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Erratic Extremism Causes Dynamic Consensus: A New Model for Opinion
Dynamics∗

Dmitry Rabinovich† and Alfred M. Bruckstein†

Abstract. A society of agents, with ideological positions or opinions measured by real values ranging from −∞
(the far left) to +∞ (the far right), is considered. At fixed (unit) time intervals agents repeatedly
reconsider and change their opinions if and only if they find themselves at the extremes of the range
of ideological positions held by members of the society. Extremist agents are erratic: they either
become more radical, and move away from the positions of other agents, with probability ε, or more
moderate, and move towards the positions held by their peers, with probability (1− ε). The change
in the opinion of the extremists is one unit on the real line. We prove that the agent positions cluster
in time, with all nonextremist agents located within a unit interval. However, the consensus opinion
is dynamic. Due to the extremists’ erratic behavior the clustered opinion set performs a sluggish
random walk on the entire range of possible ideological positions (the real line). The inertia of the
group, the reluctance of the society’s agents to change their consensus opinion, increases with the
size of the group. The extremists perform biased random walk excursions to the right and left, and,
in time, their actions succeed to move the society of agents in random directions. The far left agent
effectively pushes the group consensus toward the right, while the far right agent counterbalances
the push and causes the consensus to move toward the left.

Key words. multiagent model, consensus, opinion dynamics, extremists, agent-based simulation, social
influence
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1. Introduction. Over the years, social psychologists have proposed numerous explana-
tions for the complex behavior emerging in large groups of supposedly intelligent agents, like
tribes and nations. They proposed models and principles of individual behavior, and some
of these models were even amenable to mathematical analysis enabling predictions about
long-term behavior and the inevitable emergence of surprising global economic or political
phenomena.

The ideas of balance theory [3] and social dissonance [9] led to the consideration of several
basic mathematical models, attempting to incorporate the idea that individuals, or agents,
attempt to reach an equilibrium between their drives, opinions, and local comfort and those in
their neighborhood. They do so by adjusting their position (ideological, political, economic,
or spatial) to be similar to or comfortably near the position of their neighbors.

Simplified mathematical models for multiagent interaction consider a group, colony, so-
ciety, or swarm of agents, each agent being associated with a quantity which can be a real
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2078 DMITRY RABINOVICH AND ALFRED M. BRUCKSTEIN

number or a vector, describing the state, opinion, or position of the agent. The state of the
whole group (at time t) is specified by the vector

X(t) ≜ [x1(t), x2(t), . . . , xN (t)]T ,

where xk(t) is the state of agent k at time t, and the group comprises N agents.
Then, models postulate that from some initialization X(0) at time t = 0 the state of the

system evolves at discrete time intervals (arbitrarily set to one), and general discrete time
evolution models of the following form are obtained:

X(t+ 1) = Ψ(X(t)).

Here Ψ describes the way each agent determines its state at time (t + 1) given the states of
all agents at time t.

The interagent interaction function Ψ is designed to reflect the assumed influence of agents
on their peers. DeGroot in [7] postulated that Ψ should be a fixed matrix A acting on X.
Rows of the matrix then determine how the next state of agent k at time (t + 1) will be
computed as a weighted combination of the states of all agents at time t. If A is constant
(and independent of the state at all times), the vector X has a linear evolution, with dynamics
completely determined only by the eigenstructure of A and the initial state.

When positive entries and convex combination of states are postulated, A is a stochastic
matrix, and then one readily has, under quite general conditions, that the system asymptoti-
cally achieves consensus; i.e., as t → ∞ all xk(t)’s will evolve to have the same value.

Friedkin and Johnsen proposed an interesting variation of the model in [10]. This model
assumes that each agent k remains faithful to its initial position to a certain degree gk,
0 ≤ gk ≤ 1, and has a susceptibility of 1 − gk to be socially influenced by the other agents.
The classical linear model then becomes, in a matrix notation,

X(t+ 1) = GX(0) + (I −G)AX(t), t ∈ T.

Here G is a diagonal matrix with gk’s on the main diagonal, and I is the identity matrix. This
model leads to a spread of steady-state positions that can be predicted by a simple matrix
inversion.

The linear models are highly appealing; however, they assume that each agent always
adjusts its state according to fixed convex combinations of its state and all other agents’
states. Since real individuals in any group are well known to posses a certain reluctance in
considering faraway positions of others and tend to stick to their initial opinions, models that
take such tendencies into consideration emerged.

A very popular opinion dynamics model was proposed by Deffuant et al. in [6]. Consider a
society of N agents with continuous opinions. At each time step a pair of agents is randomly
chosen; then they conditionally adjust their opinions according to

xi = xi + µ(xj − xi),(1.1)

where xi and xj are the initial opinions of the chosen agents and µ is a convergence parameter.
Furthermore, agents are willing to change their opinions according to the rule above only ifD
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ERRATIC EXTREMISM CAUSES DYNAMIC CONSENSUS 2079

|xi − xj | < u, where u is a measure of an agent’s confidence in its own opinion. This model is
known as the bounded confidence (BC) model for opinion dynamics.

The influence of agents holding extreme opinions on the society’s opinion dynamics was
also addressed in the literature. The BC model was extended in [5] to the relative agreement
model. Here, agents are assumed to influence both each other’s opinions and uncertainties, u.
In case the agents have different uncertainties, the influence function µ becomes a nonsymmet-
ric function of the relative agreement. Extremists are agents that have less flexible positions
and are less susceptible to opinion changes (i.e., their confidence threshold u is smaller).
Model simulations show that extremist groups become attractors for moderate agents; hence
this model can describe the radical split in opinions on controversial topics, as often observed
in society.

Sobkowicz proposed a more general model in [18]. The agents in his model are homoge-
neous but equipped with emotions which model their tolerance to different opinions. Emo-
tionally involved agents are less likely to tolerate different opinions and thus have a smaller
uncertainty range. Agents holding more extreme views are treated as more emotionally in-
volved and thus become less likely to radically change their opinion. Mathias, Huet, and
Deffuant [15] suggested a simpler extension of the BC model. Society is in their extension
considered to comprise two kinds of agents: moderates with considerable uncertainty u and
extremists with a very small uncertainty ue ≪ u. A moderate agent changes its opinion every
time it encounters a confident agent with a different opinion. Moreover, agents with higher
uncertainty levels are assumed to be more likely to encounter confident agents. At each time
step each agent interacts with a randomly selected agent, and, as a result, moderate agents’
opinions continue to fluctuate for a long time.

Some other changes to the BC model incorporating extremist opinions were also made.
Weisbuch [21] proposed a model with nonconformist agents, which are hypothesized to be the
origin of the extremism. Moderate opinions in the model evolve under the standard BC model
dynamics. But nonconformist opinion dynamics is governed by a constant ideal opinion, which
may lie away from the average opinion. This specific dynamics causes nonconformists to be
strongly attracted by and, hence, to evolve towards the extreme positions.

The very popular Hegselmann–Krause (HK) model proposed in [12] postulates that

xk(t+ 1) =
1

Nk

∑
l∈Nk

xl(t),(1.2)

where Nk ≜ {l|∥xk(t)− xl(t)∥ < δk}, i.e., Nk is an δk-neighborhood of the kth agent position
xk(t) at time t. In contrast to the previously mentioned BC models, opinion update in
the HK model is done in parallel, i.e., all opinions are updated simultaneously. This model
leads, in general, to clusters of agents in local consensus at different state values/positions, a
phenomenon observed in society. Several variations based on this model were put forth in the
literature, and a lot of research is still devoted to study their convergence and properties.

Hegselmann and Krause proposed a further extension to the HK model in [11] by intro-
ducing radical agents. The opinion dynamics of normal agents is still governed by the classical
update equation (1.2). However, the δ-neighborhood of radicals is set to consist of the opinion
point only. Therefore, radical agents start with an extreme opinion R and stick to it forever.D
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2080 DMITRY RABINOVICH AND ALFRED M. BRUCKSTEIN

They ignore other opinions and serve as attraction points for themoderates. Curiously, increas-
ing the number of radicals “may lead to less radicalization of normal agents” [11] in the sense
that fewer agents end up at a radical position because their influences can mutually cancel.

The last decades gave rise to a new phenomenon: fast processes of technology-driven
opinion polarization. Social networks, indeed, may cause rapid changes in collective opinions.
The so-called social network echo chamber effect was successfully reproduced in [1]. An opinion
reinforcement mechanism was identified as the main driving feature behind the transition from
global consensus to polarization. The opinions were found to evolve according to the assumed
heterogeneity and homophily in the interactions; i.e., agents sharing similar opinions are
more likely to interact (see [14]). Some further research addressed multidimensional opinion
models, where each dimension is associated with an opinion on a different topic. It was
shown in [2] that ideological polarization emerges when opinions held by agents on different
topics are correlated. In [20] the authors discovered a gerrymandering anomaly of social
influence networks, showing that strategically placing a small number of zealots can produce
desired opinion biases and polarizations. It was also shown that the echo chamber effect
disappears altogether when agents have access to truly random selections of other agents’
opinions [4].

We here propose a new, probabilistic, opinion dynamics model, in part based on some
early ideas of Festinger [8]. He introduced a qualitative social psychology theory supported
by a vast corpus of collected data. The theory suggests that the vast majority of agents hold
a neutral opinion on various topics. At the same time, the society often has vocal minorities
that do not share the majority’s view on some topic. Those agents are not revolutionaries but
rather loyal agents expressing disagreement/dissent [16]. Their aim is to improve the society
from within. From the majority viewpoint the dissenting agents hold extreme opinions. The
majority is mostly unmoved by these extreme opinions, while the extremists are themselves
unstable and tend to fluctuate, their fluctuations being toward the social norm with high
probability.

We quantify opinions or ideological positions as real numbers and allow only extreme
agents to change opinions at discrete times by a constant value arbitrarily set to 1 in both
directions. Changes in the positions of the extremists in the direction of the social norm,
(containing all agents except the two extremists) are assumed to be highly probable. In the
opposite direction the erratic extremists may move, but with smaller probabilities. We show
that for any initial spread of agent opinions, a consensus opinion arises. The core group in
consensus spreads over an interval of size smaller than the possible change in the opinion of the
extreme agents. The core is not stationary and, over time, moves at random. In the society
of agents, extremist is a relative label. From time to time one of the extremists becomes a
part of the moderate agents, and a previously moderate agent finds itself to be at one of the
extremes of the opinion range. It is these role-changes between extremists and moderates that
move the core over time.

Unlike many of the above discussed models, our model does not lead to stationary steady-
state opinions in global consensus or in a number of polarized opinion clusters. The opinions
of both moderate and extremist agents change over time. We believe, therefore, that our
erratic extremists model can explain some noticeable historical opinion swings in society, and
such drifts are difficult to explain in the frameworks considered before.D
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This paper is organized as follows. Section 2 presents the mathematical model of opinion
dynamics and states our main results. Then, section 3 reviews and proves some basic facts
about biased random walks. Section 4 analyzes the gathering process by considering first a
unilateral case in which we assume that only one extremal agent is active, then a decoupling
trick that enables us to use the unilateral results for the analysis of the problem when both
extremal agents are in action. Section 5 presents extensive simulation results confirming
the theoretical predictions and showing that our bounds are quite loose due to the need to
decouple the action of the extremal agents in order to enable the theoretical results. Section 6
deals with some enhancements of the basic opinion dynamics model and presents surprisingly
simple explanations for a number of puzzling phenomena occurring in real human societies.
The final section 7 discusses a possible interesting two-dimensional extension of the model
presented along with some initial simulation results.

2. Model description. Suppose a set of point agents, the individuals in the society, called
p1, p2, . . . , pN , are at the beginning of time, i.e., at t = 0, on the real line (the range of
positions or opinions) at locations x1(0), x2(0), . . . , xN (0) ∈ R. The agents are identical and
indistinguishable points and perform Algorithm 1.

Under the rule defined above only the two agents with extremal positions xmin(t) and
xmax(t) will move, and their tendency will be to approach the agents in between. After
each jump, carried out at discrete integer times, we rename the identical agents to have them
always indexed in the increasing order of their x-locations. Hence at all discrete time instances
t = 1, 2, . . . we have the ordered agents {p1, p2, . . . , pN} with x1(t) ≤ x2(t) ≤ · · · ≤ xN (t),
where p1 and pN are extremists and probabilistic jumps will be carried out by extremists only
(see Figure 1).

Algorithm 1: Agent decision rule (ε ∈ [0, 12))

1 For pk located at xk(t) at discrete time t define intervals pR ≜ (xk(t),∞) and

pL ≜ (−∞, xk(t)).
2 if in both intervals pL and pR there are other agents then
3 xk(t+ 1) = xk(t), i.e., pk stays put.
4 else
5 if pR is empty then
6 k makes a probabilistic jump, setting

7 xk(t+ 1) =

{
xk(t) + 1 with probability ε,

xk(t)− 1 with probability (1− ε)

8 if pL is empty then
9 k makes a probabilistic jump, setting

10 xk(t+ 1) =

{
xk(t) + 1 with probability (1− ε),

xk(t)− 1 with probability ε

11 end

D
ow

nl
oa

de
d 

01
/3

1/
22

 to
 1

32
.6

8.
36

.1
84

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2082 DMITRY RABINOVICH AND ALFRED M. BRUCKSTEIN

Figure 1. N agents (p1, p2, . . . , pN ) on the line at time t at respective positions x1(t), x2(t), . . . , xN (t).
Possible new positions (dotted circles) are depicted for the left (p1, magenta) and right (pN , green) extremists.
Jump probabilities Pin = 1− ε towards and Pout = ε away from the majority are depicted above the directions.

The process defined above evolves the constellation of points in time, and we clearly expect
that a gathering of the agents will occur, since extremal agents are probabilistically attracted
toward their peers.

Indeed, if ε were exactly zero, the deterministic jumps carried out by the extremal agents
p1 ≡ pL and pN ≡ pR would always be toward the interior of the interval (x1, xN ), shortening
it while (xN (t) − x1(t)) > 1. However, note that when the [x1(t), xN (t)] interval reaches a
value of 1 or less, interesting things start to happen. p1 and pN , while jumping across each
other, may increase and decrease the agent spread about the centroid of points in a way that
depends on the spread of the initial point locations’ fractional parts. We therefore expect
similar things to happen when randomness is introduced as ε increases from 0 towards 1/2
(recall that the extremist agents are by assumption attracted to the whole group, and the
assumed attraction to the group outweighs the repulsion towards extremism). For the time
being, for simplicity, we shall assume that the fractional parts of the distinct initial locations
x1(0), x2(0), . . . , xN (0) are all different.

Remark 2.1. We could also define a discrete model that is identical to the above assuming
that fractional parts are all the same or, for simplicity, that xi(0) ∈ N. This slight change
turns the model into a model with possibly multiple agents on the same location in the opinion
spectrum. The change complicates mathematical analysis, and we briefly discuss such a model
and its dynamics later.

If ε = 0, we have the constellation at time t, {p1, p2, . . . , pN}t described by the ordered
set of point locations x1(t) < x2(t) < · · · < xN (t), and their centroid and variance behave as
follows. For the centroid arbitrarily chosen to be 0 at time 0 we have

C(t+ 1) ≜
1

N

N∑
i=1

xi(t+ 1) =
1

N

N−1∑
i=2

xi(t) +
1

N

(
x1(t) + 1 + xN (t)− 1

)
= C(t),

and C(t+1) = C(t) = · · ·C(0) ≜ 0; hence the centroid is an evolution invariant. The variance
of the constellation about the centroid at 0 is σ2(t) = 1

N

∑N
i=1 x

2
i (t); therefore,

σ2(t+ 1) =
1

N

N−1∑
i=2

x2i (t) +
1

N

(
x21(t) + 2x1(t) + 1 + x2N (t)− 2xN (t) + 1

)
=

1

N

N∑
i=1

x2i (t)− 2
1

N

[
(xN (t)− x1(t))− 1

]
= σ2(t)− 2

N

[
(xN (t)− x1(t))− 1

]
.
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While (xN − x1) > 1 the variance monotonically decreases; however, when (xN − x1) ≤ 1 we
have σ2(t+1) > σ2(t). Hence after gathering, or reaching consensus (i.e., when |xN − x1| ≤ 1),
oscillations in σ2(t) subsequently occur, but the constellation remains gathered around 0.

For the probabilistic case the behavior is not obvious a priori. We shall see that a dynamic
consensus is reached. Agents on a line behaving according to the probabilistic rule discussed
above evolve to a dynamic constellation that is gathered and the group of agents move on the
line as follows:

1. For a given ε, 0 < ε < 1/2, we have

C(t+ 1) = C(t) +


2

N
with probability ε(1− ε),

0 with probability 1− 2ε(1− ε),

− 2

N
with probability ε(1− ε).

2. The core group of moderate agents, i.e., {p2, p3, . . . , pN−1}, eventually gathers to reside
within a dynamic interval of length less than one.

3. The extremal agents p1 and pN perform random excursions to the left and right of
the core group, with motion biased towards the core. Their bias ensures that they
will be mostly near the core, the total distance between them being a sum of random
variables, one always less than 1 and two others bounded by positive random variables
with a geometric distribution.

3. Some basic facts about random walk. In order to analyze the gathering process due
to the random behavior of the extremal points (pL ≜ p1 and pR ≜ pN ) in case ε > 0 we need
to first recall some basic facts about random walks on the line. Suppose an agent performs a
(biased) random walk from an initial location (denoted by x(0) = 0) on the real line, making,
at discrete time instants t = 0, 1, 2, . . ., moves to the left with probability (1 − ε) and to the
right with probability ε. If ε = 1/2, the walk is an unbiased, symmetric random walk, while
ε < 1/2 biases the motion of the agent towards the left. Let us define α = 1/2 − ε; hence

ε =
1

2
− α ⇔ 1− ε =

1

2
+ α.

Clearly, α ∈ (0, 1/2), since we assume 0 < ε < 1/2. In this notation α quantifies the bias
towards left of the agents’ motion, and we have the following results.

3.1. The probability of reaching (−1) from 0. The probability that the agent hits (−1)
is given by the following expression:

P (walk hits (−1)) =

∞∑
k=0

P (walk hits (−1) at (2k + 1) for the first time)

=
∞∑
k=0

P


step to the left after making k steps to the
right and k steps to the left in any order,
i.e., returning to 0, without having been at
(−1)


=

∞∑
k=0

(
1

2
+ α

)
· Ck

(
1

2
− α

)k (1

2
+ α

)k

.
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Here Ck counts the number of possible paths of length k from 0 to 0 never reaching (−1),
which is given by the kth Catalan number.

It is well known [13, 19] that the generating function of the series {Ck} is given by

∞∑
k=0

Ckx
k =

∞∑
k=0

1

k + 1

(
2k

k

)
xk =

1−
√
1− 4x

2x
.(3.1)

Hence we have, for α > 0,

P (walk hits (−1)) = (1/2 + α) ·
1−

√
1− 4(1/4 − α2)

2(1/2 + α)(1/2 − α)
=

(1/2 + α) (1− 2α)

(1/2 + α)(1− 2α)
= 1.

This is totally expected: a left-biased random walk will almost surely (i.e., with probability
1) reach (−1) when starting at 0.

3.2. The probability of reaching (+1) from 0. We have, similarly,

P (walk hits (+1)) =
∞∑
k=0

P
(
walk hits (+1) at step 2k + 1 for the first
time

)

=
∞∑
k=0

P

last step to the right after making k steps
to the left and k steps to the right (i.e., re-
turning to 0) without having been at (+1)


=

∞∑
k=0

(
1

2
− α

)
· Ck

(
1

2
+ α

)k (1

2
− α

)k

=

(
1

2
− α

)
1− 2α(

1
2 − α

)
(1 + 2α)

=
1− 2α

1 + 2α
< 1.

Hence, while the walk almost surely reaches (−1), there is a nonzero probability, given by
1− 1−2α

1+2α = 1−2ε
1−ε , of never reaching (+1).

3.3. The expected number of steps to first reach (−1). Using the generating function
for {Ck} we can readily calculate the expected number of steps to reach (−1) from 0. Hence
we have the following (quite well known) result:

E (steps to first hit (−1)) =

∞∑
k=0

(2k + 1) · P (walk hits (−1) at step 2k + 1)

=

∞∑
k=0

(2k + 1)

(
1

2
+ α

)
· Ck

(
1

2
− α

)k (1

2
+ α

)k

=

(
1

2
+ α

) ∞∑
k=0

(2k + 1)

(
1

4
− α2

)k

Ck.

To compute this value explicitly we use

∞∑
k=0

kCkx
k−1 =

d

dx

( ∞∑
k=0

Ckx
k

)
=

d

dx

(
1−

√
1− 4x

2x

)
=

1− 2x−
√
1− 4x

2x2
√
1− 4x

;
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hence we have
∞∑
k=0

kCkx
k =

∞∑
k=0

k

k + 1

(
2k

k

)
xk =

1− 2x−
√
1− 4x

2x
√
1− 4x

.(3.2)

This yields, setting x to (12 + α)(12 − α), after some algebra,

E (steps to first hit (−1)) =
1

2α
=

1

1− 2ε
.(3.3)

Of course, the expected number of steps to reach (+1) is infinite, since there is a strictly
positive probability given by 1−2ε

1−ε of never getting there. But we know for sure that the biased
random walk (more likely moving to the left) will reach (−1) from 0 in the above calculated,
finite expected number of steps.

3.4. The expected farthest excursion to the right on the way from 0 to first reaching
(−1). Another result that we shall need in analyzing the evaluation of the agents’ behavior is
the following result on the excursions that biased random walks make in the direction opposite
to their preferred direction: the expected farthest excursion to the right on the way from 0 to
first reaching (−1) in the left-biased random walk is bounded by

E (farthest right excursion) ≤
∞∑
k=0

k · P

walk makes k right steps
and (k + 1) left steps to
first reach (−1)


=

∞∑
k=0

kCk

(
1

2
+ α

)(
1

2
− α

)k (1

2
+ α

)k

.

The above inequality can be explained as follows: any excursion that starts at 0 and eventually
ends in −1 is necessarily of the odd length 2k + 1 for some k. No matter what the actual
order of steps is, the walk makes k steps to the right and k+1 steps to the left (with obvious
limitations on the order of the steps). Therefore, the farthest to the right such an excursion
could get is a distance k from 0. Hence, the left-hand side of the inequality above is a clear
upper bound.

Using the previously established relation
∑∞

k=0 kCkx
k = 1−2x−

√
1−4x

2x
√
1−4x

we obtain

E (farthest right excursion) ≤
∞∑
k=0

kCk

(
1

2
+ α

)(
1

2
− α

)k (1

2
+ α

)k

=

(
1

2
+ α

) ∞∑
k=0

kCk

(
1

2
− α

)k (1

2
+ α

)k

(3.4)

=

(
1

2
+ α

) (
1
2 − α

)2
2α
(
1
2 − α

) (
1
2 + α

) =
1
2 − α

2α
=

ε

1− 2ε
.

4. Analysis of the dynamic gathering process.

4.1. Unilateral action results. In order to analyze the gathering process, let us first
consider a one-sided version where only the rightmost agent moves at each time step andD
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Figure 2. The agent pN will jump over pN−1 (located at xN (0) and xN−1(0), respectively) after an expected
number of steps equal to 1

1−2ε

[
⌊xN (0)− xN−1(0)⌋+ 1

]
.

all other agents stay put. Furthermore assume that to the left of p1 at t = 0 we put a
beacon agent p0 at x0(0) < x1(0). The rightmost agent at times t = 1, 2, 3, . . . makes a
unit jump to the left with high probability (1 − ε) or a jump to the right with probability
ε. Suppose the agents are initially located at x1(0), x2(0), . . . , xN−1(0), xN (0). Clearly the
rightmost agent pR ≡ pN will first reach, with probability 1, (xN (0) − 1) in 1

1−2ε expected

number of steps, then from (xN (0)− 1) it will reach a.s. (xN (0)− 2) in further 1
1−2ε expected

steps, etc., until, at some point it will jump over xN−1(0) to land somewhere in the interval
(xN−1(0)− 1, xN−1(0)), making the agent at xN−1(0) the rightmost agent. This will happen
with probability 1 after a number of steps, which we shall denote as Tjump, having the expected
value of 1

1−2ε

[
⌊xN (0)− xN−1(0)⌋+ 1

]
number of steps (Figure 2).

Now it will be the turn of the former pN−1 agent, which is now renamed pN ≡ pR, to
start its biased random walk, and it will reach (xN−1(0)− 1) in 1

1−2ε expected steps (clearly
jumping over at least the current position of the former moving agent) to land in the interval
(x1(0) − 1, xN (Tjump)) defined by the renamed agents (p1, p2, . . . , pN−1). Clearly the new
rightmost agent (which might be the former random walker or another agent located to the
left of xN−1(0) in the initial configuration) will do the same.

Recall that we assume, for simplicity, that agents’ initial locations have all distinct frac-
tional parts, so that one agent will never land on top of another!

From the above description it is clear that the erratic extremist random walk of rightmost
agents will eventually sweep all the agents towards the left, and in a finite expected number
of steps equal to

E
(
T{x0(0),x1(0),...,xN (0)}

)
=

1

1− 2ε

N∑
k=1

(⌊xk(0)− x0(0)⌋+ 1),

all agents will be to the right of the beacon p0 after having jumped over x0(0) exactly once,
making the beacon p0 the rightmost agent for the first time!

Indeed, note that while jumping one over the other (to the left) all the agents to the right of
p0 will have carried out (perhaps with interruptions due to reordering, following jumps over the
agent called pN−1) a biased random walk from their initial locations x1(0), x2(0), . . . , xN (0)
until each one of them, for the first time, has jumped over the fixed beacon point p0 at
x0(0). Subsequently, the agents will stop and wait for the beacon p0 to become the rightmost
agent. This will happen when the last of all the agents (that were p0’s initial right neighbors)
completes its random walk by jumping over p0.

An important byproduct of this analysis is the fact that, the moment after the last right
neighbor jumps over p0, all the other agents have made exactly one left jump over p0 at x0(0);
hence all the agents will be located in the interval (x0(0)− 1, x0(0)]. Therefore we proved the
following.
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Theorem 4.1. If p0, p1, . . . , pN are located at t = 0 at x0(0), x1(0), . . . , xN (0) with (x0(0) <
x1(0) < · · · < xN (0)), and the rightmost agent performs a random walk biased toward the
left with probability of a left unit jump of (1 − ε), the agents first gather to the interval
(x0(0)− 1, x0(0)], with probability 1, in a finite expected number of steps given by

E
(
T{x0(0),x1(0),...,xN (0)}

)
=

1

1− 2ε

N∑
k=1

(⌊xk(0)− x0(0)⌋+ 1).

Note that we could have chosen in this description the beacon to be the leftmost agent p1
located at x1(0), and then in a finite expected time of

E
(
T{x1(0),x2(0),...,xN (0)}

)
=

1

1− 2ε

N∑
k=2

(⌊xk(0)− x1(0)⌋+ 1)

the agent p1 becomes the rightmost agent. If, beyond the first gathering to the left of p1,
the process continues indefinitely, the group of agents will be pushed to the left due to the
rightmost agent’s actions with an average speed of about 1−2ε/N.

Note also that we have the corresponding symmetric result for agent groups where only
the leftmost agent is moving, and it sweeps all agents, by the action of its biased random
walk, towards the right after gathering the group to an interval of length bounded by 1.

4.2. Bilateral action results. So far we have seen that a unilateral random walk, biased
toward the group of agents, carried out either by the rightmost or by the leftmost agent, results
in gathering the agents into a cluster with a span upper bounded by 1 (i.e., the step size).
Something slightly more complex happens when both extremal agents are jointly herding the
group. Of course we expect gathering to happen, and even faster than in the case when only
one extremal agent is at work. This is indeed the case; however, the simultaneous work of the
extremal agents leads to interactions that slightly complicate the proofs.

Suppose we have a constellation of agents p1, p2, . . . , pN located at time t = 0 at x1(0) <
x2(0) < · · · < xN (0), as before. The erratic extremists, the leftmost and rightmost agents
pL ≜ p1 and pR ≜ pN , perform biased steps by simultaneously jumping towards the agents
{p2, p3, . . . , pN−1} with probability (1− ε) or away from them with probability ε.

The results below represent the main contribution of this paper. Theorem 4.2 states that
if the internal agents are gathered in an interval smaller than the step size, they never spread
beyond this size. Theorem 4.3 bounds the expected time to shrink the excess distance, beyond
one, between p2 and pN−1 (the internal agent span) by one half. Theorem 4.5 then uses the
fact that, once less than 2, the distances |xN−1(t)− x2(t)| can only take a finite set of values
to show that the inner agents gather to an interval of length less than 1 in finite expected
time. Theorem 4.7 uses the bounds on the expected excursions of biased random walks in the
direction opposite to the bias to prove that, with high probability, the total span of all the
agents will have a small value as the process continues to evolve after the core gathers.

Theorem 4.2. Suppose at t = T the internal agents {p2, p3, . . . , pN−1} are all close, so that
xN−1(T ) − x2(T ) ≤ 1; then xN−1(T + 1) − x2(T + 1) ≤ 1. Hence for all t > T we will have
xN−1(t)− x2(t) ≤ 1.D
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Figure 3. Left extremal agent jump (a) into/(b) over the internal agent interval.

Proof. Assume xN−1(T ) − x2(T ) ≤ 1. Designate by AL and AR the agents x2(T ) and
xN−1(T ), respectively. After jumps by extremal agents we can have at t = T +1 the following
cases:

• AL and AR both remained internal. Then all the internal agents are still inside the
interval [x2(T ), xN−1(T )] with assumed length of at most one.

• AL and AR both became extremal. This case is even simpler: all the internal agents
at time T +1 are now strictly inside the interval [x2(T ), xN−1(T )] with assumed length
of at most one.

• Either AL or AR only became an extremal agent. Assume without loss of generality
(w.l.o.g.) that agent AL at location x2(T ) became extremal, i.e., x1(T + 1) = x2(T ).
In this case all the internal agents are contained in either [x2(T ), xN−1(T )] (because
the left extremal agents moved into it; see Figure 3(a)) or [x2(T ), x1(T ) + 1] (because
the left extremal agent jumped over all the previous internal agents; see Figure 3(b)).
In both cases, the interval containing new internal agents is of length at most one.

Hence in all possible cases the span of the gathered agents at the next step never exceeds
one.

The next theorem demonstrates that the size of internal agents’ interval, if bigger than
one, will be reduced in finite expected time by one-half of the difference between the interval
size and 1. We shall then exploit the fact that the number of agents is finite and that the
shrinkage cannot be infinitesimal to show that the interval indeed will attain a size less than
1 in finite expected time.

Theorem 4.3. Let agents p1, p2, . . . , pN be initially located at x1(0), x2(0), . . . , xN (0), their
behavior being governed by the motion model we consider. Suppose xN−1(0)− x2(0) = 1 + S0

for some S0 > 0, i.e., internal agents are not initially gathered inside a unit interval. Let
T = inf{t : xN−1(t)−x2(t) ≤ 1+ S0

2 } be the first time when all the internal agents are inside

an interval bounded by 1 + S0
2 ; then

E (T ) <
1

1− 2ε

(
(N − 2)

⌈
S0

2

⌉
+ (xN (0)− x1(0)− 1)

)
.

Proof. Locate two fictional beacon agents pLF and pRF at the locations defined as follows:
1. pLF at xLF (0) = x2(0) +

S0
2 ,

2. pRF at xRF (0) = xN−1(0)− S0
2 .

Obviously, xRF (0)− xLF (0) = 1 + S0 − 2S0
2 = 1.

Now consider the agents to the right of xRF (0) and the action of pR and the agents to the
left of xLF (0) and the action in time by pL. Clearly there will be no interaction between the
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two dynamic processes to the left and to the right of the interval
[
xLF (0), x

R
F (0)

]
until one of

the agents pR or pL fully sweeps all agents located in either the interval (−∞, xLF (0)) or the
interval (xRF (0),∞) into the unit interval

[
xLF (0), x

R
F (0)

]
. Indeed no agents from the left can

cross into the right region until all of them have jumped the fence at xLF (0) and the same
happens in the opposite direction!

Therefore we have that in a finite expected time upper bounded by

1

1− 2ε

(
(N − 2)

⌈
S0

2

⌉
+ (xN (0)− x1(0)− 1)

)

the span of the internal, nonmobile agents will shrink to be at most 1 + S0
2 .

The bound is explained as follows: if we denote by TL a random time it takes the agents
left of xLF (0) to jump the fence and by TR the random time it takes the agents right of xRF (0)
to jump the fence, then clearly T , the first moment when one of the S0

2 intervals will be
cleared of agents, is bounded above by min{TL, TR}. We have, then, that in the worst case,
we will need at most all internal agents to be swept a distance of at most

⌈
S0
2

⌉
, and also

an extremal one must move all the way to reach the fence. Hence E (T = min{TL, TR}) <
E (worst extremal excursion time), which is the expression above.

We next prove the following simple fact.

Lemma 4.4. Let x1, x2, . . . xn be a set of real numbers such that {xi} ̸= {xj} for all i ̸= j
(i.e., their fractional parts are all different). Define

d ··= min
i ̸=j

{|{xi} − {xj}| , 1− |{xi} − {xj}|}.

Then, if for some i, j |xi − xj | > 1, we must have that |xi − xj | ≥ 1 + d.

Proof. Write xi = si+ri, where ri ∈ [0, 1) and si ∈ Z. Then |xi − xj | = |(si − sj) + (ri − rj)|
and −1 < ri − rj < 1.

If xi − xj > 1, then two cases are possible:
• ri > rj , then xi − xj = (si − sj) + (ri − rj), si − sj ≥ 1, and ri − rj = |ri − rj | =
|{xi} − {xj}| ≥ d. This yields xi − xj ≥ 1 + d.

• ri < rj , then xi−xj = (si−sj−1)+(1−(rj−ri)), (si−sj−1) ≥ 1, and (1−(rj−ri)) =
1− |rj − ri| = 1− |{xj} − {xi}| ≥ d. This again yields xi − xj ≥ 1 + d.

In the case xi − xj < −1, it follows that xj − xi > 1, and we apply the previous argument
by exchanging the roles of indexes i and j. Hence in both cases the claim follows.

Note that if {xi(0)} are the fractional parts of the initial locations of the agents on the
line, then these fractional parts are invariant under the evolution process since agents jump
unit steps.

Assuming, as we do, that all initial fractional parts are distinct, we have the following
result: Define d as in Lemma 4.4 to be the smallest fractional difference of all the initial agent
pair locations. If xN−1(t)− x2(t) > 1, then necessarily xN−1(t)− x2(t) ≥ 1 + d.D
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Theorem 4.5. In the setting of Theorem 4.3, let T = inf{t : xN−1(t) − x2(t) ≤ 1}, i.e.,
the first time when all the internal agents are inside an interval bounded by 1; then

E (T ) <
1

1− 2ε

(
N ·

(
S0 +

⌈
log2

S0

d

⌉)
+ (xN (0)− x1(0)− S0 − 1)

)
.

Proof. From Theorem 4.3, given that at time 0, (xN−1(0)− x2(0)) = 1+S0, we have at a
random time T1 with finite expectation that (xN−1(T1)− x2(T1)) ≤ 1+ S0

2 . We next consider
the process with the constellation of agents at the moment when one of the active extremal
agents cleared out an interval of length S0

2 on one side of the span of internal agents. At this
moment (T1, the initial time for the next phase) all internal agents are spanning an interval
of length at most 1 + S0

2 . Therefore by Theorem 4.3, after a random time span of T2, again

having finite expectation, we find the internal points gathered within an interval of 1 + S0
4 ,

etc.
After k such steps, each with finite expected duration, we shall find the internal agents

within an interval of length at most 1 + S0

2k
. The decrease of the upper bound value on the

span of internal agents at step k will be at least S0

2k+1 . Recall now that d is the smallest
fractional difference of all possible agent pair locations. Suppose at step kf (at time T ∗ ··=
T1+T2+· · ·+Tkf ), we attain for the first time S0

2
kf

< d, but we still have xN−1(T
∗)−x2(T

∗) > 1.

By Lemma 4.4 we must have

xN−1(T
∗)− x2(T

∗) ≥ 1 + d.

However, since

xN−1(T
∗)− x2(T

∗) ≤ 1 +
S0

2kf
< 1 + d

leads to a contradiction, we must have an interval xN−1(T
∗)− x2(T

∗) ≤ 1 and T ≤ T ∗. This
proves that, at some step before kf =

⌈
log2

S0
d

⌉
, all the internal points will be gathered in an

interval of unit length.
Using the upper bound for every T1, T2, . . . we obtain

E (T ) ≤ E (T1) + E (T2) + · · ·+ E
(
Tkf

)
≤

N
⌈
S0
2

⌉
1− 2ε

+
N
⌈
S0
4

⌉
1− 2ε

+ · · ·+
N
⌈

S0

2
kf

⌉
1− 2ε

+∆

≤
N(S0 + kf )

1− 2ε
+∆.

We still need to evaluate ∆ here. Starting at each time T1, T2, . . . extremal agents need to
sweep by their biased walk distances of

⌈
S0
2

⌉
,
⌈
S0
4

⌉
, . . ., respectively, with the exception of the

first interval T1, when an additional initial gap has to be traversed by one of extremal agents.
The possible initial gaps are x2(0) − x1(0) and xN (0) − xN−1(0). For the upper bound we
take the initial traversal length to be the sum of these quantities. After reordering we have
∆ = (xN (0)−x1(0))−1−S0

1−2ε ; hence we obtain

E (T ) <
N · (S0 +

⌈
log2

S0
d

⌉
) + (xN (0)− x1(0)− S0 − 1)

1− 2ε
.D
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To summarize, we have the following results so far:
• Consider the span of the nonextremal agents’ constellation at time t = 0 on R as

L(0) ≜ xN−1(0)− x2(0) ≜ 1 + S0

and with S0 > 0. Due to the actions of the erratic extremist agents, while the span
of the core agents is greater than 1 (i.e., it is L(t) = 1 + S with S > 0), we have that
x2(t), the location of the second agent in the reordered naming of agents, can only
increase, and similarly xN−1(t) can only decrease. Hence, while L(t) is bigger than
one, it will be a nonincreasing sequence in time. In finite expected time L(t) becomes
less than 1, and the subsequent actions of the extremists can never make it exceed 1.

• Following the gathering of the core agents to a consensus interval less than 1 after
a finite expected time, the total distance between p1 and pN will be a sum of three
parts: the interval occupied by moderate agents of size at most 1 and two distances
from the consensus core interval to the left and right extremists.

4.3. The total span of agents after gathering. In subsection 3.4 we provided a bound
of ε/(1−2ε) on the expected length of maximal excursions of an extremal agent from a fixed
point. Since expectation is linear we can provide a rough bound on the total span of agent
locations as the sum of 1 (which upper bounds the span of the gathered core, or consensus
agents) and expected maximal excursions to the left and right made by the extremist agents.
This argument yields, roughly,

E (xN (t)− x1(t)) ≤ 1 +
2ε

1− 2ε
.

Markov’s inequality (for all a > 0, P (X ≥ a) ≤ E(X)
a ) then provides

P (xN (t)− x1(t) ≥ k) ≤ 1

k
+

2ε

k
· 1

1− 2ε
≈ 1

k
.(4.1)

Therefore, we have qualitatively that P (xN (t)− x1(t) ∈ [k, k + 1]) = Θ( 1
k2
).

However, we can do even better. Let us introduce a left-biased, partially reflective, and
bounded-from-the-left random walk on the state space {1, 2, . . .} (see Figure 4). Further,
consider each state as representing the extremal agent’s current distance from the farthest
internal agent rounded to the closest bigger integer. The probability to move right, i.e.,
away from the core (which is the gathered, internal agents’ span) at every state is ε, and the
probability to move closer to the core is (1−ε). The right extremal agent can, with probability
(1 − ε), jump to the left, but at state 1 such a jump constitutes a move over all the internal

Figure 4. Left-biased bounded random walk used to bound extremal agent distance from the internal core
agents.D
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agents. In this case, a new extremal agent emerges, maintaining the distance from the farthest
left internal agent just below 1 (e.g., Theorem 4.2). This can happen in two ways. Either the
other extremal agent jumps over the core, or the closest internal agent becomes exposed and
turns into the right extremal one.

After the convergence of the internal agents, suppose we couple the (right) extremal agent’s
moves to the above defined random walk, i.e., the random walk proceeds exactly following the
decisions of extremal agent.

Claim 4.6. The random walk defined above provides an upper bound on the distance of the
extremal agent (at xN (t)) from the farthest internal agents (at x2(t)).

Proof. Let X(t) denote the state of the random walk at time t. Suppose at time t = T ,
X(T ) ≥ xN (T ) − x2(T ), i.e., the random walk is at a state at least the distance of the right
extremal agent from the farthest internal agent. At t = T + 1 one of the following things can
happen.

• The right extremal agent decides to jump right. In such a case, the distance to the
extremal agent increases by at most 1, which corresponds to an increase in the random
walk position.

X(T + 1) = X(T ) + 1 ≥ (xN (T ) + 1)− x2(T )
= xN (T + 1)− x2(T ) ≥ xN (T + 1)− x2(T + 1).

The last inequality follows from the fact that the leftmost internal agent can only move
to the right due to the action of the left extremist.

• The right extremal agent decides to jump left but remains the right extremal agent at
t = T + 1, and xN (T )− x2(T ) > 1. Therefore,

X(T + 1) = X(T )− 1 ≥ (xN (T )− 1)− x2(T )
= xN (T + 1)− x2(T ) ≥ xN (T + 1)− x2(T + 1).

The last inequality is explained as in the preceding case.
• The right extremal agent decides to jump left and stops being the right extremal agent
at t = T+1, and xN (T )−x2(T ) > 1. We assumed thatX(T ) ≥ xN (T )−x2(T ), which is
equivalent to X(T ) ≥ 2; hence by definition of coupling, X(T +1) ≥ 1. Two situations
are possible: the internal agent at xN−1(T ) emerges to be the right extremal agent at
time T+1 or the left extremal agent at time T+1 jumps over all the other agents to the
right and becomes the right extremal one. We have x2(T +1) ≥ x2(T ), since the right
extremal agent becomes the internal agent. Also xN (T + 1) = x1(T ) + 1 ≤ x2(T ) + 1,
since only the extremal agents actually move. In both cases it follows that

xN (T + 1)− x2(T + 1) ≤ (x2(T ) + 1)− x2(T ) = 1 ≤ X(T + 1).

• The right extremal agent decides to jump left, and xN (T )−x2(T ) ≤ 1. In such a case
X(T ) ≥ 1 and X(T + 1) ≥ 1, because 1 is the lowest value the random walk could
attain. The distinctive difference from the previous case is that the right extremal
agent moves over all the internal agents. We have then three cases. The first is when
the right extremal agent becomes the leftmost internal agent; hence

x2(T + 1) = xN (T )− 1 ≥ xN−1(T )− 1 = xN (T + 1)− 1.D
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In the second and third cases, it becomes the left extremal agent. We differentiate
between those two cases considering the new role of the previous left extremal agent.
If it becomes a new right extremal agent, we have

xN (T + 1) = x1(T ) + 1 ≤ x2(T ) + 1 = x2(T + 1) + 1.

Otherwise,

xN (T + 1) = xN−1(T ) ≤ (xN (T )− 1) + 1
= x1(T + 1) + 1 ≤ x2(T + 1) + 1.

In all the above cases, we conclude xN (T + 1) − x2(T + 1) ≤ 1 ≤ X(T + 1), as
claimed.

Returning to analyze the upper bounding random walk we have the following: if ε < 1/2, the
above random walk is positive recurrent and aperiodic hence it has a stationary distribution
π that is determined by the balance equations

ε · π(k) = (1− ε) · π(k + 1).

Along with the normalization condition
∑∞

k=1 π(k) = 1, this provides the steady-state distri-
bution π = [π(1) π(2) . . .] with

π(k) =

(
ε

1− ε

)k−1 1− 2ε

1− ε
∀k ∈ {1, 2, . . .}.(4.2)

The above analysis is symmetrically applicable to the random walk of the left extremal
agent. We then have two independent and identically distributed walks, upper bounding
the distance of the right and left extremal agents from the core’s left and right boundaries.
Denoting them by X(t) and Y (t), we have

xN (t)− x1(t) ≤ (xN (t)− x2(t)) + (xN−1(t)− x1(t)) = X(t) + Y (t).

Here we are interested in assessing P (xN (t) − x1(t) ≤ k); hence we can estimate a lower
bound for P (xN (t)− x1(t) ≤ k) by P (X(t) + Y (t) ≤ k). Therefore, consider

P (X + Y ≥ k) =
k−2∑
i=1

P (X = i)P (Y ≥ k − i) + P (X ≥ k − 1).(4.3)

In the steady state we have that P (X = k) = π(k). Therefore,

P (X ≥ k) =

(
ε

1− ε

)k−1

.

Using this result in (4.3) produces, for k greater than two,

P (X + Y ≥ k) =

k−2∑
i=1

(
ε

1− ε

)i−1 1− 2ε

1− ε
·
(

ε

1− ε

)k−i−1

+

(
ε

1− ε

)k−2

,
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which after few algebraic manipulations provides

P (X + Y ≥ k) =

(
ε

1− ε

)k−2(
(k − 2) · 1− 2ε

1− ε
+ 1

)
.

We summarize these findings as follows.

Theorem 4.7. After the internal agents gather in an interval of length 1, the distribution
of interval lengths containing all the agents is upper bounded by

P (xN (t)− x1(t) < k) ≥ P (X + Y < k) ≈ 1− k

(
ε

1− ε

)k−2

.(4.4)

4.4. On arbitrary initial position of agents. In the proof of Theorem 4.5 we have assumed
all the agents’ locations’ fractional parts are different. We can slightly change the model
to accommodate cases in which some agents may share the same location. Of course, the
problem arises when several agents find themselves sharing extremal locations. In such cases
their motions must be specified and disambiguated. Suppose several agents share the same
place and all other agents are located on exactly one side either to the left or to the right. We
assume that only one of these extremal agents will become erratic and move at a given time.
We can then readily prove a claim equivalent to Theorem 4.5 in this new model.

Theorem 4.8. Let agents p1, p2, . . . , pN be initially located at x1(0), x2(0), . . ., xN (0), and
define

T ··= inf{t : xN−1(t)− x2(t) ≤ 1}

as the first time when all the internal agents are inside the interval bounded by 1; then with
the modified rule of behavior we have E (T ) < ∞.

Proof. Since we are not assuming that fractional parts are all different, it is possible that
there will be more than one agent with the same fractional part of their initial (and subsequent)
locations. Let ∆ be the minimal fractional nonzero distance between two agents:

∆ ··= min
{xj(0)}≠{xk(0)}

{{xj(0)− xk(0)}, 1− {xj(0)− xk(0)}}.

In case all the agents share the same fractional part, simply set ∆ ··= 1.
Step 1. Define a new process with the following initial coordinates: yk(0) = xk(0) +

(k−1)∆
N

for all k ∈ {1, 2, . . . , N}. It is not difficult to see that the newly defined locations y1(0), y2(0),
. . . , yN (0) fulfill the requirements of Theorem 4.5.

Step 2. Theorem 4.5 proves that all agents (yk)
n
k=1 gather in expected finite time to the

interval of unit length. Denote this time by Ty.
• By separately handling cases of same and different initial fractional part of the location
one can show that for all k ≥ 2,

x2(t) ≤ xk(t).D
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In the same manner, for all k ≤ N − 1,

xk(t) ≤ xN−1(t).

We can then conclude that all the correspondingly indexed x’s and their shadow
y-agents will be called inner and extremal in both models at the same time.

• Suppose y2(Ty) and yN−1(Ty) are agents which originally had the same fractional
part of their respective location. Due to the way we mapped the coordinates, we
know that y2(Ty) < x2(Ty) + ∆ ≤ x2(Ty) + 1 and that yN−1(Ty) ≥ xN−1(Ty); hence
|xN−1(Ty)− x2(Ty)| < 2. But since x2(Ty) and xN−1(Ty) have the same fractional
part, we conclude that we have xN−1(Ty)− x2(Ty) ≤ 1.

• If y2(Ty) and yN−1(Ty) are not agents which originally had the same fractional part of
their respective location, then one of two cases is possible. If yN−1(Ty) < x2(Ty) + 1,
we have all agents in original model inside the interval [x2(Ty), x2(Ty)+1). Otherwise
x2(Ty) + 1 ≤ yN−1(Ty) ≤ y2(Ty) + 1. But, due to definition of ∆, only points that
have the same fractional part as x2(Ty) could fall between x2(Ty) + 1 and y2(Ty) + 1.
Hence the latter case is impossible.

It follows that in all cases xN−1(Ty)−x2(Ty) ≤ 1, which implies T ≤ Ty, and by Theorem 4.5,
Ty has a finite expectation.

5. Simulations. We next present some simulation results to showcase the validity of our
theoretical predictions.

All the simulations start with a uniform distribution of N opinions in the range [0, 1+S0].
At any given moment in time two agents holding the leftmost and the rightmost opinions
are labeled as extremists. All other agents are moderates. All agents simultaneously evaluate
their own label. Moderates stick to their current opinion, while extremist randomly choose
how to adjust it. We run the simulation until all the moderates’ opinions occupy the interval
of length 1. Convergence time is recorded and is averaged over 100 different runs.

Our intuitive interpretation is that the model parameter ε describes stubbornness, from
spineless extremists who always move towards the accepted society norm at ε = 0 to stubborn
individuals unwilling to cooperate at ε = 0.5. Note that the ε value range is the [0, 1] interval,
but only [0, 1/2] makes sense, as the upper half of the interval does not promise a.s. convergence
of the moderates.

In Figure 5 we present simulation results. The pairs of panels depict a comparison between
an actual averaged time to convergence and a theoretical upper bound. The experiments were
done varying only one of the parameters (ε, S0, or N) while fixing the other two. After setting
the parameter N , the N agents were placed uniformly at random in an initial interval of size
1 + S0. The simulations measured the time to convergence of the inner agents to an interval
of length one, while every agent behaved according to the proposed evolution process.

The theory predicts that the expected time to gathering is bounded as follows:

E (T ) ≤
N · (S0 +

⌈
log2

S0
d

⌉
) + (xN (0)− x1(0)− S0 − 1)

1− 2ε
.

As theoretically predicted (Figure 5(a)), the average convergence times exhibit hyperbolic
dependence on ε, with infinite expected convergence times at ε = 0.5. The time dependence isD
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2096 DMITRY RABINOVICH AND ALFRED M. BRUCKSTEIN

Figure 5. Convergence times as a function of (a) probability of motion in the wrong direction ε (N = 400,
S0 = 500), (c) initial span S0 (N = 400, ε = 0.1), (e) number of agents N (S0 = 1000, ε = 0.1).
indicates an actual time and indicates an upper bound on time in a single extremist scenario. (b), (d),
and (f) Theoretical upper bound to measured convergence time ratio versus the measured parameter. Each point
on the actual results’ line is an average of 100 different simulations with the same set of parameters.
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indeed intuitive: the more stubborn extremist agents are, the longer it will take for the society
to come to an agreement. (The real-world examples supporting such findings are numerous,
mainly on controversial issues like abortion or gun control. Fanatic advocates of either side
of these controversial issues do not lean in the direction of the consensus; consequently the
consensus is yet to be reached.)

The dependence of the convergence time on the initial span of internal agents S0 (Figure
5(c)), and implicitly on the initial span of all agents, or on the number of agentsN (Figure 5(e))
in the model, is clearly linear. This also, is an expected result: larger communities are more
diverse and are less susceptible to the domination of a single correct opinion. Furthermore,
the dependence on S0 should not surprise us. Consider the legislative process in a western
democracy. The number of stakeholders, and consequently the diversity of opinions on what
should be done, could be huge, which leads law’s time to approval to increase indefinitely.
(For example, the Affordable Care Act, a landmark health care reform in the United States,
enacted in 2010, could be seen as a consequence of a process initiated back in 1997, if not
even earlier than that.)

In all experiments we notice that our theoretical bounds are roughly eight times higher
than the actual measurements. We placed the graphs of the ratios between the theoretical
upper bounds and the experimentally observed convergence times on the right side near each
experimental result (Figure 5(b), 5(d), and 5(f)). Recall that we derived our theoretical
bounds based on overly cautious assumptions, namely, that one extremal agent is doing the
constructive work toward convergence, while the second extremal agent is randomly wandering
outside the interval containing the internal agents. In reality, this is not the case: both agents
independently and concurrently contribute to convergence. Hence, we should focus on the
stochastic process, which is in some sense the distance between two independent random
walks biased towards each other.

Indeed, let X,Y be two independent biased random walks with a probability ε to jump
right. For any one of the mentioned random walks, E (step length) = 2ε − 1. On the other
hand, for the process Z ≜ X +Y , E (step length of Z) = 2(2ε− 1). Note that the contraction
process Z describes the distance between two extremal agents, with each extremal agent
sweeping the internal agents in the direction of its counterpart. Furthermore, on average, the
core convergence will happen approximately around the middle of the initial interval. And we
should finally recall the assumed uniform initial spread of agents inside the initial interval at
the beginning, implying that each extremal agent will need to push only half of the internal
agents. Thus until convergence we have two stochastic processes of the kind we analyzed in
this paper, and each starts with half the number of agents and half the initial interval, and
the process will proceed at least twice as fast. Hence, we have 3 factors that each improve the
time to convergence roughly by 2 (hence the 8!).

Another aim of our simulations was to assess the bounds on the total span of agents after
gathering. As can be seen in Figure 6, using a semilogarithmic scaling, the probability to find
an extremal agent at a specific distance is indeed decreasing exponentially fast, according to
the bound of Theorem 4.7. The same is true about the results predicted in subsection 4.3. In
Figure 6(b) we show that application of Theorem 4.7 gives a much better estimate than the
crude evaluation of (4.1).
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Figure 6. (a) Long-term (steady-state) distribution of agents’ total span. (b) Long-term cumulative dis-
tribution of total span for various N ’s with lower bounds from subsection 3.4 ( ) and subsection 4.3 ( ).
The simulations were done for different values of N and ε = 0.1.

Figure 7 presents a typical behavior of the gathered core’s center of mass and of the two
extremal agents. The period before gathering is shown in Figure 7(a) followed by a display
of post-gathering typical behavior in Figure 7(b). Simulations for different numbers of agents
are shown below. Unsurprisingly, Figures 7(d) and 7(f) prove a much higher inertia of the
core center of mass to the actions of extremal agents when the number of agents is a few times
higher. The finding is an expected outcome of the fact that the number of extremal agents is
constant. Consequently, in large societies other (core) agents are much less likely to meet an
extremist agent and change their own opinion in either direction.

6. Extensions.

6.1. Multiple extremists. Until now, we have considered exactly one agent on each side
as an extremist. But what happens if we label agents as extremists by selecting a fraction of
agents rleft as left extremists and, respectively, a fraction rright as right extremist agents?

We found that the society’s opinion dynamics in the multiple extremists model contradicts
the dynamics of models in the existing literature [5]. Those previous models naturally expect
deviation of the society’s norm in the direction of a higher concentration of extremists. In
some sense the attraction force of the (extremist) opinion is assumed to be proportional to
the number of agents holding that opinion.

Amazingly, a conclusion somewhat similar to our findings was derived in [11]. However,
we feel that the unexpected outcome of those model simulations could be attributed to a very
specific choice of the initial conditions. Furthermore, we would be intrigued to see if the same
conclusion holds in the case when each run starts with a random profile.

We observed that a higher fraction of extremist agents on one side of the opinion spectrum
pushes the overall society’s norm in the opposite direction. This feature of the model explains
extremely well many recent political turmoils in a number of countries. The more one side
of the opinion spectrum dominates the national agenda, the more unexpectedly the elected
governments fall under the opposite ideology. We feel that, in reality, moderate agents are
frightened by the prevalence of one extremist ideology and eventually adjust their opinions to
counter it.

D
ow

nl
oa

de
d 

01
/3

1/
22

 to
 1

32
.6

8.
36

.1
84

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERRATIC EXTREMISM CAUSES DYNAMIC CONSENSUS 2099

Figure 7. Typical core center and extremal agent location versus time. From the beginning (a) and after the
gathering (b). (Simulations with N = 21, ε = 0.1.) Behavior after gathering in fine resolution for (c) N = 21
and (d) N = 121 (starting from T = 10, 000, for ε = 0.3). The core of gathered agents is much more easily
moved by extremists when the population is small (N = 21). Behavior on a wide (coarse) scale: (e) N = 200
and (f) N = 1000 (after gathering, starting from T = 1, 000, 000, for ε = 0.1). The inertia of society is much
higher when N = 1000 than in case N = 200. In all cases the initial center of mass of all agents was at 0.

In Figure 8 we compare a typical dynamics of agent opinions in societies with a prevalence
of one type of extremists with societies where both extremist types are equally present. Opin-
ions of every agent are depicted for each t ∈ {0, 1, . . . , 200}, with time running from left toD
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Figure 8. Typical evolution of agents’ opinions in the society. Evolution of (a) the original model, (b) a
society with an equal number (N = 3) of extremists, (c) abundant left. and (d) abundant right extremists. All
extremists in the four upper images have the same level of stubbornness. Evolution of agents’ opinions in the
society with (e) much more and (f) slightly more stubborn left extremists. The number of extremists is the same
on both sides of the spectrum.

right. Each agent is color-coded to enable visual tracking of a single agent’s opinion dynamics.
As in the original model, we start by randomly assigning initial opinions in an arbitrary range,
w.l.o.g. set to (−10, 10). At each time step every agent checks if it itself meets the definitionD
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of an extremist agent. If it does, the agent decides to move closer to an acceptable society’s
“norm” with high probability (1 − ε). Otherwise with low probability ε it moves away. We
simulated a society of n = 21 agents with probability of radicalization ε = 0.1.

We observe from simulations that the initial range gradually narrows to one. Then the
core trend is influenced by the actions of the extremists. Societies with a higher number of left
extremists (Figure 8(c)) tend to the right and vice versa (Figure 8(d)). On the other hand,
in societies with both extremist sides represented equally (see Figure 8(a) for original model
and Figure 8(b) for a society with 3 extremists on each side), the core consensus fluctuates at
random with no clear trend in any direction.

In general, we would expect fluctuations in moderate opinions to be dependent on the
number of extremists. More active extremists disturb the life of the average moderate agent
more frequently. Consequently, moderates will adjust their opinions at a faster pace. However,
this effectively pushes “core” agents away from the perceived extremist view. Real-life politics
in the last decade appears to follow the very same principles. A sudden rise of loud activists
on one end of the political spectrum leads, in a few years, to election swings showing that the
society as a whole moved a bit to the other direction.

6.2. Stubborn extremists. In the previous section we proposed an extension to our origi-
nal model. We were able to handle multiple extremists on both sides of the opinion spectrum.
In this section we are interested in modeling a society with stubborn, ideologically stable
individuals. Those individuals are reluctant to change the opinion they strongly believe in.
Furthermore, they resist the usual social pressure of alienation for holding unfavored opinions.
Consider, for example, women’s suffrage. It was an extremist idea merely two hundred years
ago. However, we suppose its gradual adaptation by societies throughout the world can be
explained by the existence of small groups of stubborn extremists. Such small groups held a
firm ideological view on the issue and were not scared to be singled out, while the other end
of the spectrum had agents that were prone to adjust their views to stay near the norm.

An extremist agent in our model is under constant social pressure. Consequently, it
expresses a substantial desire to be accepted and labeled as moderate. We model this desire
by letting an agent change its opinion in the direction of the social consensus with a high
probability. On the other hand a stubborn agent resists the pressure. The more stubborn the
agent is the more successfully it resists the pressure. Therefore the stubbornness of an agent
is modeled by the probability ε of changing its opinion in the direction of even more severe
extremism. Indeed, an extremist agent with a higher value of ε could be viewed as stubbornly
sticking to its extreme opinion. Another interpretation is that an extremist agent is more
ideologically stable than its opponents. Therefore we expect that stubborn extremist agents
pull the society in the direction of their strong belief.

To test the validity of our predictions we set up a society with the same number of
extremists on both sides. For simplicity we used the same stubbornness level for all extremists
on the same side and arbitrarily chose to arrange more stubborn left extremists, i.e.,

εleft > εright.

Further, we randomly assigned the agents’ initial opinions, then let the system evolve under
our model with multiple extremists for 200 rounds. Simulations show a definite attractionD
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force exerted on the society by the more stubborn agents. We here provide a qualitative
comparison between a bit more (Figure 8(f)) and much more (Figure 8(e)) stubborn lefties. A
clear pattern emerges: higher stubbornness values lead to a faster shift of the society’s norm
in the direction of stubborn extremists.

The introduction of stubbornness nicely explains a variability in society’s adoption rates of
different ideas. In such a interpretation, highly charged ideology groups persuade the society
to quickly adopt new ideas. In the extreme, revolutions succeed when broad masses accept
some set of ideas advocated by a small group of extraordinarily stubborn individuals. On
the other hand, when the ideology group is only slightly stubborn, the norm drift could take
centuries to happen.

We can naturally combine both extensions to our model and establish a relationship be-
tween the number of extremists on each side, their stubbornness, and the eventual society norm
drift direction. We further assume constant, but different, stubbornness levels of extremists,
i.e., that the stubbornness of the leftmost agent is some constant ε1 of the second leftmost
agent ε2, etc. And the following holds for the society with k left and m right extremists:

1/2 > ε1 ≥ ε2 ≥ · · · ≥ εk > 0,

1/2 > εn ≥ εn−1 ≥ · · · ≥ εn−m+1 > 0.

In the simplest case we assume stubbornness of all left extremists is the same. We denote
it by εleft. Similarly, we denote the stubbornness of the right extremists by εright. We define
a ratio between both stubbornness levels as follows:

rε =
εright
εleft

.

Note that rε could not take an arbitrary large value. In our model, we assumed along the
way that ε < 1/2; therefore, we will require rεεleft < 1/2. Denote the number of left and right
extremists by nleft and nright, respectively. We then define a ratio between these two quantities
as

rn =
nright

nleft
.

In simulations, we fix the values of εleft and nleft and vary rε and rn in the range [0.05, 2].
For each pair of ratio values (rε, rn) we run a number of simulations to detect the presence
of social norm drift. If a decisive majority of runs end in the same direction drift, then this
direction is assigned to the pair (rε, rn). In case no dominant direction is detected, the pair
(rε, rn) is assigned a no-drift value. For example if out of 100 runs for pair (0.2, 0.3) we have 76
runs that end in a left drift, then we say that a left drift is assigned to the pair of parameters
(0.2, 0.3).

For a fixed pair of (rε, rn) we have executed a series of 100 simulations and recorded the
outcome in Figure 9. We see that, qualitatively, stubbornness of the agents is counterbalanced
by the raw number of extremists present. Many stubborn extremists exert the same pressure
on the society as a lower number of less confident agents. We explain the effect in the following
way: each left extremist contributes (1− 2εleft) in expectation to the norm drift at each timeD
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Figure 9. Social opinion leaning to the right (blue), to the left (red), or no leaning at all (yellow) (a)
in a simulated society and (b) in theoretical settings. The right-to-left extremists ratio versus the right-to-left
extremists stubbornness level ratio. Stubbornness could be matched by numbers: smaller groups of stubborn
agents on one side are balanced by a larger groups of less inclined agents on the other (yellow is the equal
influence line).

step. In turn, each right extremist contributes −(1−2εright) or −(1−2rεεleft). Then the total
expected drift of all the extremists is then given by

TD ··= nleft · (1− 2εleft)− rn · nleft · (1− 2rεεleft).

Our interest lies in finding the area in the rεrn plane, where the drift is absent. The task
is equivalent to solving the equation TD = 0 and finding the functional dependency between
rn and rε, which we do as follows:

0 = nleft · (1− 2εleft)− rn · nleft · (1− 2rεεleft),

nleft · (1− 2εleft) = rn · nleft · (1− 2rεεleft).

Therefore, on the line

rn =
1− 2εleft
1− 2εleftrε

,

no norm drift should be expected. We will denote this line as the no-drift line. See the
middle yellow line in Figure 9(b). In the rεrn plane any point above this line corresponds to a
higher number of right extremists than at the no-drift line. As we have stated previously more
extremists on one side of the opinion spectrum lead to a drift of the norm in the opposite
direction. Therefore, all the points above the no-drift line correspond to the left drift of
society’s norm, and all the points beneath the line to the right drift of the norm.

Comparing Figure 9(a) and Figure 9(b) shows that theoretical expectations are confirmed
by the simulations of our revised model.

All the simulation code we used can be found online [17].

7. Concluding remarks. We here proposed a mathematical model of randomly interacting
particles on the line that could describe opinion dynamics in a society of presumably intelligent
agents. Equipped with a simple decision rule, agents eventually get together to a drifting
gathered constellation in finite expected time. All the agents of the system, except two,
constitute a core of moderate agents that remain closely clustered from that point on. TheD
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two erratic extremist agents perform random walks biased toward the quasi-stationary core;
once in a while the roles of extremal agents change when an erratic extremist walker joins the
core. We have derived expressions for the expected convergence time and the distribution of
distances of extremal agents. Computer simulations support our findings.

We further worked out promising additions to the original model. At first, varying the
number of extremists on each side, we built a model that predicts political swings. There is a
group of radical agents loudly dominating politics; then despite this the society leans to the
other side of the spectrum. Instead of attracting moderates, such extremists actively push the
society in the other direction. Secondly, we investigated the stubbornness of the extremists,
and we were able to model the influence of such extremists on the eventual drift of the social
norm in the direction of such agents. We finally established the connection between those two
additions and showed the simulations are in accordance with our expectations.

We believe that the model presented will further help analyze two- and higher-dimensional
models which have a practical importance in a number of areas in multiagent studies.

An interesting two-dimensional model corresponding to the random evolution process
analyzed in this paper could be the following. Assume that the agents’ locations are points in
the plane R2. For a group of N agents in the plane the extremists are the ones that define the
convex hull of the points. Suppose at each time instant an agent that realizes it is an extreme
vertex of the convex hull (by sensing the bearing only to all other agents!) decides to move
a unit distance along the bisector of the corresponding convex hull angle either toward the
other agents (i.e., into the convex hull), with probability (1− ε), or in the opposite direction,
with probability ε (see Figure 10).

Preliminary simulations with this model show that indeed the population gathers to a
small region in the plane (see Figure 11) and the gathered group performs a random walk in
the plane (Figures 12 and 13). We plan to study this and several variations of such models in
the near future.

Figure 10. Group of agents, convex hull, and zoom on extremal agent movement options.
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Figure 11. Typical evolution of the system (N = 400, ε = 0.1) from (a) the beginning until (d) the 400th
iteration. (Initial agent placement is arbitrary. Convex hulls are depicted for convenience.)

Figure 12. Evolution of the center of mass of the system and the last convex hull after (a) 400 and (b)
1000 iterations.
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Figure 13. Evolution of the center of mass of the system split by (a) the X direction and by (b) the Y
direction.
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