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1. Introduction

Let Q denote the unit cube in RN , N ≥ 2. Given a measurable set S ⊂ Q (S stands for shape) we
denote by 1S the characteristic function of S, by |S| = ‖1S‖L1 the volume of S (i.e., the area of S
when N = 2), and by P (S,Q), or simply P (S), the relative perimeter of S, i.e., taking into account
only the part of the boundary of S inside Q; in other words P (S) is the total mass of the measure
∇1S (possibly infinite if S is not rectifiable).

Our goal is to give an explicit formula when N = 2, for the function fN (t ) defined for 0 ≤ t ≤ 1
by

fN (t ) = inf
{
P (S); S is a measurable subset of Q such that |S| = t

}
. (1)

Clearly

fN (t ) = fN (1− t ) ∀ t ∈ [0,1] ; (2)

just replace S by Q \ S, and thus we will often assume that 0 ≤ t ≤ 1
2 .

The main result of this note is the following:
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Theorem 1. Assume N = 2, then

f2(t ) =
{

(πt )
1
2 if 0 ≤ t ≤ 1

π

1 if 1
π ≤ t ≤ 1

2

. (3)

Moreover the infimum in (1) is achieved by explicit shapes whose boundary consists or arcs of circles
or line segments.

Remark 2. We do not know any similar result for fN (t ) when N ≥ 3. In particular, it is not known
whether fN (t ) ≡ 1 in a neighborhood of t = 1

2 . There is however a simple lower bound for fN (t )
valid for all N ≥ 2. More precisely

fN (t ) ≥ 4t (1− t ) ∀ N ≥ 2, ∀ t ∈
[

0,
1

2

]
, (4)

and the constant 4 in (4) is sharp. This inequality is originally due to H. Hadwiger [7] when the
infimum in (1) is restricted to polyhedral subsets S of the cube Q. Far-reaching variants appeared
subsequently in the literature (see e.g. S. G. Bobkov [5, 6], D. Bakry and M. Ledoux [3], F. Barthe
and B. Maurey [4], and their references). The version stated as (4) (i.e., for measurable sets S) was
proved in its full generality by L. Ambrosio, J. Bourgain, H. Brezis and A. Figalli in [2, Appendix],
where it plays an essential role. Note that when N = 2 inequality (4) is consistent with the explicit
formula (3) since

(πt )
1
2 ≥ 4t (1− t ) ∀ t ∈

(
0,

1

π

)
, (5)

or equivalently
π

1
2

4
≥ s

(
1− s2) ∀ s ∈

(
0,

1

π
1
2

)
. (6)

Indeed the function s(1− s2) is increasing on the interval (0, 1

3
1
2

) and thus (5) reduces to

π
1
2

4
≥ 1

π
1
2

(
1− 1

π

)
,

which is obvious.

Remark 3. Y. Altshuler and A. Bruckstein [1] established earlier a version of Theorem 1 where
the infimum in (1) is restricted to “nice” connected sets S. Their strategy of proof enters as an
ingredient in this note.

Remark 4. The conclusion of Theorem 1 is probably known to the experts even though we could
not find a reference in the literature. E. Milman suggested an alternative approach by considering
the result of H. Howards cited in [8, Section 7], and concerning the isoperimetric problem on a
flat 2D torus.
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2. Some simple facts

The proof of Theorem 1 relies on three simple facts.

Fact 1 (The classical planar isoperimetric inequality). Given any shape S in the plane we have

P (S) = P
(
S,R2)≥ 2

p
π
√

|S|.
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Fact 2 (The half-plane isoperimetric inequality). Given any shape S in the half-plane denoted
1
2R

2 we have

P (S) = P

(
S,

1

2
R2

)
≥p

2π
√

|S|.

Proof. If S touches the boundary of the half-plane, we reflect it across the boundary, thereby
generating a (symmetric) shape S′ of area 2|S| and such that

P
(
S′,R2)= 2P

(
S,

1

2
R2

)
.

Applying 1 to S′ we obtain
P

(
S′,R2)≥ 2

p
π
√
|S′|,

which yields

P

(
S,

1

2
R2

)
≥p

π
√

2|S|. �

Fact 3 (The quarter-plane isoperimetric inequality). Given any shape S in a quater-plane
denoted 1

4R
2 we have

P

(
S,

1

4
R2

)
≥p

π
√

|S|.

Proof. If S touches the two orthogonal boundaries of the quarter-plane we reflect it symmetri-
cally into the three quarters plane, generating a shape S′ of area 4|S| and such that

P
(
S′,R2)= 4P

(
S,

1

4
R2

)
.

Applying 1 to S′ we obtain
P

(
S′,R2)≥ 2

p
π
√
|S′|,

which yields

P

(
S,

1

4
R2

)
≥p

π
√

|S|. �

3. Proof of Theorem 1

Since we consider only the case N = 2, we will write simply f (t ) instead of f2(t ). Set

g (t ) =
{

(πt )
1
2 if 0 ≤ t ≤ 1

π

1 if 1
π ≤ t ≤ 1

2

. (7)

The goal is to prove that f (t ) = g (t ) ∀ t ∈ [0, 1
2 ]. The proof is divided into 7 steps.

Step 1. We have

f (t ) ≤ g (t ) ∀ t ∈
[

0,
1

2

]
. (8)

Assume first that t ≤ 1
π and consider the set S as in Figure 1, where R = 2

√
t
π ≤ 1, so that

|S| = πR2

4 = t and P (S) = 2πR
4 = (πt )

1
2 . Therefore (by definition of f (t )), f (t ) ≤ (πt )

1
2 = g (t ).

Assume now that 1
π ≤ t ≤ 1

2 and consider the set S as in Figure 2, so that |S| = t . On the other
hand P (S) = 1. Therefore, (by definition of f (t )), f (t ) ≤ 1 = g (t ). �

In what follows we concentrate on the lower bound

f (t ) ≥ g (t ) ∀ t ∈
[

0,
1

2

]
. (9)

Let S be a minimizer in (1). We know from abstract theory (see A. Ros [12, Theorem 1] and
the references therein) that ∂S is smooth and consists of arcs of circle - possibly straight lines;
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S

R

Figure 1.

S

t

Figure 2.

moreover if ∂Q ∩ ∂S 6= ;, then ∂Q meets ∂S orthogonally. In view of this fundamental result it
suffices to establish the lower bound

P (S) ≥ g (|S|) (10)

when S is restricted to the above class i.e., ∂S is smooth, ∂S consists of arcs of circle (or straight
lines) and ∂S meets ∂Q orthogonally; but S need not be connected. Our next step allows to
assume that S is also connected.

Step 2. Reduction to the case where S is also connected
Assume we have established (10) under the additional assumption that the shape is con-

nected. Consider now some S which is not connected, and write S = ⋃
i

Si where here (Si ) are

the connected components of S. Then
|S| =∑

i
|Si | (11)

and
P (S) =∑

i
P (Si ). (12)

Assume first that |S| ≤ 1
π ; then |Si | ≤ 1

π ∀ i and by (10) applied to Si we have

P (Si ) ≥
√
π|Si | ∀ i

Thus

P (S) ≥∑
i

√
π|Si | ≥

√
π

∑
i
|Si | =

√
π|S|

i.e., (10) holds for S.
Assume next that 1

π ≤ |S| ≤ 1
2 . We distinguish two cases:

C. R. Mathématique — 2021, 359, n 9, 1191-1199



Haim Brezis and Alfred Bruckstein 1195

Case 1. |Si | ≤ 1
π ∀ i .

Then, as above,

P (S) ≥
√
π|S| ≥ 1 = g (|S|),

i.e., (10) holds for S.

Case 2. |Si | > 1
π for some i = i0.

By (10) applied to Si0 we have P (Si0 ) ≥ 1, and thus P (S) ≥ P (Si0 ) ≥ 1, i.e., (10) also holds for S.

We are therefore reduced to the situation investigated by Altshuler and Bruckstein [1], even
under the additional assumption that ∂S consists of arcs of circle (or straight lines) meeting ∂Q
orthogonally. We follow the strategy of their argument. �

Step 3. S touches 0 side of Q.
In this case the classical isoperimetric inequality (1 in Section 2) yields

P (S) ≥ 2
√
π|S| ≥ g (|S|) ∀ S, with |S| ≤ 1

2
. �

A typical example is as in Figure 3:

S

Figure 3.

Step 4. S touches 1 side of Q
A typical example is as in Figure 4:

Figure 4.

In this case, the half-plane isoperimetric inequality (see 2 in Section 2) yields

P (S) ≥
√

2π|S| ≥ g (|S|) ∀ S,with |S| ≤ 1

2
. �
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Figure 5.

Step 5. S touches 2 sides of Q.
In this case we have either S touches two opposite sides of Q or two adjacent sides of Q. The

two opposite sides correspond to Figure 5.
(Here we use the assumption that S is connected.) In this configuration

P (S) ≥ 2 ≥ g (|S|) for all such S.

The two adjacent sides correspond to Figure 6.

Figure 6.

In this configuration the quarter plane isoperimetric inequality (see 3 in Section 2) yields

P (S) ≥
√
π|S| ≥ g (|S|) ∀ S, with |S| ≤ 1

2
. �

Step 6. S touches 3 sides of Q.
A typical example is as in Figure 7, where a portion of the boundary of S has to join two

opposite sides of Q.

Figure 7.

In this case
P (S) ≥ 1 ≥ g (|S|) ∀ S, with |S| ≤ 1

2
�
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Step 7. S touches the 4 sides of Q.
A typical example is as in Figure 8.

Figure 8.

Let T =Q \ S and denote by (Ti ) the connected components of T .

Lemma 5. Each Ti touches 0,1, or 2 adjacent sides of Q.

The proof of Lemma 5 relies on the following assertion which appears without proof in a paper
by H. Poincaré [11, p. 67].

Lemma 6. Let A1, B1 be points of ∂Q belonging to opposite sides of Q, and let C1 be a curve in Q
connecting A1 to B1. Let A2, B2 be points of ∂Q belonging to a distinct pair of opposite sides of Q,
and let C2 be a curve in Q connecting A2 to B2. Then

C1 ∩C2 6= ;. (13)

(see Figure 9)

× ×

×

×A1

A2

B1

B2

C1

C2

Figure 9.

Proof of Lemma 6. Let (p1(t ), q1(t )) (resp. (p2(t ), q2(t ))), 0 ≤ t ≤ 1, be a parametrization of
C1 (resp. C2) such that (p1(0), q1(0)) = A1, (p1(1), q1(1)) = B1, (resp. (p2(0), q2(0)) = A2,
(p2(1), q2(1)) = B2). Consider the map F : Q →R2 defined by

F (t , s) = (F1(t , s),F2(t , s)) = (
p1(t )−p2(s), q1(t )−q2(s)

)
.

C. R. Mathématique — 2021, 359, n 9, 1191-1199
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We have to show that there exists some (t , s) ∈Q such that F (t , s) = 0. Note that

F1(t ,0) = p1(t )−p2(0) = p1(t ) > 0, ∀ t ∈ [0,1], (14)

F1(t ,1) = p1(t )−p2(1) = p1(t )−1 < 0, ∀ t ∈ [0,1], (15)

F2(0, s) = q1(0)−q2(s) = 1−q2(s) > 0, ∀ s ∈ [0,1], (16)

and

F2(1, s) = q1(1)−q2(s) =−q2(s) < 0, ∀ s ∈ [0,1]. (17)

We deduce from the Poincaré–Miranda theorem (see W. Kulpa [9], J. Mawhin [10], and the
references therein) that there exists (t , s) ∈Q (and in fact (t , s) ∈Q) such that F (t , s) = 0. �

Proof of Lemma 5. Assume by contradiction that Ti touches (at least) 2 opposite sides of Q. Fix
a path C1 connecting these 2 opposite sides within Ti (this is possible because Ti is connected).
Consider the remaining 2 opposite sides of Q and fix a path C2 connecting them within S; this is
possible because S touches (by assumption) the 4 sides of Q and S is connected. From Lemma 6
we know that C1 ∩C2 6= ;. But this is impossible since C1 ⊂ Ti , C2 ⊂ S and Ti ∩S =;. �

Proof of Step 7. We now complete the proof of Step 7. By 1, 2 and 3 in Section 2, we have for
every i

P (Ti ) ≥ min
{p

π,
p

2π,2
p
π
}√

|Ti | =
p
π
√
|Ti |. (18)

Thus

P (S) = P (T ) =∑
i

P (Ti ) ≥p
π

∑
i

√
|Ti |. (19)

From the obvious inequality ∑
i

√
|Ti | ≥

√∑
i
|Ti |, (20)

we deduce that

P (S) ≥p
π
√∑

i
|Ti | =

p
π
√

|T | =p
π
√

1−|S|. (21)

On the other hand
p

1−|S| ≥p|S| since |S| ≤ 1
2 , and therefore

P (S) ≥p
π
√
|S| ≥ g (|S|) ∀ S, with |S| ≤ 1

2
(22)

�

Remark 7. The same argument as above applies to the case where Q is replaced by a rectangle
D(X ,Y ) of dimensions X and Y such that X ≤ Y . By analogy with the above we define for
0 ≤ t ≤ X Y ,

f (t ) = inf{P (S); S is a measurable subset of D(X ,Y )such that|S| = t } .

Clearly

f (t ) = f (X Y − t ) ∀ t ∈ [0, X Y ].

The analogue of Theorem 1 is:

Theorem 8. We have

f (t ) =
{

(πt )
1
2 if 0 ≤ t ≤ X 2

π

X if X 2

π ≤ t ≤ 1
2 X Y

.
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