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Abstract
Storage systems often rely on multiple copies of the same compressed data, enabling recovery in case of binary data errors, of
course, at the expense of a higher storage cost. In this paper, we show that a wiser method of duplication entails great potential
benefits for data types tolerating approximate representations, like images and videos. We propose a method to produce a set
of distinct compressed representations for a given signal, such that any subset of them allows reconstruction of the signal at
a quality depending only on the number of compressed representations utilized. Essentially, we implement the holographic
representation idea, where all the representations are equally important in refining the reconstruction. Here, we propose to
exploit the shift sensitivity of common compression processes and generate holographic representations via compression
of various shifts of the signal. Two implementations for the idea, based on standard compression methods, are presented:
the first is a simple, optimization-free design. The second approach originates in a challenging rate-distortion optimization,
mitigated by the alternating direction method of multipliers (ADMM), leading to a process of repeatedly applying standard
compression techniques. Evaluation of the approach, in conjunction with the JPEG2000 image compression standard, shows
the effectiveness of the optimization in providing compressed holographic representations that, by means of an elementary
reconstruction process, enable impressive gains of several dBs in PSNR over exact duplications.

Keywords Holographic representations ·Rate-distortion optimization · Signal compression · Image compression ·Alternating
direction method of multipliers (ADMM)

1 Introduction

Any digital system involving storage or transmission of
signals (e.g., images, videos and other multimedia data)
fundamentally relies on lossy compression processes to
meet storage-space or transmission bandwidth limitations,
incurring acceptable reductions in the eventual recovered sig-
nal quality. Contemporary storage and content distribution
services implement processes where a binary compressed
representation of a particular signal is exactly duplicated for
the purpose of storage reliability, or for delivery to multi-
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ple users in a network. Clearly, subsequent access to several
identical copies of the compressed signal cannot provide a
reconstruction quality better than that achieved using a single
copy. Hence, there is an inefficiency in the joint bit-cost of
several copies versus the reconstruction quality they provide
together. In this paper, we address this type of inefficiency,
as will be explained next.

Holographic representations [1–3] of a signal are a set
of data packets designed so that its subsets enable signal
approximation at a quality depending only on the number
of packets utilized, and independent on the particular pack-
ets included in the subset. The holographic representations
concept is closely related to the multiple description cod-
ing approach (see, e.g., [4–6]) as, indeed, both methods aim
at reconstruction refinement when increasing the size of the
subset of packets used for approximation. However, the two
approaches differ in the following aspect: when using holo-
graphic representations, increasing the number of packets
used for approximation leads to a quality gain (approxi-
mately) independent of the particular packets added at the
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expense of considerable higher bit-cost. In contrast, in the
common designs of multiple description coding, adding var-
ious packets may lead to considerably different quality gains
due to serious concerns about keeping the bit-cost as low as
possible [4,5]. Inherently, the property of holographic repre-
sentations implies that some amount of redundancy remains
among the packets and, therefore, the packet bit-costsmay be
higher than in themultiple description coding approach.Nev-
ertheless, the special properties of the holographic represen-
tations can significantly contribute to storage system designs.

Here we emphasize that, in the context of storage systems,
the holographic representations are intended for improving
settingswhere several identical copies of compressed data are
stored and their individual usefulness for recovery is more
important than achieving the best possible reduction in their
joint bit-cost. A well-known case where single copy use-
fulness in reconstruction is crucial is in duplication-based
reliable storage systems, where multiple identical versions
of the data are stored for enabling recovery in case of errors
in the binary form of the data. This approach is realized by
the redundant array of independent disks (RAID) [7] data
storage technology in mirroring-based settings that are of
interest when retrieval speed is a significant concern. Other
approaches, which are more common, do not necessarily
store multiple exact copies of the data (see examples in [7])
and, accordingly, are not related to the framework proposed
in this paper.

In this paper,we focus on visual signals that are commonly
represented and processed jointly with lossy compression.
Using the principles of holographic representations, we
establish a methodology to store a signal in several non-
identical copies that are individually equally descriptive
(with respect to a distortion metric such as the mean squared
error). The important aspect of the proposed idea is that
subsets of the stored, non-identical duplicates allow us to
improve the quality of the recovered signal via a simple
reconstruction procedure. Hence, the storage cost increase
on the duplicates is exploited for significant quality improve-
ment in the retrieved signals.

We design the framework for production of holographic
representations employing binary compressed data. Since
many compression processes are shift sensitive (e.g., due
to block-based designs), we create holographic representa-
tions based on various shifts of the input signal. Then, in the
reconstruction stage the signal is approximated via averaging
the available subset of properly back-shifted representations.
The reconstruction quality improves as the subset of available
representations gets larger.

We further improve our idea by formulating the problem
as a rate-distortion optimization, minimizing a Lagrangian
cost including the total bit-cost of all the representations and
two distortion penalties: one expresses the distortion aver-
aged over all the m-packet reconstructions (for a specific

m > 1), and the second reflects the average distortion of
individual packets. Then, we apply our general optimization
approach for intricate compression problems (established in
[8–11] for various settings). Specifically, using the alternat-
ing direction method of multipliers (ADMM) we develop an
iterative process relying on repeated applications of standard
compression techniques (that consider squared-error metrics
but no holographic representations aspects). Accordingly,
our iterative approach decouples the holographic-related dis-
tortion terms from the actual compression stage, leading to
holographic compressed representations compatible to an
existing compression standard.

We present experimental results evaluating the proposed
methodology for image compression in conjunction with the
JPEG2000 standard. The results are analyzed using empiri-
cal quantities reflecting the holographic properties of similar
usefulness of packets added to the reconstruction, as well as
progressive refinement. Impressive PSNR gains are achieved
by the proposed methods over the approach of exact dupli-
cations. For instance, we evaluate the case of four packets
compatible with the JPEG2000 standard at a compression
ratio of 1:50 and show that using four packets the proposed
optimization framework improves the PSNR of the recon-
structed image by about 5 dB over the PSNR obtained with
exact duplications.

2 ProblemDefinition

2.1 Holographic Compression and Decompression

In this paper, we propose a lossy compression framework
with holographic representation properties (see Fig.1). Given
a signal x ∈ R

N , by definition, a holographic compres-
sion algorithm produces K binary representations (packets)
b1, . . . , bK ∈ B, where B is a discrete set of binary com-
pressed representations of possibly different lengths. The
set of packets fulfill holographic properties either exactly or
approximately (as will be described below). Accordingly, the
holographic compression process can be described as a func-
tion CH : RN → BK , mapping the source signal domain,
R

N , to the K -tuples from the domainB of binary compressed
representations.

By definition, the holographic decompression process can
get any subset of m ∈ {1, . . . , K } packets from the overall
set of packets, a subset denoted here as

{
bi1 , . . . , bim

} ⊂ {b1, . . . , bK }

where {i1, . . . , im} ⊂ {1, . . . , K } are the indices of the pack-
ets taken from the range of integers from 1 to K without
repetitions. For each m = 1, . . . , K there is a holographic
decompression function, F (m)

H : Bm → R
N , mapping the
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Fig. 1 General description of holographic compression and decompression processes

given subset ofm packets into a reconstructed signal, namely,

v � F (m)
H

(
bi1 , . . . , bim

)
(1)

where v ∈ R
N .

We evaluate the fidelity of the reconstructed signal using
the mean squared error (MSE) criterion. Accordingly, the
distortion of the reconstruction from the m packets corre-
sponding to the indices i1, . . . , im is formulated as

D̃(m) (x; i1, . . . , im) � 1

N

∥∥∥x − F (m)
H

(
bi1 , . . . , bim

)∥∥∥
2

2
. (2)

In the sequel, we will use the following notations. The
sequence of integers from 1 to K is denoted as [[K ]] �
{1, . . . , K }. For m ∈ [[K ]], an m-combination of the set
[[K ]] is a subset ofm distinct numbers from [[K ]].We denote
the set of all m-combinations of [[K ]] as ([[K ]]

m

)
, where the

latter contains
(K
m

)
elements.

2.2 The Ideal Holographic Properties in
Deterministic Settings

The desired holographic properties, in their idealistic forms,
can be described as follows.

2.2.1 Equivalent Usefulness of Individual Packets

Each of the individual packets, {bi }Ki=1, should enable the
approximation of x at the same level ofMSE.More generally,
given m ∈ {1, . . . , K } packets, denoted as {bi1 , . . . , bim },
one can construct an estimate for x using the function
F (m)
H

(
bi1 , . . . , bim

)
such that any subset of packets leads to

a reconstruction that approximates x at the same MSE level,
i.e., this ideal property is formulated as

D̃(m) (x; i1, . . . , im) = D̃(m) (x; l1, . . . , lm) (3)

for any (i1, . . . , im) and (l1, . . . , lm) in
([[K ]]

m

)
.

2.2.2 Progressive Refinement

The approximation F (m)
H

(
bi1 , . . . , bim

)
of x using any m ∈

{2, . . . , K } packets attains a lower MSE than the approx-
imation F (m̄)

H

(
bi1 , . . . , bil

)
constructed using any m̄ < m

packets. It is important to add the progressive refinement
property to the equivalent usefulness concept or, otherwise,
exact duplications of the input data would be a trivial solu-
tion to achieve equivalent usefulness of representations. The
union of the above two properties can be formulated as fol-
lows: for m = 1, . . . , K ,

D̃(m) (x; i1, . . . , im) = Em ∀ (i1, . . . , im) ∈
([[K ]]

m

)

(4)

where Em̄ > Em for any m̄ < m in [[K ]].

2.3 Feasible Holographic Properties in Deterministic
Settings

In general (in the deterministic settings), the ideal holo-
graphic properties presented above cannot be precisely
achieved. Hence, let us define a feasible version of the holo-
graphic principles.

First let us define the averageMSE of them-packet recon-
structions as

mean(m)
D (x; b1, . . . , bK ) �

1
(K
m

)
∑

(i1,...,im )∈([[K ]]
m )

D̃(m) (x; i1, . . . , im) (5)
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Furthermore, the empirical variance of the m-packet recon-
struction MSE is defined via

var(m)
D (x; b1, . . . , bK ) � 1

(K
m

)×
∑

(i1,...,im )

∈([[K ]]
m )

(
D̃(m) (x; i1, . . . , im) − mean(m)

D (x; b1, . . . , bK )
)2

(6)

The definitions of average and variance of the reconstruc-
tion MSE allow us to formulate softened versions of the
strict holographic properties defined in the former subsec-
tion. These practical features are

2.3.1 �-Similar usefulness of individual packets

Consider the task of reconstructions based on subsets of
m ∈ {2, . . . , K } packets. A set of K packets, {bi }Ki=1, will be
considered to satisfy the property of σ -similar usefulness of
packets for m-packet reconstructions, if it obeys

var(m)
D (x; b1, . . . , bK ) ≤ σ 2. (7)

Namely, the variance of the reconstruction MSE, empiri-
cally considering all them-combinations of subsets, does not
exceed the value σ 2. Clearly, for σ = 0 the property defined
here reduces to the strict equivalence of packet usefulness
presented in (3).

2.3.2 Progressive Refinement on Average

This property is implemented by a set of K packets where
the approximations of x using m ∈ {2, . . . , K } packets yield
a lower average MSE than the approximations constructed
using m̄ < m packets. Namely,

mean(m)
D (x; b1, . . . , bK ) = Em (8)

whereEm̄ > Em for any m̄ < m in [[K ]]. It is againworth not-
ing the significance of demanding progressive refinement (on
average) in conjunction with the similar-usefulness concept,
or else exact duplications of the input data would trivially
provide equivalent usefulness of representations.

3 Shift-Based Holographic Compression: A
Baseline Approach

We next describe an elementary, yet effective, design
for holographic compression. The simplicity of this base-
line architecture stems from the utilization of shift operators
in conjunction with standard compression methods that are

inherently shift-sensitive. Specifically, the regular compres-
sion of the various shifts of the given signal will produce
different compressed representations that are, in principle,
of about the same usefulness for reconstruction. The pro-
gressive refinement ability is also immediate here due to the
collection of different decompressed signals that, together,
can provide a reconstruction with a lower distortion and
reduced amount of compression artifacts.

First, let us formulate a process of regular (non-holographic)
lossy compression as a mapping C : R

N → B from the
N -dimensional signal domain to a discrete set B of binary
compressed representations (of possibly different lengths)
supported by the compression architecture. The compres-
sion of the signal w ∈ R

N provides the compressed binary
data b = C (w) that can be decompressed to form the signal
y = F (b), where F : B → S represents the decompression
mapping between the binary compressed representations inB
to the corresponding decompressed signals in the discrete set
S ⊂ R

N . Accordingly, we consider the pair of sets B and S
as a description of a standard non-holographic compression
architecture.

Note that we intentionally associated the holographic
compression design in Sect. 2.1 with the standard compres-
sion definition given here, by referring to the same set B
of binary compressed representations. Indeed, this means
that the holographic decompression process should start with
individual standard decompression of the obtained packets,
namely,

y j = F
(
b j

)
for j = i1, . . . , im (9)

where y j is the decompressed signal associated with the j th

packet. We will refer to yi1 , . . . , yim as decompressed pack-
ets. Since the holographic decompression, associated with
the function F (m)

H defined in (1), starts with standard decom-
pression of the individual packets, we can define the relation

G(m)
H

(
yi1 , . . . , yim

)
� F (m)

H

(
bi1 , . . . , bim

)
(10)

i.e., G(m)
H : Sm → R

N is the holographic reconstruction
function, receiving m decompressed packets and returning
the decompressed signal v ∈ R

N . For simplicity of notations,
the developments in this papermainly refer to the holographic
decompression function G(m)

H having inputs and outputs in
the signal domain R

N .
Signal compression methods usually rely on various

block-based vector quantization designs that inherentlymake
them shift sensitive. Accordingly, we consider in this paper
the creation of holographic compressed representations
based on shift operators coupled with standard compression
techniques. For this purpose, we define the operator of a
cyclic shift, to cyclically move components of an N -length
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Fig. 2 The baseline unoptimized process for holographic compression and decompression

column vector in one place upward, via the N × N matrix

S �

⎡

⎢⎢⎢⎢⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥
⎦

(11)

and the corresponding inverse shift can be applied using ST

since STS = I. The cyclic shift in an amount of l places is
obtained via Sl , which is the product of l basic matrices S,
and its inverse is accordingly defined as the transpose of Sl .

As a baseline unoptimized design let us consider the
following implementations of the holographic compression
and decompression processes (see Fig. 2). The holographic
compression procedure CH (x) produces the K binary com-
pressed representations via

bi = C (Six) for i = 1, . . . , K (12)

where S1, . . . ,SK are K different cyclic shift operators in
the forms of N × N matrices. Accordingly, in this baseline
architecture, the i th holographic compressed representation
is formed by a standard compression of a (cyclically) shifted
version of the input x (where the amount of shift is defined
by the matrix Si ). The holographic decompression based on
a subset of m packets is defined as

F (m)
H

(
bi1 , . . . , bim

) = 1

m

m∑

j=1

STi j F
(
bi j

)
(13)

or, alternatively, by describing the reconstruction given the
decompressed packets as

G(m)
H

(
yi1 , . . . , yim

) = 1

m

m∑

j=1

STi j yi j (14)

The MSE of the reconstruction from the m packets corre-
sponding to the indices i1, . . . , im is

D(m)
(
x; yi1 , . . . , yim

)
� 1

N

∥∥∥∥∥∥
x − 1

m

m∑

j=1

STi j yi j

∥∥∥∥∥∥

2

2

, (15)

where we use a simplified notation assuming that the indices
of the packets (i.e., i1, . . . , im) are available to the distortion
function in order to associate the shift operators correspond-
ing to the decompressed packets.

4 An Optimization-Based Approach for
Holographic Compression

Returning to the baseline implementation described in (12)–
(14) clearly shows that while the baseline design is a new
and intriguing compression approach, it is not designed to
optimize the output quality. The main goal of this section is
to present an optimized design for holographic compression
based on the same, relatively simple, reconstruction proce-
dures in (13)–(14),while replacing the encoding process of
(12) by our optimization-induced procedure.

The mathematical developments in this section require
the definition of a bit-cost evaluation function associated
with the standard (non-holographic) compression architec-
ture described byC , F ,B andS at the beginning of Sect. 3. A
decompressed signal y ∈ S is associated with a single binary
compressed representation b = F−1 (y) ∈ B. Accordingly,
the bit-cost evaluation function R (y), defined for y ∈ S,
returns the length of the binary representation F−1 (y) ∈ B.
Namely, R (y) evaluates the bit-cost of the compressed rep-
resentation matching to a decompressed signal y ∈ S.

We now turn to define the holographic compression prob-
lem in the form of a rate-distortion optimization, posed
for improving the average quality of m-packet reconstruc-
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tions for a specific m ∈ {2, . . . , K }. Our initial problem
formulation is inspired by the rate-distortion Lagrangian
optimization that is commonly used in the state-of-the-art
image and video compression methods (see, for examples,
[12–15]). Here, we formulate the task as the minimization
of an extended rate-distortion Lagrangian cost, including
three main terms: the total compression bit-cost of the pack-
ets, the average MSE of m-packet reconstructions (defined
for a particular m ∈ {2, . . . , K }), and the average MSE of
reconstructions from individual packets. This optimization
is formulated as

{ŷi }Ki=1 = argmin
{yi }Ki=1∈S

{ K∑

i=1

R (yi )

+ μ
1

(K
m

)
∑

(i1,...,im )∈([[K ]]
m )

D(m)
(
x; yi1 , . . . , yim

)

+ λ
1

K

K∑

i=1

D(1) (x; yi )
}

(16)

where μ and λ are Lagrange multipliers corresponding to
some trade-off among the bit-cost and the distortion quanti-
ties. It is important to note that the reduction in the average
MSE ofm-packet reconstructions usually leads to increase in
the averageMSE of individual-packet reconstructions. Natu-
rally, reducing the averageMSE ofm-packet reconstructions
means that the individual packets are adapted for their par-
ticipation in reconstructions with additional m − 1 packets
and, therefore, such a goal imposes (structural) constraints
on the individual packets that prevent them from provid-
ing the best quality when individually used for 1-packet
reconstructions. Therefore, in our experiments (see Sect. 5)
we will set the values of μ and λ such that the average
MSE of m-packet reconstructions will be the desired dis-
tortion value to minimize, and the inclusion of the average
MSE of individual-packet reconstructions is for regulariza-
tion purposes, namely to limit the degradation introduced to
single-packet representations. This aspect of the optimization
is clearly exhibited in the empirical demonstrations provided
in Sect. 5.

We suggest to address the optimization in (16) using
the alternating direction method of multipliers (ADMM)
approach [16]. For a start, we apply variable splitting on the
optimization in (16), translating the problem to

(
{ŷi }Ki=1, {ẑi }Ki=1

)
= argmin

{yi }Ki=1∈S,

{zi }Ki=1∈RN

{ K∑

i=1

R (yi )

+ μ
1

(K
m

)
∑

(i1,...,im )∈([[K ]]
m )

D(m)
(
x; zi1 , . . . , zim

)

+ λ
1

K

K∑

i=1

D(1) (x; zi )
}

subject to zi = yi ∀ i ∈ [[K ]] (17)

where z1, . . . , zK are auxiliary variables, which are not
directly restricted to the discrete set S. Then, the augmented
Lagrangian and the method of multipliers [16] provide an
iterative form of the problem where its t th iteration is formu-
lated as

(
{ŷ[t]

i }Ki=1, {ẑ[t]
i }Ki=1

)
= argmin

{yi }Ki=1∈S,

{zi }Ki=1∈RN

{ K∑

i=1

R (yi ) +

+μ
1

(K
m

)
∑

(i1,...,im )∈([[K ]]
m )

D(m)
(
x; zi1 , . . . , zim

)

+λ
1

K

K∑

i=1

D(1) (x; zi )

+β

K∑

i=1

∥∥∥yi − zi + u[t]
i

∥∥∥
2

2

}
(18)

u[t+1]
i = u[t]

i +
(
ŷ[t]
i − ẑ[t]

i

)
∀ i ∈ [[K ]] (19)

where β is a parameter originating in the augmented
Lagrangian, and u[t]

1 , . . . ,u[t]
K are scaled dual variables. We

denote correspondence to specific iterations using superscript
square-brackets, whereas other types of superscripts (e.g.,
including round brackets) correspond to former definitions
given above.

Addressing the optimization in (18) using one iteration of
alternating minimization establishes the following ADMM
form of the problem, where its t th iteration is

ŷ[t]
i = argmin

yi∈S
R (yi ) + β

∥∥∥yi − z̃[t]
i

∥∥∥
2

2
∀ i ∈ [[K ]] (20)

ẑ[t]
i = argmin

zi

{
μ

(K
m

) ×

∑

(i1,...,im )∈I(m)
i

D(m)

(

x; {ẑ[t]
i j

} i j<i
j∈[[m]]

, zi , {ẑ[t−1]
i j

} i j>i
j∈[[m]]

)

+ λ

K
D(1) (x; zi ) + β

∥∥∥zi − ỹ[t]
i

∥∥∥
2

2

}
∀ i ∈ [[K ]] (21)

u[t+1]
i = u[t]

i +
(
ŷ[t]
i − ẑ[t]

i

)
∀ i ∈ [[K ]] (22)

where z̃[t]
i � ẑ[t−1]

i − u[t]
i and ỹ[t]

i � ŷ[t]
i + u[t]

i . More-
over, the optimization of zi in (21) considers the average
reconstructionMSEcorresponding to all them-combinations
of packets including the i th packet —the set of these m-
combinations is denoted as I(m)

i . Note also that the size of

this set is |I(m)
i | = (K−1

m−1

)
.
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The tasks in (20) are standard rate-distortion optimizations
with respect to a squared error metric, considering the indi-
vidual compression of z̃[t]

i for each i = 1, . . . , K . Therefore,
we suggest to replace the optimizations in (20) with appli-
cations of standard compression and decompression (codec)
operated based on a parameter θ (β) determining the bit-rate
(see stage 8 of Algorithm 1). We do not require the utilized
codec to accurately solve the optimization form in (20) and,
in turn, this provides us a practical, generic algorithm. While
any reasonable codec should aim to balance the trade-off in
(20), there are no guarantees on the performance induced by
an arbitrarily chosen codec. In our experiments in Sect. 5,
we establish the suitability of the JPEG2000 compression
technique (applied using a compression-ratio parameter) in
conjunction with our method. Interestingly, in our experi-
ments we find it sufficient to set θ (β) to a constant value
(heuristically determined based on theβ value) and kept fixed
throughout the iterations (i.e., θ (β) is considered to be inde-
pendent of t). Our decision to keep the value of θ (β) fixed
along the iterations is motivated by the general, common
ADMM settings [16] that keep their β parameters constant
throughout the iterative process.

The second optimization stage, Eq. (21), can be analyti-
cally solved with respect to the explicit expressions provided
in (15) for the distortion measures, showing that

ẑ[t]
i =

Nβỹ[t]
i + λ

K Six + μ

m2·(Km)
Siw

(m)
i

Nβ + λ
K + μ

m2·(Km)
· |I(m)

i |
(23)

where

w(m)
i �

∑

(i1,...,im )∈I(m)
i

⎛

⎜⎜
⎝mx −

∑

i j<i
j∈[[m]]

STi j ẑ
[t]
i j

−
∑

i j>i
j∈[[m]]

STi j ẑ
[t−1]
i j

⎞

⎟⎟
⎠ .

(24)

The expression in (23) exhibits ẑ[t]
i as a linear combination

of the corresponding decompressed packet ỹ[t]
i , the shifted

input signal x, and the shifted residual between x and its m-
packet approximations excluding the i th packet. Note that in
the case of m = K (namely, optimizing the reconstruction
using all the packets), the expression in (24) is somewhat
simplified to

w(K )
i = Kx −

i−1∑

j=1

STj ẑ
[t]
j −

K∑

j=i+1

STj ẑ
[t−1]
j . (25)

The method developed in this section is summarized in
Algorithm 1, where the processing of packets in each iter-

ation is done sequentially. This reordering of computations
is allowed due to the formation of dependencies obtained in
Eq. (20)–(22).

Algorithm 1 Holographic Compression Optimized for m-
Packet Reconstructions
1: Inputs: x, β, μ, λ, m, K .
2: Initialize t = 0.
3: Initialize (for i = 1, . . . , K ) ẑ(0)

i = Six and u(1)
i = 0.

4: repeat
5: t ← t + 1
6: for i = 1, . . . , K do
7: z̃[t]

i = ẑ[t−1]
i − u[t]

i

8: b[t]
i = StandardCompress

(
z̃[t]
i , θ (β)

)

9: ŷ[t]
i = StandardDecompress

(
b[t]
i

)

10: ỹ[t]
i = ŷ[t]

i + u[t]
i

11: ẑ[t]
i =

Nβỹ[t]
i + λ

K Si x+ μ

m2 ·(Km)
Siw

(m)
i

Nβ+ λ
K + μ

m2 ·(Km)
·|I(m)

i |

where w(m)
i is defined in (24).

12: u[t+1]
i = u[t]

i +
(
ŷ[t]
i − ẑ[t]

i

)

13: end for
14: until stopping criterion is satisfied
15: Output: The binary compressed packets b[t]

1 , . . . , b[t]
K .

5 Experimental Results

In this section, we present experimental results for the
implementation of the proposed method for holographic
compressed representations of images in conjunction with
the JPEG2000 compression technique (available in Matlab).
In the presented evaluation, we consider several settings for
the storage of a given image using four copies (that are not
necessarily identical) or packets. Each packet/copy is a com-
pressed image in a binary form obtained from the JPEG2000
compressionmethod operated at the same compression ratio.
Therefore, all the individual copies and packets are of about
the same bit-rate, allowing to evaluate reconstruction quality
as the function of the number of packets/copies utilized. The
four approaches examined here are:

– Exact duplicationwhere all the stored copies are exactly
the same binary data, obtained from the JPEG2000 com-
pression of the given image.

– The baseline (unoptimized) design, as presented in
Sect. 3, relying on JPEG2000 compression of different
shifts of the input image.

– The shift-based holographic compression approach
optimized for 2-packet reconstructions as developed in
Sect. 4 for optimizing the quality of m-packet recon-
structions. This design also relies on the JPEG2000
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compression standard. The parameters for this mode are
μ = 25 · K 2

m , β = 90
N , λ = 5 · K 2, and a run of 35

iterations.
– The shift-based holographic compression approach
optimized for K -packet reconstructions, namely, the
case of optimizing the reconstruction using all the pack-
ets. The parameters for this mode are μ = 125 · K 2

m ,
β = 50

N , λ = 2.5 · K 2, and a run of 35 iterations.

In the above specified settings, we use λ values that are
significantly lower than the utilized μ values. This is in
accordance with our goal of minimizing the average MSE of
m-packet reconstructions (that its importance is expressed by
the value of μ) while the average MSE of individual-packet
reconstructions is considered for regularization purposes
(that their strength is determined by the value of λ). As in
many contemporary proof-of-concept algorithms that rely
on ADMM (or other iterative optimization methods), we
set the parameter values based on empirical observations of
the resulting performance. The problem of automatic tun-
ing of parameters in ADMM optimization forms is a general
topic of contemporary interest (for example, in the context
of inverse problems, see [17]).

The first evaluation is based on JPEG2000 compression
at a compression ratio of 1:50 that in practice creates packets
at bit-rates of 0.160 bits per pixel (bpp), with the addition
of some overhead bit-rate due to syntax of JPEG2000 [18]
(note that the overhead bit-rate due to JPEG2000 bit-stream
headers, see [18], is smaller for larger images). The baseline
and the two optimized modes produce their four holographic
packets based on the following offsets of the upper-left coor-
dinate of the image by (0, 0), (3, 0), (0, 3), (3, 3) pixels.
Namely, in practice, the shifts are not cyclic and imple-
mented by appending a suitable number of duplicated rows
and columns at the upper and left sides of the image, respec-
tively. Our choice in non-cyclic shifts is due to the significant
discontinuities in pixel values that occur in cyclically shifted
versions of natural images, which may affect the JPEG2000
performance due to its transform coding of big blocks of pix-
els. The utilized shifts are induced by non-adaptive offsets
that are predefined in the compression and decompression
processes. Therefore, there is no bit-rate overhead for encod-
ing the shift offsets. The evolution of the optimization cost
(formulated in Eq. (16)) and its components is demonstrated
in Figs. 3, showing the reduction in the optimization cost (the
blue curve) and a convergence behavior.

In Fig. 4, we demonstrate the reconstructions obtained
using the proposed holographic compression method opti-
mized for 4-packet reconstructions. First, in Fig. 4a–4d, we
present the reconstructions retrieved from each of the single
packets alone: while the PSNR values are relatively simi-
lar, the approximations are clearly distinct and each of them

Fig. 3 The evolution of the optimization cost and its components
throughout the proposed iterative optimization. The demonstration here
is for the Cameraman image and the optimization of 4-packet recon-
struction composed of JPEG2000 packets having compression ratio of
1:50. The presented values of the cost-components include the multi-
plication by the respective parameters

suffers differently from compression artifacts. This observa-
tion explains the benefits from jointly using several packets
for reconstruction. Then, in Fig. 4e–g, several examples for
approximations using an increasing number of packets show
the significance of the obtained improvements in PSNR and
visual quality.

Figure 5 allows to compare the examinedmethods through
their corresponding curves of PSNR versus number of pack-
ets utilized for reconstruction. The results provided here are
for the Cameraman (256× 256 pixels), Lena (512× 512
pixels) and Barbara (512× 512 pixels) grayscale images.
We also considered the House (256× 256 pixels) grayscale
image, see summary in Table 1. Each of the four examined
methods is associated in Fig. 5 with a group of curves hav-
ing the same color (which is method specific). The curves
corresponding to a particular method differ by the order
of appending packets for the reconstruction (and, there-
fore, the number of curves corresponding to each method is
K ! = 4! = 24). A good implementation of the holographic
property of similar usefulness (see Sect. 2) means here that
the diversity in PSNR values using the various combinations
of m packets should be relatively small–we quantify this in
Table 1 using the standard deviation of the PSNR obtained
using the various subsets of m packets. The second impor-
tant property is the progressive refinement (see Sect. 2) that
can be observed in the PSNR curves of all the shift-based
holographic compression methods (see Fig. 5) and is com-
pletely absent in the exact duplication approach. It is also
evident that our optimization framework improves the aver-
age PSNR of them-packet reconstructions for the specificm
set to be optimized (see Table 1 and Fig. 5). For instance, our
optimization for 4-packet reconstructions achieved a PSNR
gain of about 5 dB over the method of exact duplications,
and a PSNR improvement around 3 dB over the baseline
(unoptimized) shift-based approach.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 4 Examples for m-packet reconstructions of the ’Cameraman’
image using multiple packets from the set of 4 holographic representa-
tions. Demonstration of m-packet reconstructions obtained from a set
of 4 holographic packets optimized by the proposed framework for a
4-packet reconstruction. The utilized compression is JPEG2000 at a

compression ratio of 1:50. The cyan-colored boxes show zoomed-in
blocks of the respective results. a–d The 1-packet reconstructions using
each of the individual packets. e–g Examples for the m-packet recon-
structions for m = 2, 3, 4

(a) (b) (c)

Fig. 5 PSNRversus the number of packets used for the reconstructions.
The complete set contains 4 packets, each obtained from JPEG2000
compression at 1:50 compression ratio. The black, red, green and blue

curves, respectively, represent the methods of exact duplications, base-
line (unoptimized), optimized for reconstruction from pairs of packets,
and optimized for reconstruction from 4 packets

The presented comparison also demonstrates the funda-
mental, intuitive, trade-off in the average quality ofm-packet
reconstructions among the various subset sizesm. For exam-
ple, the significant increase in the 4-packet reconstruction
quality is at the expense of the qualities of the 1-packet
reconstructions. Nonetheless, the optimizations for recon-
structions using 4 or 2 packets indirectly led to significant

improvement in the average quality of the 3-packet recon-
structions in addition to the explicit optimization goal.

We repeat the experiment but for JPEG2000 compression
at a ratio of 1:25, namely a higher bit-rate of approximately
0.320 bits per pixel. The formulas for setting the parame-
ters are as in the first setting described above, except for the
β parameter, set in the 4-packet optimization mode to 65

N ,

123



Journal of Mathematical Imaging and Vision (2021) 63:380–393 389

Table 1 Evaluation of quality and diversity in the reconstructions from a set of 4 packets (the mean and SD values refer to PSNR values in dB
units): the results are based on JPEG2000 compression at 1:50 compression ratio

Image Method 1 Packet 2 Packets 3 Packets 4 Packets

Mean(1) Std(1) Mean(2) Std(2) Mean(3) Std(3) Mean(4) Std(4)

Cameraman Exact duplication 25.66 0 25.66 0 25.66 0 25.66 0

Baseline (unoptimized) 25.55 0.10 26.41 0.16 26.74 0.06 26.92 0

Optimized for 2-packet reconstruction 25.07 0.06 27.04 0.20 27.95 0.03 28.50 0

Optimized for 4-packet reconstruction 23.01 0.03 26.24 0.20 28.23 0.06 29.73 0

House Exact duplication 31.14 0 31.14 0 31.14 0 31.14 0

Baseline (unoptimized) 31.23 0.06 32.24 0.20 32.63 0.03 32.84 0

Optimized for 2-packet reconstruction 30.42 0.12 32.64 0.33 33.72 0.07 34.39 0

Optimized for 4-packet reconstruction 28.19 0.04 31.64 0.46 33.85 0.02 35.62 0

Lena Exact duplication 31.81 0 31.81 0 31.81 0 31.81 0

Baseline (unoptimized) 31.86 0.03 32.86 0.20 33.24 0.03 33.45 0

Optimized for 2-packet reconstruction 31.25 0.03 33.35 0.30 34.35 0.02 34.95 0

Optimized for 4-packet reconstruction 28.75 0.13 32.22 0.40 34.45 0.04 36.25 0

Barbara Exact duplication 26.12 0 26.12 0 26.12 0 26.12 0

Baseline (unoptimized) 26.12 0.04 27.29 0.13 27.76 0.01 28.02 0

Optimized for 2-packet reconstruction 25.31 0.01 27.70 0.19 28.91 0.05 29.67 0

Optimized for 4-packet reconstruction 22.51 0.10 26.30 0.45 28.96 0.07 31.39 0

(a) (b) (c)

Fig. 6 PSNRversus the number of packets used for the reconstructions.
The complete set contains 4 packets, each obtained from JPEG2000
compression at 1:25 compression ratio. The black, red, green and blue

curves, respectively, represent the methods of exact duplications, base-
line (unoptimized), optimized for reconstruction from pairs of packets,
and optimized for reconstruction from 4 packets

(a) (b) (c)

Fig. 7 PSNRversus the number of packets used for the reconstructions.
The complete set contains 9 packets, each obtained from JPEG2000
compression at 1:50 compression ratio. The black, red, green and blue

curves, respectively, represent the methods of exact duplications, base-
line (unoptimized), optimized for reconstruction from pairs of packets,
and optimized for reconstruction from 9 packets
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Table 2 Evaluation of quality and diversity in the reconstructions from a set of 4 packets (the mean and SD values refer to PSNR values in dB
units): the results are based on JPEG2000 compression at 1:25 compression ratio

Image Method 1 Packet 2 Packets 3 Packets 4 Packets

Mean(1) Std(1) Mean(2) Std(2) Mean(3) Std(3) Mean(4) Std(4)

Cameraman Exact duplication 28.86 0 28.86 0 28.86 0 28.86 0

Baseline (unoptimized) 28.84 0.06 30.01 0.14 30.47 0.04 30.73 0

Optimized for 2-packet reconstruction 28.34 0.04 30.35 0.22 31.29 0.03 31.85 0

Optimized for 4-packet reconstruction 26.03 0.08 29.54 0.24 31.85 0.02 33.74 0

House Exact duplication 34.58 0 34.58 0 34.58 0 34.58 0

Baseline (unoptimized) 34.59 0.06 35.54 0.14 35.91 0.01 36.10 0

Optimized for 2-packet reconstruction 34.20 0.03 35.85 0.19 36.58 0.01 36.99 0

Optimized for 4-packet reconstruction 31.41 0.14 34.79 0.30 36.93 0.02 38.62 0

Lena Exact duplication 35.00 0 35.00 0 35.00 0 35.00 0

Baseline (unoptimized) 35.00 0.02 36.06 0.14 36.48 0.01 36.71 0

Optimized for 2-packet reconstruction 34.57 0.02 36.38 0.23 37.18 0.01 37.66 0

Optimized for 4-packet reconstruction 32.45 0.05 35.60 0.36 37.49 0.04 38.87 0

Barbara Exact duplication 29.34 0 29.34 0 29.34 0 29.34 0

Baseline (unoptimized) 29.33 0.02 30.88 0.22 31.54 0.01 31.92 0

Optimized for 2-packet reconstruction 28.86 0.02 31.27 0.33 32.48 0.02 33.26 0

Optimized for 4-packet reconstruction 26.58 0.09 30.33 0.50 32.91 0.03 35.22 0

Table 3 Evaluation of quality and diversity in the reconstructions from
a set of 9 packets (the mean and SD values refer to PSNR values in dB
units): the results are based on JPEG2000 compression at 1:50 com-
pression ratio. This table presents the mean and standard deviation for

reconstructions using 1, 2, 3 and 9 packets. The corresponding proper-
ties for reconstructions based on 4, 5, 7 and 8 packets can be coarsely
examined using the curves in Fig. 7

Image Method 1 Packet 2 Packets 3 Packets 9 Packets

Mean(1) Std(1) Mean(2) Std(2) Mean(3) Std(3) Mean(9) Std(9)

Cameraman Exact duplication 25.66 0 25.66 0 25.66 0 25.66 0

Baseline (unoptimized) 25.57 0.10 26.43 0.21 26.74 0.17 27.19 0

Optimized for 2-packet reconstruction 25.40 0.10 26.73 0.24 27.26 0.18 28.09 0

Optimized for 9-packet reconstruction 23.55 0.10 26.15 0.25 27.53 0.21 30.51 0

House Exact duplication 31.14 0 31.14 0 31.14 0 31.14 0

Baseline (unoptimized) 31.29 0.06 32.30 0.21 32.67 0.16 33.22 0

Optimized for 2-packet reconstruction 31.06 0.10 32.46 0.29 33.03 0.22 33.97 0

Optimized for 9-packet reconstruction 29.21 0.20 31.81 0.41 33.18 0.33 36.13 0

Lena Exact Duplication 31.81 0 31.81 0 31.81 0 31.81 0

Baseline (Unoptimized) 31.88 0.04 32.89 0.19 33.25 0.15 33.82 0

Optimized for 2-Packet Reconstruction 31.66 0.05 33.03 0.23 33.64 0.20 34.59 0

Optimized for 9-Packet Reconstruction 29.71 0.15 32.36 0.32 33.82 0.28 36.90 0

Barbara Exact duplication 26.12 0 26.12 0 26.12 0 26.12 0

Baseline (unoptimized) 26.17 0.05 27.24 0.23 27.67 0.19 28.34 0

Optimized for 2-packet reconstruction 25.78 0.05 27.42 0.33 28.11 0.27 29.29 0

Optimized for 9-packet reconstruction 23.48 0.20 26.41 0.48 28.01 0.44 32.19 0
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Examples for m-packet reconstructions of the ’Barbara’ image
using multiple packets from the set of 9 holographic representations.
Demonstration of m-packet reconstructions obtained from a set of 9
holographic packets optimized by the proposed framework for a 9-

packet reconstruction. The utilized compression is JPEG2000 at a
compression ratio of 1:50. The cyan-colored boxes show zoomed-in
blocks of the respective results
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and in the 2-packet optimization mode to 120
N . The results

are presented in Table 2 and Fig.6. Evidently, our framework
consistently provides improved qualities of the reconstruc-
tions specified in the optimization task.

In addition, we also examine the case where the complete
set of representations includes 9 packets (and the JPEG2000
compression ratio is 1:50). In this case, the shifts are based
on offsets of the upper-left coordinate of the image by
(3�x , 3�y) pixels for all �x ,�y ∈ {0, 1, 2}. The formulas
for setting the parameters are as in the first setting described
above, except for the λ parameter in the 2-packet optimiza-
tionmode that is now set to K 2. The comparison presented in
Fig. 7 and Table 3 demonstrates the improvements in PSNR
achievable using the proposed optimization framework. In
Fig. 8, we visually demonstrate the progressive refinement
when increasing the number of packets utilized.

All the methods compared in Tables 1, 2, 3 are based
on multiple compressed packets with the same individ-
ual bit-rate. Obviously, compression methods that are not
intended for distributed representations are likely to outper-
form the approach proposed in this paper. As an example for
such (unfair) comparison, consider JPEG2000 compression
results of the Cameraman image at a bit-rate equivalent to the
total bit-rate of the multiple packets in distributed settings:
25.66 dB at 1:50 compression ratio (which corresponds to an
equivalent bit-rate of 1 packet in Table 1), 28.86 dB at 1:25
compression ratio (which corresponds to a bit-rate equivalent
to using 2 packets in Table 1), 30.91 dB at 1:16.7 compres-
sion ratio (which corresponds to a bit-rate equivalent to using
3 packets in Table 1), and 32.50 dB at 1:12.5 compression
ratio (which corresponds to a bit-rate equivalent to using 4
packets in Table 1).

6 Conclusion

In this paper, we proposed a new methodology for signal
and image compression, intended for systems where com-
pressed data are often trivially duplicated in exact forms. Our
idea relies on the concept of holographic representations that
are equally descriptive and useful for progressive refinement
of the reconstructed signal. Based on the shift-sensitivity
of signal compression techniques, we developed a baseline
and anADMM-based optimized framework for the construc-
tion of binary compressed representations compatible with
standard compression techniques. Our experiments clearly
demonstrate the effectiveness of the proposed framework,
reaching remarkable improvements in the reconstruction
quality over the approach of using exact duplications. Future
work can further develop the proposed approach to simul-
taneously optimize several (more than two) sizes of packet
subsets. More general future directions can extend the pro-
posed framework for optimizing holographic compression

based on projection operators other than shifts. Moreover,
the guidelines established here for optimized holographic
compression can be generalized further to holographic rep-
resentations using various regularization types, replacing the
role of the bit-cost measures in this paper. While we demon-
strated our idea for image compression, one can explore the
adaptation of our framework for other signal types (such as
audio and video) also used in conjunction with lossy com-
pression.
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