 —e. A similar estimator was used as in the convex case.

A summary of the empirical dependency of the average convergence time on the
convergence threshold ¢ is done in Figures 8.3(a) and 8.3(b). As in the convex case,
we find that 7. has a minus logarithmic dependency on ¢ as predicted in Theorem 3.4
with similar slope. However, the bound is many orders of magnitude larger than
our estimator even for large e. This is due to our poor bound BHP deriving from a
Borel-Cantelli-like idea when studying Ty p. Since Ty p does not depend on ¢ as soon
as ¢ < m, the dependency on ¢ is naturally inherited from the 1-dimensional case, as
the angle of the opinions follows the 1D case evolution when all unit vector opinions
are within a half-disk. We can therefore extend the conjecture to the circle case:
T. ~ cn3NIn(%) + O(1), where O(1) represents a function bounded with respect to
¢ (but not with respect to N).

The key part in the circle evolution, and the hardest one to analyze, is the initial
regime when not all agents are within a half-disk, i.e., k < Ty p. To better understand
the behavior of the systems in this regime, a summary of the empirical dependency of
the average stopping time to a half-disk configuration on the number of agents N is
done in Figures 8.3(c) and 8.3(d). We find that T p depends quasi-linearly on N (in
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Fic. 8.3. Circle evolution: The two plots on the left represent the dependency of the empirical
mean convergence time on the convergence threshold €, while the two on the right display the depen-
dency of the empirical mean half-disk stopping time Tup on the number of agents N. (a) Empirical
results with abscissa €. (b) Empirical results with abscissa —Ine. (¢) Empirical results with abscissa
N. (d) Empirical results with abscissa NInN. We superimpose the traditional unbiased estimator
of the standard deviation of each data point.
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FIG. 8.4. Circle evolution: Ewvolution of the sum of unit vector opinions S* in a single trial
for various number of agents with random uniform initial distribution on the circle. The red circle
corresponds to ||S’“H2 = N. We stopped the evolution after 1000 steps for N € {5,50}, after 2000
steps for N = 100, and after 30000 steps for N = 1000.

fact a linear regression gives that T p ~ 0.92N In N + 100) to be compared with the

O(( %)N N3V bound from Lemma 3.3, which is many orders of magnitude larger
than our estimator even for the smallest number of agents. Further work is needed to
find a better theoretical BEP € BEP that should be a O(N log N).

A further analysis of the dependency on N of T. gives that empirically we have
T. ~ —3c¢yNlne+0.93N In N+4.1N —18. This is done in the supplementary material
subsection SM4.3, as we are primarily interested in the e-dependency in this paper.

We also plot examples of evolutions of S¥, the vector sum of all unit vectors, in
single trials for various number of agents in Figure 8.4. It seems that S* is initially
random around 0 and then after a small threshold distance drifts in its current direc-
tion, suggesting that ||S¥||3 or (S¥*!, S*) would be interesting quantities to analyze.

9. Conclusion. We analyzed in detail models of doubly stochastic pairwise in-
teractions for N agents with states described by a single real value, by a D-dimensional
real vector, or by a constrained unit vector on the circle. The evolution in time of
the states of the N-agent system was found to exhibit convergence to e-agreement in
finite expected time, and we provide upper-bounds on the expected time that seem
to be tight in the case of unconstrained states. However, for unit vector states the
dependence on N in the upper-bound is quite far from the empirical results. This
is due to the difficulty in proving a fast gathering of unit vectors into a half-circle
as a result of the assumed doubly stochastic pariwise interactions. This problem is
challenging, but we hope to address it in the near future, along the lines outlined in
section 7.
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