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Abstract

This report presents an analysis of the pursuit of a constant-velocity target by a unicycle agent moving at
a constant speed, and guided by a steering control law proportional to the bearing angle towards the target.
We categorize the system states and transitions between them to find which initial conditions may lead to the
target’s ultimate capture.
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Figure 1: The Unicycle Pursuit Problem

1 Introduction

In a recent technical report[1], we described the inevitability of a pursuing agent with kinematics


ẋ
ẏ

θ̇


 =




cos θ 0
sin θ 0

0 1



[
v
ω

]
(1)

to either capture a target with kinematics

pt(t) =

[
vt
0

]
, (2)

or track the target’s path, given
ω = κβ (3)

and
κ > 2

v

rc
(4)
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where t is time, v is the target’s and agent’s speed, pa = (x, y)
T

is the pursuing agent’s position, θ is its orientation,
ω its turning rate; The distance between the target and the pursuing agent is r, the the agent is said to capture
the target when the distance between them is rc or less, the bearing angle towards the target as measured from the
agent’s frame is β, κ is a gain that amplifies β, and the bearing angle towards the agent from the target’s frame is
α− π. See Figure 1.

This report extends the previous analysis to explore the capture regions, i.e. the initial conditions in (r, α, β) space
from which the pursuing agent may capture the target.

Problem Statement: Given rc, find Γ such that if

1. ∃tc |r(tc) ≤ rc

2. pa(t0) = − (r0 cos (α0) , r0 sin (α0))
T

, and

3. θ(t0) = α0 − β0,

then (r0, α0, β0) ∈ Γ.

2 Analysis

In the previous report[1], we mapped all relations between α, β, r, and their time derivatives,

α̇ =
v

r
(sin (β)− sin (α)) , (5)

β̇ =
v

r
(sin(β)− sin(α))− κβ, (6)

ṙ = v (cos (α)− cos (β)) , (7)

to different states, and made observations about the resulting flow between these states, see Figure 2.

In this report we split state E, previously assigned to all cos(α) ≤ 0 or cos(β) ≤ 0, to the following mutually
exclusive states:

State F , where π
2 ≤ β ≤ π;

State F−, where −π < β ≤ −π2 ;

State W , where cos(α) ≤ 0 and 0 < sin (α) ≤ sin (β) < 1;

State W−, where cos(α) ≤ 0 and −1 < sin (β) ≤ sin (α) < 0;

State X, where cos(α) ≤ 0 and 0 ≤ sin (β) < sin (α) ≤ 1;

State X−, where cos(α) ≤ 0 and −1 ≤ sin (α) < sin (β) ≤ 0;

State Y , where −π2 < β ≤ −π3 , and π
2 ≤ α < π;

State Y −, where π
3 ≤ β < π

2 , and −π < α ≤ −π2 ;

State Z, where −π3 < β < 0, and π
2 ≤ α < π;

State Z−, where 0 < β < π
3 , and −π < α ≤ −π2 .

Figure 3 shows illustrations of these states, and Figure 4 shows their interpretation as the system’s configuration
on the plane.
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Figure 2: The Pursuit Graph. State E represents cos(α) ≤ 0 or cos(β) ≤ 0, a state which exits in finite time with
the system never entering it again.

2.1 Degenerate Cases

Lemma 2.1. If α(t0) = π and sin(β(t0)) = 0, then α(t0) ≡ π, β ≡ 0, and the agent captures the target in

T =
r(t0)− rc

2v
time.

Proof. Equations 5, 6 ensure α(t0) ≡ π and β ≡ 0. From 7,

∫
ṙdt =

∫
v (cos (α)− cos (β)) dt = −2v

∫
dt

⇓
r(t) = r(t0)− 2v(t− t0)

⇓
r(t0 + T ) = r(t0)− 2v(t0 + T − t0) = r(t0)− 2vT = rc

⇓

T =
r(t0)− rc

2v

Lemma 2.2. If α(t0) = π and sin(β(t0)) 6= 0, then α̇(t0) 6= 0 and the system transitions to state Z or Z− in
infinitesimal time.

Proof. Immediate from Equation 5.
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(d) State Z.

Figure 3: The primary capture states, defined by the angle couple α, β, and their angular velocities.

2.2 Capture States

Lemma 2.3 (State F ). If κ > 2 v
rc

, and cos (β(t0)) ≤ 0 then cos (β(t)) > 0 ∀t > t0 + rc
2v ln

(
2β(t0)−2
π−2

)
.

Proof.
cos (β(t0)) ≤ 0

⇓

|β(t0)| ≥ π

2
.

From 6,

−2
v

rc
− κβ ≤ −2

v

r
− κβ ≤ β̇ ≤ 2

v

r
− κβ ≤ 2

v

rc
− κβ

⇓

β+ = 2
v

κrc
+

(
β(t0)− 2

v

κrc

)
e−κ(t−t0);

β− = −2
v

κrc
+

(
β(t0) + 2

v

κrc

)
e−κ(t−t0);

β− ≤ β(t) ≤ β+.
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Figure 4: An illustration of a typical configuration on the plain for each primary system state.

Without loss of generality, assume β(t0) ≥ π
2 , then if

β+(t) =
π

2

2
v

κrc
+

(
β(t0)− 2

v

κrc

)
e−κ(t−t0) =

π

2

⇓

t = t0 +
1

κ
ln

(
β(t0)− 2 v

κrc
π
2 − 2 v

κrc

)
< t0 +

rc
2v

ln

(
2β(t0)− 2

π − 2

)

then β(t) < π
2 ∀t > t0 + rc

2v ln
(

2β(t0)−2
π−2

)
.

Lemma 2.4 (State W ). If κ > 2 v
rc

, and

1. r(t0) > rc,

2. cos(α(t0)) < 0,

3. cos(β(t0)) > 0,

4. 0 < sin (α(t0)) ≤ sin (β(t0)) < 1;

then

1. t1 = t0 + 1
κ ln

(
β(t0)

π−α(t0)

)
,
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2. t2 = t0 + 1
κ− v

rc

ln
(

2β(t0)
π−α(t0)

)
,

3. t3 = t0 + rc
v cos(β(t0)) ln

(
cot

(
β(t0)−π

2

)
+tan(β(t0))

cot
(
β(t0)−α(t0)

2

)
+tan(β(t0))

)
;

and either

1. ∃t∗ |t0 < t∗ ≤ t2 such that r(t∗) = rc, or

2. ∃t∗ |t1 < t∗ ≤ t2 such that sin (α(t∗)) > sin (β(t∗)), or

3. ∃t∗ |t3 < t∗ < t2 such that sin (α(t∗)) < 0, or

4. sin (β(t2)) < sin
(
α(t0)

2

)
.

t

sin (α(t0))

sin (β(t0))

sin
(
α(t0)

2

)

t1 t2

1

Figure 5: Lemma 2.4 proof outline. Having r shrink at this state, we can find the bounds on β, which shrinks, and
on α which grows. Then we can find t1, when a transition to state X becomes possible, and t2, where the state
must exit. Depending on r(t0), α(t0) and β(t0), state W can transition into either the capture state, X, Y −, Z−,
or re-enter W .

Proof. From Equation 7,
ṙ = v (cos(α)− cos(β)) < 0,

From Equation 6,

β̇ =
v

r
(sin(β)− sin(α))− κβ ≤

(
v

rc
− κ
)
β;
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β̇ ≥ −κβ;

⇓

β(t0)e−κ(t−t0) = β−(t) ≤ β(t) ≤ β+(t) = β(t0)e(
v
rc
−κ)(t−t0) (8)

From Equation 5,

α̇ =
v

r
(sin(β)− sin(α)) ≤ v

rc
(sin(β(t0))− sin(α))

⇓
α(t0) ≤ α(t) ≤ α+(t),

α+(t) = β(t0)− 2 arccot

((
cot

(
β(t0)− α(t0)

2

)
+ tan (β(t0))

)
e
v
rc

cos(β(t0))(t−t0) − tan (β(t0))

)
. (9)

The state exits when α(t) = π, which could only happen after α+(t3) = π,

α+(t3) = π = β(t0)− 2 arccot

((
cot

(
β(t0)− α(t0)

2

)
+ tan (β(t0))

)
e
v
rc

cos(β(t0))(t3−t0) − tan (β(t0))

)

⇓

cot

(
β(t0)− π

2

)
+ tan (β(t0)) =

(
cot

(
β(t0)− α(t0)

2

)
+ tan (β(t0))

)
e
v
rc

cos(β(t0))(t3−t0)

⇓

t3 = t0 +
rc

v cos (β(t0))
ln




cot
(
β(t0)−π

2

)
+ tan (β(t0))

cot
(
β(t0)−α(t0)

2

)
+ tan (β(t0))




Let t1 be the first opportunity for sin(α) = sin(β),

π − α(t0) = β(t0)e−κ(t1−t0)

⇓

t1 = t0 +
1

κ
ln

(
β(t0)

π − α(t0)

)
,

and t2 the moment at which the upper bound on β reaches α(t0)
2

π − α(t0)

2
= β(t0)e(

v
rc
−κ)(t2−t0)

⇓

t2 = t0 +
1

v
rc
− κ ln

(
π − α(t0)

2β(t0)

)
.

At time t1,

β+(t1) = β(t0)e(
v
rc
−κ)(t1−t0) = β(t0)e(

v
rc
−κ)

(
t0+ 1

κ ln
(

β(t0)

π−α(t0)

)
−t0

)
= β(t0)e(

v
κrc
−1) ln

(
β(t0)

π−α(t0)

)

= β(t0)

(
β(t0)

π − α(t0)

)( v
κrc
−1)

= β(t0)

(
π − α(t0)

β(t0)

)(1− v
κrc

)

Lemma 2.5 (State X). If κ > 2 v
rc

, and

1. r(t0) > rc,

2. cos(α(t0)) ≤ 0,
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3. cos(β(t0)) ≥ 0,

4. 0 ≤ sin (β(t0)) < sin (α(t0)) ≤ 1;

then

1. t1 = t0 + 1
κ ln

(
v
κrc

+β(t0)

v
κrc

+
β(t0)
e

)
,

2. t2 = t0 + 1
κ ;

and either

1. ∃t∗ |t0 < t∗ ≤ t2 such that r(t∗) = rc, or

2. ∃t∗ |t0 < t∗ < t2 such that α(t∗) < π
2 , or

3. ∃t∗ |t1 < t∗ ≤ t2 such that β(t∗) < 0, or

4. β(t2) ≤ β(t0)
e .

t

sin (α(t0))

sin (β(t0))

sin
(
β(t0)
e

)

1

t1 t2

1

Figure 6: Lemma 2.5 proof outline. From the bounds on β, t1 and t2 are calculated. By t2, if the agent didn’t
capture the target or transition to states B1, Z, then it re-enters state X with a lower β.

Proof. From Equation 7,
ṙ = v (cos(α)− cos(β)) < 0,

From Equation 6,

β̇ =
v

r
(sin(β)− sin(α))− κβ ≤ −κβ ≤ 0;

β̇ ≥ − v

rc
− κβ;

⇓

− v

κrc
+

(
β(t0) +

v

κrc

)
e−κ(t−t0) = β−(t) ≤ β(t) ≤ β+(t) = β(t0)e−κ(t−t0).

From Equation 5,

α̇ =
v

r
(sin(β)− sin(α)) ≥ − v

rc
sin(α);
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α̇ ≤ v

r0
(sin(β(t0))− sin(α)) ≤ 0;

⇓
α−(t) ≤ α(t) ≤ α+(t),

α+(t) = β(t0)− 2 arccot

((
cot

(
β(t0)− α(t0)

2

)
+ tan (β(t0))

)
e
v
r0

cos(β(t0))(t−t0) − tan (β(t0))

)
; (10)

α−(t) = −2 arccot

(
− cot

(
α(t0)

2

)
e
v
rc

(t−t0)

)
. (11)

While at state X, the values of r, α, β shrink until either r = rc, or α = π
2 , or β = 0. Let t1 be the first possible

moment at which β = β(t0)
e ,

β−(t1) =
β(t0)

e

⇓

− v

κrc
+

(
β(t0) +

v

κrc

)
e−κ(t1−t0) =

β(t0)

e

t1 = t0 +
1

κ
ln

(
v
κrc

+ β(t0)

v
κrc

+ β(t0)
e

)
;

and let t2 be the last possible moment at which β = β(t0)
e ,

β+(t2) = β(t0)e−κ(t2−t0) =
β(t0)

e

⇓

t2 = t0 +
1

κ
.

Lemma 2.6 (State Y ). If κ > 2 v
rc

, and

1. r(t0) > rc,

2. −π2 < β(t0) ≤ −π3 ,

3. π
2 ≤ α(t0) < π;

then

1. t1 = t0 + 1
κ ln

(
3|β(t0)|

π

)
,

2. t2 = t0 + 1
κ ln

(
2 v
κrc

+β(t0)

2 v
κrc
−π3

)
,

3. t3 = t0 + rc
v

(
α(t0)

2 − π
4

)
,

4. t4 = t0 + r0
v ln

(
tan

(
α(t0)

2

))
;

and either

1. ∃t∗ |t0 ≤ t∗ ≤ max {t2, t4} such that r(t∗) = rc, or

2. ∃t∗ |t1 < t∗ ≤ t2 such that β(t∗) > −π3 , or

3. ∃t∗ |t3 < t∗ < t4 such that α(t∗) < π
2 .
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Figure 7: Lemma 2.6 proof outline. t1 and t2 are calculated by the bounds on sin (β), while t3 and t4 are calculated
by the bounds on sin (α). A transition to state Z must happen sometime between t1 and t2, while a transition to
state C1 must happen between t3 and t4, unless the agents captures the target before the transition.

Proof. From Equation 7,
ṙ = v (cos(α)− cos(β)) < 0,

From Equation 6,

β̇ =
v

r
(sin(β)− sin(α))− κβ ≤ −κβ ≤ 0;

β̇ > −2
v

rc
− κβ;

⇓

−2
v

κrc
+

(
β(t0) + 2

v

κrc

)
e−κ(t−t0) = β−(t) < β(t) ≤ β+(t) = β(t0)e−κ(t−t0).

Therefore, β grows, and may reach −π3 by t1,

β+(t1) = β(t0)e−κ(t1−t0) = −π
3

⇓

t1 = t0 +
1

κ
ln

(
3 |β(t0)|

π

)
;

and by t2, β(t2) must be greater than −π3 ,

β(t2) > β−(t2) = −2
v

κrc
+

(
β(t0) + 2

v

κrc

)
e−κ(t2−t0) = −π

3

⇓

t2 = t0 +
1

κ
ln

(
2 v
κrc

+ β(t0)

2 v
κrc
− π

3

)
(12)

From Equation 5,

α̇ =
v

r
(sin(β)− sin(α)) < − v

r0
sin(α) ≤ 0;

α̇ > −2
v

rc
;
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⇓

α(t0)− 2
v

rc
(t− t0) = α−(t) < α(t) < α+(t) = −2 arccot

(
− cot

(
α(t0)

2

)
e
v
r0

(t−t0)

)
.

We can now find t3, the earliest point at which α might cross below π
2 .

α−(t3) = α(t0)− 2
v

rc
(t2 − t0) =

π

2

⇓

t3 = t0 +
rc
v

(
α(t0)

2
− π

4

)
;

and t4, after which α must be less than π
2 ,

α+(t4) = −2 arccot

(
− cot

(
α(t0)

2

)
e
v
r0

(t4−t0)

)
=
π

2

⇓

cot

(
α(t0)

2

)
e
v
r0

(t4−t0) = cot
(π

4

)
= 1

⇓

t4 = t0 +
r0

v
ln

(
tan

(
α(t0)

2

))

Lemma 2.7 (State Z). If κ > 2 v
rc

, and

1. r(t0) > rc,

2. −π3 < β(t0) < 0,

3. π
2 ≤ α(t0) < π;

then

1. t1 = t0 + rc
v

(
α(t0)

2 − π
4

)
,

2. t2 = t0 + r0
v ln

(
tan

(
α(t0)

2

))
;

and either

1. ∃t∗ |t0 ≤ t∗ ≤ t2 such that r(t∗) = rc, or

2. ∃t∗ |t1 < t∗ < t2 such that α(t∗) < π
2 .

Proof. From Equation 7,
ṙ = v (cos(α)− cos(β)) < 0,

From Equation 6,

β̇ =
v

r
(sin(β)− sin(α))− κβ ≤ −κβ ≤ 0;

β̇ > −2
v

rc
− κβ;

⇓

−2
v

κrc
+

(
β(t0) + 2

v

κrc

)
e−κ(t−t0) = β−(t) < β(t) ≤ β+(t) = β(t0)e−κ(t−t0).
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Figure 8: Lemma 2.7 proof outline. We calculate t1 and t2 from the bounds on α. By t2, the system must transition
to state C1.

Therefore, β is asymptotically locked between 0 and −2 v
κrc

> −1, and

−
√

3

2
< − sin(1) < − sin

(
2
v

κrc

)
< sin(β) < 0.

From Equation 5,

α̇ =
v

r
(sin(β)− sin(α)) < − v

r0
sin(α) < 0;

α̇ > −2
v

rc
;

⇓

α(t0)− 2
v

rc
(t− t0) = α−(t) < α(t) < α+(t) = −2 arccot

(
− cot

(
α(t0)

2

)
e
v
r0

(t−t0)

)
.

Let t1, t2 the earliest and latest points at which α can cross below π
2 .

α−(t1) = α(t0)− 2
v

rc
(t1 − t0) =

π

2

⇓

t1 = t0 +
rc
v

(
α(t0)

2
− π

4

)
;

α+(t2) = −2 arccot

(
− cot

(
α(t0)

2

)
e
v
r0

(t2−t0)

)
=
π

2

⇓

cot

(
α(t0)

2

)
e
v
r0

(t2−t0) = cot
(π

4

)
= 1

⇓

t2 = t0 +
r0

v
ln

(
tan

(
α(t0)

2

))
.

The lemmas above are summarized in Figure 9, where the states and their transitions, as well as how these states
fit in the graph described in the previous technical report[1], are shown.
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Figure 9: All states that have a path to the capture state.

2.3 Reverse Flow

Figure 9 shows all possible transitions between states that may eventually lead to capture; yet capture is not
guaranteed, as can be seen in Figure 2, where the outer states have no path back to the capture state. In this
section, we reverse the direction of the edges of the graph in Figure 2, and by doing so we reverse the transitions
between systems states, in a manner that flows from the capture state to all possible initial conditions. Figure 10
shows the reverse flow graph.

Since we are dealing with bounds on the actual kinematics of the pursuing agent, we treat each reverse state as an
addition of an area of uncertainty to Γ.

Lemma 2.8 (Reverse State F ). Entering state F in the reverse graph dilutes the area of uncertainty by a circle

with radius rc ln
(

1 + π
π−2

)
< 4

3rc.

Proof. We have shown in Lemma 2.3 that the maximal time spent in state F is TF = rc
2v ln

(
2β0−2
π−2

)
, where in this

case β0 is taken so TF could assume the maximal possible value, i.e. β0 = π, and therefore,

TF =
rc
2v

ln

(
2π − 2

π − 2

)
=
rc
2v

ln

(
π − 2 + π

π − 2

)
=
rc
2v

ln

(
1 +

π

π − 2

)
.

While in state F , cos(β) ≤ 0 and we have no information regarding α, therefore from Equation 7,

ṙ < v (1− cos(β)) < 2v,

and

∆r < 2vTF = rc ln

(
1 +

π

π − 2

)

is the maximal addition to r while the systems is in this state. The reverse flow terminates at this state and with
β = π. Since F and its symmetric state F− are the only sink states in the reverse flow graph (Fig. 9) then any
traversal on the graph must end with either, and with an addition of ∆rei∆α, −π < ∆α ≤ π, to all points in the

area of uncertainty, resulting in a dilution of the area of uncertainty by rc ln
(

1 + π
π−2

)
.
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Figure 10: Reverse time flow.
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Lemma 2.9 (Reverse State W ). If the system enters state W in the reverse flow graph at time t0 +T with α1, β1,
and r1, and exits the state with α0, β0, and r0, then

1. −0.15π < α0 − α1 < 0

2. If α1 <
π
2 + 0.15π, then the reverse state X might exit to reverse state F .

3. r0 − r1 < −2v cos(α1) ln
(

π
2

π−α1

)
.

Figure 12 shows the maximal difference in r as function of the minimal α.

R

I

Figure 11: Reverse state W . Maximal magnitude and minimal α0, (r0 − r1)ei(π−α0).

Proof. While in state W , α > π − β If entering state W from state X, then α1 = π − β1, otherwise, α1 > π − β1.

Let T be the maximal possible time spent in state W ; then by Eq. 8,

β(t0 + T ) = β(t0)e(
v
rc
−κ)T

⇓

T =
rc

κrc − v
ln

(
β0

π − α1

)
<
rc
v

ln

( π
2

π − α1

)
.

Arbitrarily selecting α̂1 =
(
π − π

2 e
−1
)

we get an upper bound on the time spent in state W for any π
2 < α1 ≤ α̂1,

T̂ =
rc
v

ln

( π
2

π − α̂1

)
=
rc
v

ln

(
π
2

π − π
(

2e−1
2e

)
)

=
rc
v
.

With T̂ we can calculate the minimal possible α0 such that α1 = π − β1,

α̇ =
v

r
(sin(β)− sin(α̂1)) <

v

rc
(1− sin(α̂1))

⇓
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α1 < α0 +
v

rc
(1− sin(α̂1)) T̂ = α0 + (1− sin(α̂1))

⇓
α0 > α1 + sin(α̂1)− 1 > α1 − 0.15π.

Also,
ṙ = v (cos(α)− cos(β)) ≥ v (cos(α1)− cos(β1)) = v (cos(α1)− cos(π − α1)) = 2v cos(α1)

⇓
r1 ≥ r0 + 2v cos(α1)T,

and for π
2 < α1 ≤ α̂1,

r1 > r0 + 2v cos(α1)T̂ = r0 + 2rc cos(α1)

⇓
r0 − r1 < −2rc cos(α1).

If α̂1 < α1, then β < π
2e , and if we restart the clock when β = π

2e , then β0 <
π
2e , and α̂1 − 0.15π < α0. If we let

another T̂ go by, the maximal possible α1 becomes

T̂ =
rc
v

=
rc
v

ln

( π
2 e
−1

π − α̂2

)

⇓

α̂2 = π − π

2
e−2,

α̇ =
v

r
(sin(β)− sin(α̂2)) <

v

rc

(
sin
(π

2
e−1
)
− sin

(π
2
e−2
))

⇓

α1 < α0 +
v

rc

(
sin
(π

2
e−1
)
− sin

(π
2
e−2
))

T̂ = α0 +
(

sin
(π

2
e−1
)
− sin

(π
2
e−2
))

⇓

α0 > α1 + sin
(π

2
e−2
)
− sin

(π
2
e−1
)
> α1 − 0.11π.

Also,
ṙ = v (cos(α)− cos(β)) ≥ 2v cos(α1)

⇓
r1 ≥ r0 + 2v cos(α1)T,

and for α̂1 < α1 ≤ α̂2,
r1 > r0 + 2v cos(α1)T̂ = r0 + 2rc cos(α1)

⇓
r0 − r1 < −2rc cos(α1).

We can now restart the clock again and again until eternity, and the following will remain true:

1. −0.15π < α0 − α1 < 0

2. r0 − r1 < −2v cos(α1) ln
(

π
2

π−α1

)
.

Lemma 2.10 (Reverse State X). If the system enters state X in the reverse flow graph at time t0 + T with α1,
β1, and r1, and exits the state with α0, β0, and r0, then

1. the system remains in reverse state X no longer than T = r(t0)
v

π
2−α(t0)

sin
(
β(t0)
e

)
−sin(α(t0))

,
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2. π
2 < α0 < α1, and

3. r(t0) <
sin

(
β(t0)
e

)
−sin(α(t0))

sin
(
β(t0)
e

)
−sin(α(t0))+(1−cos(α(t0)))(π2−α(t0))

r(t0 + T ).

Proof. The only entry into state X from another state happens from state W , in the moment β(t0) < π − α(t0),
just after β(t0) = π − α(t0).

From that moment, β(t) < β(t0)e−κ(t−t0), and

α(t) ≤ β(t0)− 2 arccot

((
cot

(
β(t0)− α(t0)

2

)
+ tan (β(t0))

)
e

v
r(t0)

cos(β(t0))(t−t0) − tan (β(t0))

)

until either β(t) = 0 and the state transitions to state Z, α(t) = π
2 and the state transitions to state B1, or r(t) = rc

and the target is captured (see the proof of Lemma 2.5).

If the system remains in state X after 1
κ time,

β

(
t0 +

1

κ

)
≤ β(t0)e−κ(t0+ 1

κ−t0) =
β(t0)

e
,

and α has shrunk such that π
2 ≤ α

(
t0 + 1

κ

)
< α(t0), and

α (t) <
β(t0)

e
− 2 arccot

((
cot

(
β(t0)
e − α

(
t0 + 1

κ

)

2

)
+ tan

(
β(t0)

e

))
e

v
r(t0)

cos
(
β(t0)
e

)
(t−(t0+ 1

κ )) − tan

(
β(t0)

e

))
.

Next we find T1 such that α
(
t0 + 1

κ + T1

)
< π

2 ,

π

2
=
β(t0)

e
− 2 arccot

((
cot

(
β(t0)
e − α

(
t0 + 1

κ

)

2

)
+ tan

(
β(t0)

e

))
e

v
r(t0)

cos
(
β(t0)
e

)
T1 − tan

(
β(t0)

e

))

⇓

T1 =
r(t0)

v cos
(
β(t0)
e

) ln




cot

(
β(t0)
e −π2

2

)
+ tan

(
β(t0)
e

)

cot

(
β(t0)
e −α(t0+ 1

κ )
2

)
+ tan

(
β(t0)
e

)




<
r(t0)

v cos
(
β(t0)
e

) ln




cot

(
β(t0)
e −π2

2

)
+ tan

(
β(t0)
e

)

cot

(
β(t0)
e −α(t0)

2

)
+ tan

(
β(t0)
e

)


 = T

T becomes the upper bound on the time required for a transition to state B1, and since α shrinks in state X, the
minimal α is always α(t0 + T ), which is bounded from below by π

2 .

ṙ > v (cos (α(t0))− cos(0)) = −v (cos (α(t0))− 1)

⇓
r(t0 + T ) > r(t0)− v (cos (α(t0))− 1)T

⇓

r(t0)− r(t0 + T ) < r(t0)
(cos (α(t0))− 1)

cos
(
β(t0)
e

) ln




cot

(
β(t0)
e −π2

2

)
+ tan

(
β(t0)
e

)

cot

(
β(t0)
e −α(t0)

2

)
+ tan

(
β(t0)
e

)


 .

= r(t0)


1− cos (α(t0))− 1

cos
(
β(t0)
e

) ln




cot

(
β(t0)
e −π2

2

)
+ tan

(
β(t0)
e

)

cot

(
β(t0)
e −α(t0)

2

)
+ tan

(
β(t0)
e

)
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⇓

r(t0) < r(t0 + T )
cos
(
β(t0)
e

)

cos
(
β(t0)
e

)
+ 1− cos (α(t0))


ln




cot

(
β(t0)
e −π2

2

)
+ tan

(
β(t0)
e

)

cot

(
β(t0)
e −α(t0)

2

)
+ tan

(
β(t0)
e

)







−1

,

Lemma 2.11 (Reverse State Y ). If the system enters state Y at t0, then

1. the system exits state Y no later than t = t0 + T = t0 + 1
κ ln

(
2 v
κrc
−π2

2 v
κrc
−π3

)
,

2. π
2 ≤ α (t0 + T ) < α(t) < α(t0) < π, and

3. r(t0)− r (t0 + T ) < rc
2

(
1
2 − cos (α(t0))

)
ln
(

1−π2
1−π3

)
.

Proof. The maximal time spent in state Y is the time required for the lower bound on β(t), starting at −π2 , to
reach −π3 , i.e. β(t0 + T ) > −π3 . From Eq. 12,

T =
1

κ
ln

(
2 v
κrc
− π

2

2 v
κrc
− π

3

)
.

α shrinks, therefore
π

2
≤ α (t0 + T ) < α(t) < α(t0) < π.

The maximal r(t0) as a function of r (t0 + T ) can be computed,

ṙ > v
(

cos (α(t0))− cos
(
−π

3

))
= v

(
cos (α(t0))− 1

2

)

⇓

r (t0 + T ) > r(t0) + v

(
cos (α(t0))− 1

2

)
T

⇓

r(t0) < r (t0 + T )− v
(

cos (α(t0))− 1

2

)
1

κ
ln

(
2 v
κrc
− π

2

2 v
κrc
− π

3

)
< r (t0 + T )− rc

2

(
cos (α(t0))− 1

2

)
ln

(
1− π

2

1− π
3

)

⇓

r(t0)− r (t0 + T ) <
rc
2

(
1

2
− cos (α(t0))

)
ln

(
1− π

2

1− π
3

)
.

Lemma 2.12 (Reverse State Z). If the system enters state Z in the reverse flow graph at time t0 +T with α1, β1,
and r1, and exits the state with α0, β0, and r0, then α0 > 2 arccot

(
cot
(
α1

2

)
e−2
)
.

Proof. The maximal possible time to remain in state Z is the amount of time to capture the target if the state
never exits.

ṙ = v (cos(α)− cos(β)) < v
(

0− cos
(π

3

))
= −v

2

⇓

T = 2
r0

v
.

According to the proof of Lemma 2.7,
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x

y

Figure 12: Reverse state Z. Maximal magnitude and minimal α0, (r0 − r1)ei(π−α0).

α1 < α+(t) = −2 arccot

(
− cot

(
α (t0)

2

)
e2

)
.

⇓

2 arccot
(

cot
(α1

2

)
e−2
)
< α (t0) .

3 Conclusion

In this report, we explored the possibility of finding a compact configuration space which contains all initial con-
figurations from which capture is possible. We continued to analyze the states of pursuit, expanding the previous
discussion to include states where π

2 ≤ |α| ≤ π, and proposed a method of constructing the region of capture by
traversing a reverse graph. Future work will continue the construction of the reverse graph in order to complete
the analysis.
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