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Abstract
In this work, we study the topic of high-resolution adaptive sampling of a given deterministic and differentiable signal
and establish a connection with classic approaches to high-rate quantization. Specifically, we formulate solutions for the
task of optimal high-resolution sampling, counterparts of well-known results for high-rate quantization. Our results reveal
that the optimal high-resolution sampling structure is determined by the density of the signal-gradient energy, just as the
probability density function defines the optimal high-rate quantization form. This paper has three main contributions: The first
is establishing a fundamental paradigm bridging the topics of sampling and quantization. The second is a theoretical analysis
of nonuniform sampling, for arbitrary signal dimension, relevant to the emerging field of high-resolution signal processing.
The third is a new practical approach to nonuniform sampling of one-dimensional signals that enables reconstruction based
only on the sampling time points and the signal extrema locations and values. Experiments for signal sampling and coding
showed that our method outperforms an optimized tree-structured sampling technique.

Keywords High-resolution sampling · Adaptive sampling · High-rate quantization · Segmentation

1 Introduction

Sampling and quantization are fundamental processes in sig-
nal digitization and coding techniques. Each of them is a field
of research rich in theoretical and practical studies. Quanti-
zation addresses the problem of discretizing a range of values
by a mapping function, usually based on decomposition of
the range into a finite set of nonintersecting regions. Sam-
pling a given signal, defined over a continuous and bounded
domain, is the task of discretizing the signal representation
(for example, representing a finite-length one-dimensional
signal as a vector). In this paper, we consider nonuniform
sampling that relies on segmentation of the signal domain
into nonoverlapping regions, each represented by a single
scalar coefficient. (We do not consider here generalized sam-
pling that uses projections of the signal onto a discrete set of
orthonormal functions.)

The signals considered in this work are deterministic in
the sense that they are fully accessible to the sampler for
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its operation—this concept appears differently in the theo-
retic and practical frameworks, as explained next. Our main
analytic settings address a given one-dimensional signal
defined over the continuous interval [0, 1) and its represen-
tation using a piecewise-constant approximation that relies
on a high-resolution nonuniform segmentation (see Fig. 1a).
Obviously, in an acquisition process where, by definition, the
continuous signal to-be-sampled is a-priori unknown, one
cannot assume that the signal is readily available over [0, 1).
Nevertheless, the method we develop based on the ideal set-
tings is effective for the practical architecture described in
Fig. 1b: an unknown continuous-time signal is first acquired
using a very high-resolution uniform sampling, producing a
discrete signal of NU samples that goes through a resampler
re-encoding the discrete signal using nonuniform segmenta-
tion with N < NU breakpoints. The description produced by
the nonuniform resampler then enables a piecewise-constant
approximation of the uniformly sampled discrete signal and
also a piecewise-constant continuous-time approximation of
the original signal over [0, 1).

1.1 Overview of RelatedWork

Historically, the discretizations in quantization and sampling
were first implemented in their simplest forms relying on
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Fig. 1 Nonuniform sampling of a deterministic signal. a The theoretic framework. b The corresponding practical settings

uniform divisions of the respective domains. Then, the quan-
tizer designs progressed to utilize nonuniform structures,
exploiting input-data statistics to improve rate-distortion per-
formance. In his fundamental work, Bennett [1] suggested
to implement nonuniform scalar quantization based on a
companding model—where the input value goes through a
nonlinear mapping (compressor), the obtained value being
uniformly quantized and then mapped back via the inverse
of the nonlinearity (expander). Moreover, under high-rate
assumptions, Bennett derived a formula for approximating
the quantizer distortion based on the source probability den-
sity function and the derivative of the nonlinear compressor
function. This important formula is often referred to as Ben-
nett’s integral. Bennett’s work was followed by a long line
of theoretic and algorithmic studies of the nonuniform quan-
tization problem. A prominent branch of research addressed
the scenario of nonuniform quantization at high-rates (for
example, see [2,3]), where the quantizer has a large number
of representation values to be wisely located at the quan-
tizer design stage. The popularity of high-rate studies is due
not only to their relevance in addressing high-quality coding
applications, but also to the possibility to gain useful theoret-
ical perspectives. Specifically, reasonable assumptions made
for high-rate quantization often led to convenient closed-
form mathematical solutions that, in turn, provided deep
insights into rate-distortion trade-offs.

Sampling has been prevalently studied for the purpose of
acquiring signals based on global or coarse characterizations
such as their bandwidth. The classical uniform sampling the-
orems (see a detailed review in [4]) were also extended to

the nonuniform settings where the variable sampling-rate is
adapted to, e.g., the signal’s local-bandwidth estimate [5–8].
In [6–8], a nonuniform sampling grid was designed by map-
ping the signal’s time axis to expand portions corresponding
to high local-bandwidth at the expense of segments contain-
ing content of lower local-bandwidth. After applying this
transformation, signal acquisition could subsequently be car-
ried out using uniform sampling. While these works refer to
acquiring signals in real time, we consider sampling of fully
accessible deterministic signals for representation-oriented
tasks such as compression. Despite the above discussed
essential difference in the sampling and reconstruction pro-
cedures, some results presented in this paper conceptually
resemble sampling methods for acquisition of unknown
signals using coordinate transformations. The results pre-
sented here for sampling given deterministic signals may
also be interpreted as complements to the adaptive sampling
paradigms previously proposed for signal acquisition. In our
deterministic settings, the analysis and sampling-rate design
directly rely on properties obtained from the given signal
instead of coarse, local average-based, spectral characteriza-
tions.

Practical signal compression (see, e.g., [9,10]) usually
considers a digital high-resolution input function that is
going through a nonuniform adaptive partitioning of the
domain followed by a vector quantization procedure (such
as transform coding) that suits the partition size and shape.
Analytically, one can consider simplified settings where the
digital input is regarded as a signal defined over a contin-
uous domain that needs to be nonuniformly sampled and
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quantized. In practical coding procedures, the nonuniform
domain segmentation often relies on structured partitions of
the domain in order to reduce the bit-cost and computational
complexity (examples for the common use of tree-structured
partitioning, e.g., defined based on binary or quad trees, are
available in [10,11]). This application is one of themainmoti-
vations for the study of adaptive sampling of deterministic
signals. Nevertheless, we consider here the nonuniform sam-
pling problem in its most general form in order to provide
insights into the basic sampling problem, that may be use-
ful to problems beyond compression. For example, adaptive
sampling is often used in computer graphics in the task of
Halftoning (e.g., [12,13]) and in rendering an image from
a 2D/3D-graphical model, where the nonuniform sampling
pattern is described by point distributions (e.g., [14–18]).
It should be noted that the signal processing and computer
graphics contexts of the sampling problem are quite dif-
ferent. Interestingly, it was suggested in [16] to practically
employ the Lloyd algorithm [19], originally intended for
quantizer design, for improving the sampling-point distribu-
tion. Recent studies [17,18] extended the point-distribution
computation to rely on kernel functions, so that the result-
ing task resembles a generalized signal-sampling procedure.
While the conceptual relation between vector quantization
and data representation has been understood and used in
graphics applications, we argue that a clear mathematical
analysis that demonstrates the connection between quan-
tization and high-resolution signal sampling has not been
provided yet.

Belhachmi et al. [20] addressed a related problem where
a set of interpolation points should be determined for a given
image to allow its reconstruction using PDE-based methods.
The procedure suggested there is to choose the density of
interpolation points proportional to the square root of the sec-
ond derivative of the signal. Interestingly, aswill be explained
throughout this paper, we present here analysis and develop-
ments based on other motivations and settings that lead us
to different theoretical and algorithmic insights, which can
be perceived as conceptually complementing the ideas pre-
sented in [20].

Some recent papers [21–23] explore the sampling task
froma stochastic, information-theoretic rate-distortion trade-
off perspective, considering lossy compression of the sam-
pled values. Their focus is on uniform [21,23] and nonuni-
form [22] sampling where the sampling design is based on
spectral characteristics of stationary signals. Another inter-
esting direction of nonuniform sampling was explored in
[24,25] where the sampling intervals are recursively deter-
mined based on previously recorded data. This process does
not require the coding of the sampling intervals. The sam-
pling design in [24,25] is based on either the local properties
of the stochastic process whose realizations are sampled, or
the local behavior of deterministic signals exhibited in their

Taylor expansion. Another attractive nonuniform sampling
approach was introduced lately in [26], defining the samples
based on the crossings of uniformly-spaced signal-amplitude
levels thereby enabling a signal representation using only
the sampling time points. This remarkable general idea of
describing nonuniformly sampled data by the time points
also appears in our practical sampling method; however, our
high-resolution case leads to significant conceptual differ-
ences with respect to [26], as will be explained later in this
paper.

1.2 Our Contributions

In this paper, we theoretically and practically explore the task
of high-resolution adaptive sampling of a given determinis-
tic and differentiable signal. The sampling analysis provided
emerges from ideas similar to the ones that were applied
to the study of high-rate quantization [27], thereby linking
sampling and quantization in a newand enlighteningway.We
analytically formulate the optimal high-resolution sampling
of one-dimensional signals, based on themean-squared-error
(MSE) criterion, showing that the optimal partitioning is
determined by the cube root of the signal-derivative energy.
This result corresponds to the work by Panter and Dite [2],
where the optimal one-dimensional quantizer is designed
based on the cube root of the probability density function.
We also connect this result to the fundamental analysis given
by Bennett [1] for high-rate nonuniform quantization based
on companding.

We rely on our analytical findings to establish a practical
sampling method for one-dimensional signals and show its
effectiveness for coding of analytic and audio signals. (Note,
however, that the experiments provided here are purely a
proof-of-concept evaluation and a thorough consideration of
audio signal compression is beyond the scope of this paper.)
The fact that the proposed sampling is based on an arbitrary
segmentation of the time axis may be suspected to lead to
an inevitably high representation cost. However, we utilize
the underlying properties of our optimized nonuniform par-
titioning where, by our companding-based construction, all
the segments have an equal accumulated amount of the cube
root of the signal-derivative energy. The latter means that
given a segment length, assuming the signal is monotonic
within the segment, we can infer the local average-derivative
of the signal. We present a procedure for sampling non-
monotonic signals coupled with a sequential reconstruction
process requiring only the sampling times, the signal extrema
times and amplitudes, and few additional global details hav-
ing a marginal cost. This procedure is very useful when the
number of samples is much higher than the number of signal
extrema. Experiments showed that our strategy outperforms
an optimized adaptive tree-based sampling technique.
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We continue our theoretical study by addressing the prob-
lem of sampling K -dimensional signals. We show that the
optimal sampling-point density is determined by the density
of the K

K+2 -power of the signal-gradient energy, a general-
ization of the one-dimensional result. We obtain this result
based on assumptions that parallel a famous conjecture given
by Gersho [3] in his analysis of high-rate quantization. Ger-
sho’s conjecture states that, for asymptotically high rate, the
optimal K -dimensional quantizer is formed by regions that
are approximately congruent and scaled versions of a K -
dimensional convex polytope that optimally tessellates the
K -dimensional space (where the polytope optimality is in
the sense of minimum normalized moment of inertia [3]).
The latter holds for a given K only if the optimal tessellation
of the K -dimensional space is a lattice, and therefore is con-
structed based on a single optimal polytope. This assumption
significantly simplifies the explicit calculation of the quan-
tizer’s distortion. This conjecture draws its credibility from
two prominent sources. First, it is known that the best tessel-
lation is a lattice for K = 1 (based on equal-sized intervals)
and for K = 2 (based on the hexagon shape [28]). While
not proven yet for K = 3, it is also believed that the optimal
three-dimensional tessellation is the body-centered cubic lat-
tice [29,30]. Second,Gersho’s distortion formula conforms to
the structure of the expression rigorously obtained by Zador
[31]. Moreover, Gersho’s conjecture determines the value of
the multiplicative constant (left unspecified) in Zador’s for-
mula. Hence, the possible inaccuracy in Gersho’s conjecture
will affect only the multiplicative constant, and the deviation
is assumed to be moderate [27]. Due to this, the conjecture,
still unproven for K ≥ 3, is widely considered as a valuable
tool for analysis of high-rate quantization (see the thorough
discussion in [27]).

The analysis provided in this paper to high-resolutionmul-
tidimensional sampling is based on two main assumptions.
First, the signal is assumed to be approximately linear within
each of the sampling regions. Second, sampling regions are
assumed to be approximately congruent and scaled forms of
the optimal K -dimensional tessellating convex polytope—
just as in Gersho’s conjecture for high-rate quantization.
These high-resolution assumptions yield our main result
that the optimal sampling-point density is determined by
the density of the K

K+2 -power of the signal-gradient energy.
We emphasize the importance of the signal’s local-linearity
assumption as a prerequisite stage that mathematically con-
nects the signal-sampling problem to the conjecture on the
high-resolution cell arrangement.

This paper is organized as follows. In Sect. 2, we mathe-
matically analyze the optimal sampling of one-dimensional
signals and demonstrate it numerically. In Sect. 3, we present
a practical sampling method, relying on our theoretic results,
and experimentally exhibit its utilization for signal compres-
sion. In Sect. 4, we generalize our study by theoretically

addressing the optimal sampling of multidimensional sig-
nals. Section 5 concludes this paper.

2 Analysis for One-Dimensional Signals

2.1 Optimal High-Resolution Sampling

Let us consider a one-dimensional signal ϕ (t) defined as a
differentiable function

ϕ : [0, 1) → [ϕL , ϕH ] , (1)

defined for t in the interval [0, 1) and having values from a
bounded range [ϕL , ϕH ]. This signal is sampled based on its
partition to N ∈ Nnonoverlapping variable-length segments,
where the i th subinterval

[
ai−1, ai ) is associated with the

sample ϕi for i = 1, . . . , N . We assume a segmentation
structure satisfying a0 = 0, aN = 1, and ai−1 < ai for
i = 1, . . . , N . The sampling procedure is coupled with a
reconstruction that provides the continuous-time piecewise-
constant signal

ϕ̂ (t) = ϕi for t ∈ [ai−1, ai ) . (2)

The sampling is optimized to minimize the mean-squared
error (MSE), expressed as

MSE
(
{ai }N−1

i=1 , {ϕi }Ni=1

)
=

N∑

i=1

ai∫

ai−1

(ϕ (t) − ϕi )
2dt (3)

exhibiting the roles of the signal partitioning and sample val-
ues. Note that in (3), as also in this entire section, averaging
over the unit-interval length is implicit.

Optimizing the sampling coefficients, {ϕi }Ni=1, given a par-
titioning {ai }Ni=0 is a convex problem that can be analytically
solved to show that the optimal i th sample is the signal aver-
age over the corresponding subinterval, namely,

ϕ
opt
i = 1

�i

ai∫

ai−1

ϕ (t) dt (4)

where �i � ai − ai−1 is the length of the i th subinterval.
We continue the analysis by assuming high-rate sam-

pling, meaning that N is large enough to result in small
sampling intervals that, however, may still have different
lengths. Furthermore, the sampling intervals are assumed
to be sufficiently small such that, within each of them, the
signal is well approximated via a local linear form—an argu-
ment that is analyzed next. Accordingly, for t ∈ [ai−1, ai )
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(i = 1, . . . , N ), we consider the first-order Taylor approx-
imation of the signal about the center of the i th sampling
interval, ti � 1

2 (ai−1 + ai ),

ϕ(t) = ϕ (ti ) + ϕ′ (ti ) · (t − ti ) + o (|t − ti |) (5)

where the remainder term o (|t − ti |) corresponds to our
high-resolution assumption in describing the approximation
error for t → ti .

Using the linear approximation, and by (4), the optimal
sample in the i th subinterval is given by

ϕ
opt
i = ϕ (ti ) + o (�i ) (6)

due to the fact that the average of a linear function over an
interval is its value at the interval’s center. The term o (�i )

describes the error in the sample value due to the linear
approximation. The size of the error term as �i → 0 is
provided in “Appendix A” and relies on assuming that the
second derivative of the signal exists and bounded over the
sampling interval. Then, the MSE of the i th subinterval is
expressed as

MSEi (ai−1, ai ) = 1

�i

ai∫

ai−1

(
ϕ (t) − ϕ

opt
i

)2
dt (7)

= 1

12

(
ϕ′ (ti )

)2
�2

i + o
(
�2

i

)
(8)

revealing the effect of signal-derivative energy on the sam-
pling MSE. The derivation of (8) is detailed in Appendix A.

Returning to the total sampling MSE, corresponding to
optimal coefficients, and relying on its relation to the subin-
tervals MSE yields (recall the implicit normalization to
unit-interval length)

MSE
(
{ai }N−1

i=1

)
=

N∑

i=1

�iMSEi (ai−1, ai )

= 1

12

N∑

i=1

(
ϕ′ (ti )

)2
�3

i + o
(
�3

max

)
(9)

where �max � max{�1, . . . ,�N } is the largest subinterval.
Accordingly, the inaccuracies in evaluating the MSE using
the signal linearity assumption are of size o

(
�3

max

)
.

Let us connect our discussion to the classical approach of
studying high-rate quantization based on the reproduction-
value density function (see examples in [3,19,27,32]). Fol-
lowing our scenario of high-resolution sampling, we assume
that the sampling-point layout can be described via a
sampling-point density function,λ (t), such that a small inter-
val of length �̄ around t̄ approximately contains �̄ · λ

(
t̄
)

sampling points. Moreover, the sampling-point density is
related to the sampling intervals via

λ (t) ≈ 1

N · �i
, for t ∈ [ai−1, ai ) . (10)

As we consider arbitrarily large values of N , the density λ (t)
is assumed to be a smooth function.

Then, plugging the relation �i ≈ 1/ (N · λ (ti )) into the
sampling-error expression (9), in addition to approximating
the sum as an integral and omitting the explicit inaccuracy
term, yields

MSE (λ) ≈ 1

12N 2

1∫

0

(
ϕ′ (t)

)2

λ2(t)
dt . (11)

Here, the sampling structure and the resultingMSE are deter-
mined by the sampling-point density λ(t). The last MSE
expression can be interpreted as the sampling equivalent
of Bennett’s integral for nonuniform quantization [1]. Com-
monly, the expression form in (11) is minimized via Hölder’s
inequality (see examples in [3,27,32]). For our problem, see
details in “Appendix B”, we have the optimal sampling-point
density given by

λopt (t) =
3
√

(ϕ′ (t))2

1∫

0

3
√

(ϕ′ (z))2dz
, (12)

assuming that the signal is nonflat and, thus, the denominator
is nonzero. Note that a flat signal can be perfectly repre-
sented using a single sample and, therefore, does not need
a high-resolution segmentation of its domain (thus, our last
assumption is justified). Following (12), the optimal sam-
pling MSE is

MSE
(
λopt
) ≈ 1

12N 2

⎛

⎝
1∫

0

3
√

(ϕ′ (t))2dt

⎞

⎠

3

. (13)

The error expression in (13) is a product composed of two
parts: The sampling error for a simple linear signal (with a
unit slope) and a term expressing the nonlinearity of the given
signal based on its derivative energy. Moreover, Hölder’s
inequality also shows that (13) is the global minimum. The
MSE expression in (13) is the sampling counterpart of the
famous Panter–Dite formula for high-rate quantization MSE
[2]. Evidently, while the quantization derivations were deter-
mined by the probability density function of the source,
the sampling analysis provided here depends on the signal
derivative energy

(
ϕ′ (t)

)2.
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Using the sampling-point density, λ(t), we can implement
our nonuniform sampling via the companding design. Com-
panding [1] is a widely known technique for implementing
nonuniform quantization based on a uniform quantizer. This
is achieved by applying a nonlinear compressor function on
the input value, then applying uniform quantization andmap-
ping the result back via an expander function (the inverse of
the compressor). Since in sampling we address the problem
of discretizing the signal domain, the corresponding com-
pressor and expander functions operate on the signal domain
(i.e., as a nonlinear scaling of the time axis). The optimal
compressor function is defined based on the optimal density
(12) as

u (t) =
t∫

0

λopt(z)dz =

t∫

0

3
√

(ϕ′ (z))2dz

1∫

0

3
√

(ϕ′ (z))2dz
. (14)

The corresponding expander, v (τ), is the inverse function of
the compressor; hence, it can be defined via the relation

v(τ)∫

0

λopt (z)dz = τ. (15)

The last equation has a unique solution for strictlymonotonic
signals where the signal derivative energy is positive over
the entire domain, leading to a strictly monotonic increasing
compressor function (14) that is invertible and, thus, defines
the expander function. Two suggestions for the treatment of
nonmonotonic signals will be described next.

2.1.1 Using a Strictly Positive Extension of the Signal’s
Derivative Energy

Consider the expander function in (15) to construct the
boundaries of the nonuniform segmentation of [0, 1) via

aopti = v

(
i

N

)
, i = 1, . . . , N , (16)

i.e., evaluating the inverse of the compressor function at N
equally-spaced points. However, for nonmonotonic signals
(that also may have constant-valued segments), it is likely to
need expander values at points where the compressor func-
tion is not invertible—an issue that can be solved as follows.
Since the problem occurs where the signal derivative is zero,
we define the following extension of the derivative energy:

g2ε (t) =
{(

ϕ′ (t)
)2 for

(
ϕ′ (t)

)2
> ε

ε otherwise
(17)

where ε > 0 is an arbitrarily small constant. The correspond-
ing extension of the optimal sampling-point density (12)
is

λoptε (t) =
3
√
g2ε (t)

∫ 1

0

3
√
g2ε (z)dz

(18)

Accordingly, the density λ
opt
ε (t) enables treatment of non-

monotonic signals, while closely approximating the density
λopt(t) in (12). Replacing λopt(t) with λ

opt
ε (t) in (14)–(15)

provides a practically useful compressor–expander pair, in
the sense that the compressor function is invertible every-
where in the domain, assuring the computations in (16).

2.1.2 Sequential Solution via Integration Thresholds

Equation (15) defines the segment level aopti (i = 1, . . . , N )
as

aopti∫

0

λopt (z)dz = i

N
(19)

implying that aopti can be evaluated given the former parti-

tioning level aopti−1 via

aopti∫

aopti−1

3
√

(ϕ′ (t))2dt = 1

N

1∫

0

3
√

(ϕ′ (z))2dz (20)

i.e., we just need to continuously integrate 3
√

(ϕ′ (t))2 start-
ing at t = aopti−1 until we reach the threshold level defined by
the right side of the last equation. Then, the time of achieving
the threshold level defines aopti . Since a partitioning level is
placed at the (first) time the threshold level is obtained, inter-
vals of zero signal derivative energy do not cause ambiguity
in segmentation definitions. Importantly, one should note
that the (optimal) threshold, defined according to Eq. (20)
as

Topt = 1

N

1∫

0

3
√

(ϕ′ (z))2dz, (21)

requires knowing the signal derivative over the entire [0, 1)
interval. Note, however, that the segmentation levels are here
well defined for any given nonflat signal.
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2.2 The Sampling-Quantization Duality at High
Resolution

The above developments for optimal high-resolution sam-
pling show a clear correspondence to well-known results
from high-rate quantization studies. The connection between
sampling and quantization, in the high-resolution settings,
emerges from local linear approximation of the signal within
each of the sampling intervals, implying a constant signal
derivative within each interval. This mirrors the assumption
of locally constant probability density in the high-rate quan-
tization problem. In turn, our construction yields an optimal
sampling procedure determined by the signal’s derivative-
energy density. Specifically, the MSE forms in (11) and (13)
and the corresponding companding approach are as in the
classical high-rate quantization results; however, here they
correspond to the signal’s derivative-energy density instead
of the probability density function of a source to be quantized.

In the sequel, let us consider the scalar quantizer design
for a random variable X , defined by the probability density
function pX (x) that may be positive only for x ∈ [xL , xH ).
Then, recall Bennett’s integral [1] for the MSE of high-rate
quantization using N reproduction values:

MSEQ
(
λQ; pX

) ≈ 1

12N 2

xH∫

xL

pX (x)

λ2Q(x)
dx (22)

where, as interpreted in [19],λQ (x) is the reproduction-point
density that defines the quantizer structure to optimize, and
pX (x) is the given input probability density function.

In this subsection, we distinguish between optimiza-
tions originating in sampling and quantization procedures
by the following notations: the quantizer design procedure
addresses Bennett’s integral (22) to minimize the quantiza-
tion distortion, MSEQ , as a function of the reproduction-
point density λQ . Similarly, the sampling procedure consid-
ers the sampling counterpart of Bennett’s integral presented
in (11), that using this subsection’s notations is formulated
as

MSES (λS;ϕ) ≈ 1

12N 2

1∫

0

(
ϕ′ (t)

)2

λ2S(t)
dt, (23)

where MSES , the distortion of sampling the signal ϕ(t), is to
be minimized by optimizing the sampling-point density λS .

2.2.1 Optimal Sampling via Optimal Quantizer Design

For a given differentiable signal, ϕ (t) defined for t ∈ [0, 1),
we can define a probability density function, pϕ(x), defined
for x ∈ [0, 1) via

pϕ(x) =
(
ϕ′ (x)

)2
∫ 1

0

(
ϕ′ (z)

)2 dz
, (24)

i.e., the probability density is the signal’s local squared
derivative normalized by the total derivative energy. Evi-
dently, pϕ(x) is nonnegative valued and integrates to one;
hence, it is a valid probability density function.

Bennett’s integral for high-rate quantization of a source
distributed according to pϕ is obtained by plugging the def-
inition of pϕ(x) from (24) into (22), resulting in

MSEQ
(
λQ; pϕ

) ≈ 1

12N 2Eϕ′

1∫

0

(
ϕ′ (x)

)2

λ2Q(x)
dx . (25)

where λQ (·) is the reproduction-point density defining the
high-rate quantizer structure, and the total derivative energy
of the signal is denoted here as

Eϕ′ �
1∫

0

(
ϕ′ (z)

)2 dz. (26)

Then, the high-resolution samplingMSE,MSES , formulated
in (23) is related to the high-rate quantization MSE in (25)
via

MSEQ
(
λQ; pϕ

) ≈ 1

Eϕ′
MSES

(
λQ;ϕ

)
, (27)

i.e., the MSE of quantizing a source defined by pϕ using a
quantizer structured according to the partitioning induced
from λQ is equivalent, up to a normalization in the total
derivative energy of the signal, to the MSE of sampling the
signal ϕ (t) according to the segmentation defined by λQ .
The MSE relation (27) shows that the optimal λQ for the
above quantization problem is also optimal for sampling of
the signal ϕ (t). Indeed, Bennett’s integral for quantization of
pϕ(x) is minimized for λQ formulated exactly as the optimal
sampling-point density in (12).

2.2.2 Optimal Quantizer Design via Optimal Sampling

Given a random variable X corresponding to the probability
density function pX (x) defined for x ∈ [xL , xH ), we can
construct a signal ϕX (t) defined for t ∈ [0, 1) via

ϕX (t) = 1

xH − xL

xL+t ·(xH−xL )∫

xL

√
pX (x)dx . (28)

We take the positive square root of pX (x); hence, the sig-
nal ϕX (t) is monotonically nondecreasing. The derivative of
ϕX (t) (with respect to t) is
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ϕ′
X (t) =

√
pX
(
xL + t · (xH − xL)

)
. (29)

Then, according to (23), the sampling MSE of ϕX (t) for a
sampling-point density λS is

MSES (λS;ϕX ) ≈ 1

12N 2

1∫

0

(
ϕ′
X (t)

)2

λ2S(t)
dt (30)

that here is equal to

MSES (λS;ϕX ) ≈ 1

12N 2

1∫

0

pX
(
xL + t · (xH − xL)

)

λ2S(t)
dt .

(31)

By changing the integration variable to x = xL + t ·
(xH − xL), we get

MSES (λS;ϕX )

≈ 1

12N 2 (xH − xL)

xH∫

xL

pX (x)

λ2S(
x−xL
xH−xL

)
dx . (32)

By referring to (22), the last form shows the following rela-
tion between the sampling MSE and the quantization MSE

MSES (λS;ϕX ) ≈ 1

(xH − xL)
MSEQ

(
λQ; pX

)
(33)

where, for x ∈ [xL , xH ),

λQ (x) = λS

(
x − xL
xH − xL

)
. (34)

The last result means that for a random variable X , with a
given probability density function pX (x), one can design
the optimal high-rate quantizer by considering the high-
resolution sampling problem of the signal ϕX (t) defined in
(28). Equations (33)–(34) show that the MSEs of the two
procedures are equal up to a normalization by the width of
the value range of X , and a linear transformation of the coor-
dinates of the partitioning structure (see Eq. (34)). Hence,
implementing the optimal sampling-point density (12) for the
signalϕX (t), togetherwith the appropriate linear transforma-
tion of the coordinates, provides the structure that minimizes
the high-rate quantization MSE for pX (x).

2.3 Numerical Demonstrations

Wenow turn to study our theoretical results by applying them
for analytic signals.

2.3.1 Exponential Signals

We consider an exponential signal of the form

ϕ(t) = eαt , t ∈ [0, 1) (35)

where α > 0 is a real-valued parameter determining the
growing rate (see examples in Fig. 2a). The signal-derivative
energy is expressed as (ϕ′(t))2 = α2e2αt , which is positive-
valued for t ∈ [0, 1) (Fig. 2b). Therefore, the optimal
sampling-point density for thismonotonic signal is expressed
as

λopt (t) = 2α

3
· e

2
3αt

e
2
3α − 1

(36)

Plugging (36) into (15) defines the optimal expander, v (τ),
via

e
2
3αv(τ) − 1

e
2
3α − 1

= τ (37)

that yields

v (τ) = 3

2α
log
((

e
2
3α − 1

)
· τ + 1

)
, (38)

and the corresponding optimal nonuniform partitioning is
determined via (16) as

aopti = 3

2α
log

((
e
2
3α − 1

)
· i

N
+ 1

)
(39)

for i = 1, . . . , N . The MSE corresponding to the optimal
nonuniform sampling is calculated using (13) and expressed
as

MSE

({
aopti

}N−1

i=1

)
= 9

32αN 2

(
e
2
3α − 1

)3
. (40)

We evaluate the gain of our approach with respect to the
uniform sampling (for i = 1, . . . , N ). The MSE of uniform
high-resolution sampling is calculated by setting auni f ormi =
i
N in the MSE expression in (9), yielding

MSE

({
auniformi

}N−1

i=1

)
= α

24N 2

(
e2α − 1

)
. (41)

The MSE of the two sampling methods is compared in
Fig. 2c, d for various exponential signals (via the α parame-
ter) and sampling resolutions (the parameter N ), respectively.
Note that the MSE values are normalized by the signal
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Fig. 2 Demonstration for an exponential signal ϕ(t) = exp(αt)
for α > 0. a The exponential signal for several α values. b The
signal-derivative energy for several α values. In c, d, theoretical

reconstruction-MSE obtained via nonuniform and uniform sampling
procedures is compared. c Evaluated for various α values and N = 50.
d Evaluated for a range of sampling resolutions (N ) and α = 3

Fig. 3 Optimal nonuniform sampling (N = 50) of an exponential sig-
nal ϕ(t) = exp(3t). a the mapping between uniform to nonuniform
sampling-spacing. b The original signal (magenta), the reconstructed
signal from nonuniform sampling (blue), and the partitioning to sam-
pling intervals (red) (Color figure online)

energy, here expressed as
∫ 1
t=0 ϕ2(t) = 1

2α

(
e2α − 1

)
. Fig-

ure 3 presents an example for the compressor function and
the corresponding nonuniform sampling of an exponential
signal.

2.3.2 Cosine Signal

Let us demonstrate our approach for a nonmonotonic signal
of the form:

ϕ(t) = cos (2παt) , t ∈ [0, 1) (42)

where α > 0 is an integer determining the number of periods
contained in the [0, 1) interval (see example for α = 5 in
Fig. 4a). The derivative energy of the cosine signal in (42) is

(ϕ′(t))2 = 4π2α2 sin2 (2παt) , t ∈ [0, 1). (43)

As demonstrated in Fig. 4b, the signal-derivative energy is
zero only at the points t = j

2α for j = 0, 1, . . . , 2α − 1. The
compressor function does not lend itself here to a simple ana-
lytic form; nevertheless, it can be constructed numerically via
its definition as a cumulative density function [see Eq. (14)]
providing the compressor curve in Fig. 4c. The 2α points
of zero signal-derivative energy are not a real obstacle in
our numerical construction, and, anyway, their correspond-
ing values can be replaced by an arbitrarily small ε value1

as suggested above. The expander function is numerically
formed as the inverse of the compressor curve. The resulting
nonuniform sampling structure (Fig. 4d) shows its adaptation
to the local signal derivative and to the periodic nature of the
signal.

2.3.3 Chirp Signal

The cosine signal in (42) can be extended to the following
chirp signal with a linearly increasing frequency:

ϕ(t) = cos (2π t (1 + αt)) , t ∈ [0, 1). (44)

1 In the numerical demonstrations provided here, we set the value of ε

to the smallest positive floating-point value available in Matlab via the
command eps, which returns the value 2−52.
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Fig. 4 Demonstration for a cosine signal ϕ(t) = cos(10π t). a The signal. b The signal-derivative energy. c The optimal compressor curve. d
Optimal nonuniform sampling using N = 100 samples (the partitioning of the signal domain is in red) (Color figure online)

Fig. 5 Demonstration for a chirp signal ϕ(t) = cos (2π t (1 + 5t)). a The signal. b The signal-derivative energy. c The optimal compressor curve.
d Optimal nonuniform sampling using N = 100 samples (the partitioning of the signal domain is in red) (Color figure online)

Here, the α > 0 parameter determines the linear growth rate
of the frequency (Fig. 5a exemplifies this for α = 5). The
signal-derivative energy of the chirp (44) is

(ϕ′(t))2=4π2 (1+2αt)2 sin2 (2π t (1+αt)) , t ∈ [0, 1).
(45)

The nonuniform sampling of the chirp is demonstrated in
Fig. 5d. Comparison between the nonuniform sampling of
the cosine signal (Fig. 4) and the chirp signal (Fig. 5) reveals
the influence of the varying frequency embodied in the chirp.

2.4 Experimental Evaluation of Nonuniform
Segmentations

In this section, we present experimental evaluations of the
procedure proposed in Sect. 2 for nonuniform sampling of
one-dimensional signals.

The proposed sampling method is compared to two other
sampling approaches. The first is the trivial, however com-
monly used, uniform sampling, where the signal domain is
partitioned into equal-size sampling intervals. Specifically,
for a budget of N samples the signal domain [0, 1) is seg-
mented according to ai = i

N for i = 0, 1, . . . , N . The
samples are determined as the averages of the correspond-
ing sampling intervals. The second competing method is a
nonuniform sampling based on a binary-tree structure that

is adapted to the signal via a Lagrange optimization, as pre-
sented in “Appendix C”.

We examined sampling of several signals defined analyt-
ically. A grid of Lagrange multiplier values was set for the
tree-structured Lagrange optimization (see “Appendix C”);
this determined the number of samples to consider.2 First,
the sampling of the cosine signal ϕ (t) = 255 · cos (10π t)
was examined and showed that our method consistently out-
performs the uniform and the tree-structured techniques for
various amounts of samples (Fig. 6a). These observations
were further established by examining sampling of the chirp
signal, ϕ (t) = 255 · cos (2π t (1 + 5t)) (Fig. 6b).

3 Practical SamplingMethod for
One-Dimensional Signals

In the former section, we analytically studied the nonuni-
form sampling problem and formulated the corresponding
optimal high-resolution segmentation. In this section, we
exhibit how the optimal nonuniform sampling design estab-
lished above for continuous-time signals can be practically
employed for nonuniform resampling of given discrete-time

2 Note that the proposed method and the uniform sampling do not rely
on a Lagrange multiplier and operate directly based on a given number
of samples; however, we defined the examined sample budgets based
on the Lagrange multiplier grid of the tree-structured sampling in order
to maintain an accurate comparison between all the sampling methods.
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Fig. 6 Performance comparison of the proposed sampling method, the
uniform sampling approach, and the optimized tree-structured sam-
pling. The curves present the samplingMSEobtained for various sample
budgets

signals acquired via very high resolution uniform sampling.
Note that we refer to the practical resampling process using
the term sampling.

Another issue of practical concern is that our unstructured
partitioning of the time domain [0, 1) using the time points{
aopt0 = 0, aopt1 , . . . , aoptN−1, a

opt
N = 1

}
means that a naive

implementationwill require the N−1 time points
{
aopti

}N−1

i=1

together with the N representation values
{
ϕ
opt
i

}N

i=1
. This

description cost of 2N − 1 real values implies that a direct
realization of the guidelines presented in Sect. 2 will result in
an inefficient sampling process in terms of the performance
measured by reconstruction error at a given representation
cost.

In this section, we propose sampling and reconstruction
procedures that employ the optimal segmentation found in
Sect. 2 while requiring a significantly lower description cost
than the naive approach. We show that a good approxima-
tion of the optimal reconstruction is possible by using only
the segmentation time points, the signal extrema times and
amplitude values, and some additional general properties of
the signal. We also present proof-of-concept experiments for
compression of one-dimensional signals, showing that our
approach outperforms the alternative of using an optimized
adaptive tree-based segmentation.

3.1 Practical Use of the Analytic Framework via
Numerical Discretization

The practical utilization of the proposed approach considers
the nonuniform resampling system depicted in Fig. 1b. An
unknown continuous-time signal ϕ (t), defined for t ∈ [0, 1),
is uniformly sampled into a densely discrete representation

using the NU samples
{
ϕ
(

i
NU

)}i=NU−1

i=0
that correspond

to the fixed sampling interval of �U = 1
NU

. Then, this
sequence of uniformly sampled values is resampled based
on its nonuniform segmentation into N subsequences, each

represented using a single sample that is later used for a
piecewise-constant reconstruction of the signal. This resam-
pling process is the discrete counterpart of the continuous-
time problem studied in the previous section. Indeed, one can
show that the optimal value representing a subsequence is its
average value (here discretely computed via summation), just
as the principle outlined in (4) for the continuous-time case.
Moreover, we argue that the sampling framework developed
in Sect. 2 for the continuous-time settings can be prac-
tically employed, based on numerical discretizations, for
an efficient resampling of inputs corresponding to a high-
resolution discrete-time uniform grid. This signal-processing
concept of discrete implementation of ideas developed in
a continuous-time framework is common, for example, in
the well-established total-variation approach (see, e.g., [33]).
Specifically, here we numerically approximate derivations
and integrations using normalized-differences and summa-
tions. The reader should bear in mind the straightforward
numerical discretizations needed in practice. However, for
ease of presentation and connectivity to Sect. 2, we present
here our approach using continuous-time notions.

3.2 Inferring Samples from a Given Optimal
High-Resolution Segmentation

We start to explain in detail the method proposed in this sec-
tion by showing how, for a given optimal segment of the
domain where the signal is monotonic, one can compute a
linear estimate for the original signal and use it to approx-
imate the optimal sample representing this interval in the
piecewise-constant reconstruction.

The efficient utilization of the proposed optimal segmen-
tation emerges from the following considerations:Notice that
by Eq. (20) we can state that all the segments in the optimal
partitioning contain an equal amount of the cube root of the
signal-derivative energy. This quantity is also defined in (21)
as the threshold Topt determining the segment lengths for the
given signal and sample budget. Accordingly, we can merge
(20)–(21) into the equation

aopti∫

aopti−1

3
√

(ϕ′ (t))2dt = Topt (46)

obeyed for any segment
[
aopti−1, a

opt
i

)
for i = 1, . . . , N .

Recall that by our high-resolution assumption (presented in
Eq. (5)) the sampling intervals are small enough such that
the signal is well approximated using a linear form, mean-
ing also that the derivative is constant within each segment,
i.e.,
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ϕ′ (t) = ϕ′ (ti ), for t ∈
[
aopti−1, a

opt
i

)
(47)

where ti is the center of the respective segment. Setting (47)
in (46) gives

�
opt
i

3
√

(ϕ′ (ti ))2 = Topt (48)

where �
opt
i = aopti − aopti−1 is the interval length.

Assume one knows the threshold Topt, the segment defin-

ing times aopti−1 and aopti , and whether the signal is mono-
tonically increasing or decreasing in the considered interval
(recall that by the high-resolution assumption the signal is
locally linear and, thus, monotonic). Then, the relation (48)
can be utilized for computing the local signal derivative via

ϕ′ (ti ) = s ·
√√
√√
(
Topt

�
opt
i

)3

(49)

where s reflects the signal monotonicity in the segment by
setting the derivative sign: if the signal is locally monotonic-
decreasing, then s = −1, otherwise s = 1.

Now, further assume that an estimate of the signal value at
the beginning of the segment, ϕest (ai−1) ≈ ϕ (ai−1) is also
known. Hence, using the local derivative obtained from (49),
we can form a linear estimate of the signal in the segment as

ϕest(t) = ϕest (ai−1) + ϕ′ (ti ) · (t − ai−1) . (50)

Consequently, using (50) we can approximate the signal
value at the segment centerϕest(ti ), that is also the estimate of
the interval’s average signal value and, in our high-resolution
case, is also the optimal sample ϕ

opt
i ≈ ϕest(ti ) as appears in

(6).
The developments above imply that a monotonic signal

can be reconstructed using only the segmentation time points,
the signal value at t = 0, the monotonicity type (increas-
ing or decreasing), and the threshold value Topt. The process
sequentially reconstructs the intervals by their order; for each
interval the linear estimate (50) is formed and used for two
purposes: first, evaluating the optimal sample ϕ

opt
i for the

piecewise-constant approximation; and second, computing
the signal value ϕ(ai ) for utilization in the reconstruction of
the next segment, where it is the starting signal value. Since
our goal is sampling of arbitrary nonmonotonic signals, we
present in the next subsection the required generalization of
the above procedure.

3.3 SamplingMethod for Nonmonotonic Signals

The previous subsection motivates us to design a reconstruc-
tion procedure that sequentially goes over the segments and

processes each based on three steps: inferring the local signal
derivative from the segment length, estimating the original
signal segment using a linear model relying on the local
derivative, and utilizing this estimate to approximate the
optimal sample via averaging. Using the local derivative for
estimating the original signal segment requires knowing the
local monotonicity of the signal for setting the derivative
sign in (49). Commonly, the signal monotonicity changes at
a finite number of signal extrema, located within segments
set by the companding-based approach of Sect. 2. Obvi-
ously, a segment containing one or more extrema cannot
be well approximated using a linear form. Such an inade-
quate approximation of a segmentmay significantly affect the
subsequent intervals’ estimates due to the sequential depen-
dency in the segment reconstructions. We address this issue
as explained next.

The developments in this subsectionwill demonstrate how
for an optimal segment that includes an extreme point of
the signal, one can form quadratic estimates for the original
signal over the two subintervals defined by the extreme point
coordinate. Then, the signal estimate over the interval can be
averaged for approximating the optimal sample representing
this interval in the piecewise-constant reconstruction.

Consider a signal with J extrema, occurring at times{
x j
}J
j=1 and having the corresponding signal values

{
ϕx j

}J
j=1

. We argue that in our high-resolution settings
the number of samples is much larger than the number of
extrema. Accordingly, we suggest to include the extrema
times and amplitude values in the coded description pro-
duced by the sampler. Then, the reconstruction process can
easily track the local monotonicity of the signal and also to
better approximate the segments containing extrema, as will
be explained next.

The proposed reconstruction process gets the follow-
ing data from the sampler: the N − 1 segmentation times{
aopti

}N−1

i=1
, the J extrema descriptions

{
x j , ϕx j

}J
j=1

, the sig-

nal value at t = 0, the initial monotonicity of the signal
(i.e., s1), and the threshold value Topt. This yields a total
description cost of N + 2J + 2 real values. (In Sect. 3.4, we
will consider the task of compression, where the representa-
tion cost is expressed in bits.) The suggested reconstruction
is done via a sequential procedure reconstructing the seg-
ments. The reconstruction of a segment depends on whether
it includes one or more of the (known) signal extrema: A
segment with no extrema will be reconstructed as described
in Sect. 3.2 using the derivative computation (49) and the
linear estimate (50) that determines the sample for the
piecewise-constant approximation; otherwise, the segment
reconstruction will rely on the developments presented next.

Let us consider the reconstruction of a segment[
ai−1, ai ) that contains a single extremum of value ϕx j at
t = x j . We suggest to process such a segment based on its
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two subintervals:
[
ai−1, x j

)
and

[
x j , ai

)
where in each the

signal is clearly monotonic of an opposing type. The seg-
ment information given to the reconstruction process allows
forming a quadratic estimate for each of the subintervals.
We will use this nonlinear estimate for our original purpose
of reconstructing the sample used in the piecewise-constant
approximation, and also for approximating the signal value
at t = ai to be used in the next segment reconstruction.

We start with the subinterval
[
ai−1, x j

)
, where the signal

is to be estimated using the quadratic form of

ϕest(t) = θ2t
2 + θ1t + θ0, for t ∈ [ai−1, x j

]
(51)

where θ0, θ1, and θ2 are real-valued parameters, determined
using the following set of three linear equations. Note that
the validity of (51) at t = x j is for assuring the continuity of
ϕest (t) in the subinterval transition. As for all segments, we
have an estimate to the signal value at the interval start and,
by (51), we can write the corresponding demand as

θ2a
2
i−1 + θ1ai−1 + θ0 = ϕest (ai−1) . (52)

We also have the minimum/maximum value of ϕx j at t = x j ,
implying that the estimate (51) value at t = x j should obey

θ2x
2
j + θ1x j + θ0 = ϕx j , (53)

and that the derivative of the estimate (51) at t = x j is zero,
i.e.,

2θ2x j + θ1 = 0. (54)

The solution of the linear equation set (52)–(54) provides the
parameter values for the subinterval estimate form in (51).

We continue with estimating the signal in the second
subinterval

[
x j , ai

)
, where the computation differs from the

one of the former subinterval. Again, we consider a quadratic
signal estimate, formulated here as

ϕest(t) = ρ2t
2 + ρ1t + ρ0, for t ∈ [x j , ai

]
(55)

where ρ0, ρ1, and ρ2 are real-valued parameters, determined
using the following set of three equations. (Here, the third
equation will be nonlinear.) The first two equations demand
that the estimate (55) will be equal to the extremal value at
t = x j , namely,

ρ2x
2
j + ρ1x j + ρ0 = ϕx j , (56)

and that the estimate derivative at t = x j will satisfy

2ρ2x j + ρ1 = 0. (57)

The third equation originates in our fundamental segment
property presented in (46) that, using the subintervals defined
here for the signal estimate, implies

aopti∫

x j

3
√(

ϕ′
est (t)

)2dt = Topt −
x j∫

aopti−1

3
√(

ϕ′
est (t)

)2dt . (58)

Using (51) and (55), the last expression becomes

aopti∫

x j

3
√

(2ρ2t + ρ1)
2dt = Topt −

x j∫

aopti−1

3
√

(2θ2t + θ1)
2dt (59)

where ρ2 and ρ1 are unknown variables, and θ2 and θ1 are
parameters already computed in the former subinterval. The
equation system of (56), (57), and (59) can be solved (for
the variables ρ2, ρ1 and ρ0) as follows. The equation pair
(56)–(57) can be translated into

ρ2 = − ρ1

2x j
(60)

ρ0 = ϕx j − x jρ1
2

(61)

expressing ρ2 and ρ0 in terms of ρ1. Setting (60) and (61) into
(59) yields the following expression for the absolute value of
ρ1

|ρ1| =

⎛

⎜⎜
⎝

Topt −
∫ x j
aopti−1

3
√

(2θ2t + θ1)
2dt

∫ aopti
x j

3

√(
1 − t

x j

)2

⎞

⎟⎟
⎠

3
2

(62)

where all the parameters in the right side of the equation are
known; hence, the value of |ρ1| is computable. Equation (60)
implies that ρ1 and ρ2 have opposing signs. The value of ρ2 is
positive or negative depending onwhether the signal extreme
value at t = x j is a minimum or a maximum, respectively,
as can be determined by the signal monotonicity in the for-
mer segment. For example, if the previous signal segment
is monotonically increasing, then, the value at t = x j is a
maximum and, accordingly, ρ2 is negative and ρ1 is positive.
The complementary casemirrors this description. These sign
determination rules let us to evaluate ρ0, ρ1, and ρ2.

We essentially showed how for a segment with an extreme
point, one can form quadratic estimates for its two subinter-
vals. Averaging this signal segment estimate will provide
an approximation of the optimal sample representing this
interval in the piecewise-constant reconstruction. Recall that
the extreme value implies that the local monotonicity-type
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changes and, thus, the corresponding variable s should also
be updated for a correct reconstruction of the next segment.

As the sample budget decreases, the sampling intervals
naturally increase and, accordingly, a segment is more likely
to include more than one signal extreme value. This case
is identifiable as the reconstruction receives all the extreme
points’ descriptions.Accordingly,we suggest to address such
a segment in a similar way to the described above. First, the
reconstruction procedure will be done with respect to the
two subintervals defined by the first extreme point in the
segment (this can be motivated by the assumption that the
interval is still quite small). Second, the local monotonicity-
type variable s will be set to describe the signal behavior after
the last extreme point of the segment.

The proposed sampling and reconstruction procedures are
summarized in Algorithms 1–2. We assume that the total
number of samples, N , is pre-defined and known to the recon-
struction process and thus does not to be conveyed. Note that
even if N is unknown and needs to be transmitted, its addi-
tional cost is marginal and does not affect the evaluations
exhibited in this paper.

Algorithm 1 Proposed Sampling Method
1: Inputs: A signal ϕ (t) defined for t ∈ [0, 1).

. Number of samples to use N .

2: Compute the optimal segments
{
aopti

}N

i=0
via (16) or (20).

3: Determine the signal extrema times,
{
x j
}J
i=1, and values,

{
ϕx j

}J
i=1

.
4: Set the initial signal monotonicity type s0.
5: Set ϕt=0 to the signal value at t = 0.
6: Compute the threshold Topt defined in (21).
7: Outputs:{

aopti

}N−1

i=1
, J ,

{
x j
}J
i=1,

{
ϕx j

}J
i=1

, s0, ϕt=0, and Topt .

3.4 Compression based on the Proposed Sampling
Method

The sampling method presented in Algorithm 1 can be easily
extended to a compression procedure for one-dimensional
signals. This is done by encoding the sampler outputs,
intended for the reconstruction process. We present here a
specific compression implementation, relying on fixed-rate
scalar quantizers and free of entropy coding. (However, one
should also consider the idea of extending our method to
utilize entropy coding, which may impact the compression
efficiency according to the actual redundancies in the entropy
coded data.)

The segmentation times,
{
aopti

}N−1

i=1
, and the extrema

times,
{
x j
}J
i=1, are considered based on their discrete uni-

form high-resolution grid of the input signal that corresponds

Algorithm 2 Proposed Reconstruction Method

1: Inputs:
{
aopti

}N−1

i=1
, J ,

{
x j
}J
i=1,

{
ϕx j

}J
i=1

, s0, ϕt=0, and Topt .

2: Initialize i = 1, s = s0, a
opt
0 = 0, aoptN = 1.

3: ϕest

(
aopt0

)
= ϕt=0.

4: for i = 1, . . . , N do
5: if x j /∈

[
aopti−1, a

opt
i

)
,∀ j = 1, ..., J then

6: Set the interval center as ti =
(
aopti−1 + aopti

)
/2.

7: Compute the local derivative, ϕ′ (ti ), via (49).
8: Use ϕest

(
aopti−1

)
and ϕ′ (ti ) to establish the

linear estimate (50) of the signal segment,

i.e., ϕest (t) for t ∈
[
aopti−1, a

opt
i

]
.

9: Approximate the optimal sample as
ϕ
opt,est
i = ϕest (ti ) .

10: else
11: Set x f irst

j = min x j s.t. x j ∈
[
aopti−1, a

opt
i

)
.

12: Form the quadratic signal estimate, ϕest (t), for

the subinterval
[
aopti−1, x

f irst
j

)
as described in

Eq. (51)-(54).
13: Form the quadratic signal estimate, ϕest (t), for

the subinterval
[
x f irst
j , aopti

]
as described in

Eq. (55),(60)-(62) and the related details.
14: Approximate the optimal sample ϕ

opt,est
i as

the average of ϕest (t) over
[
aopti−1, a

opt
i

)
.

15: Set Ji as the number of extrema in
[
aopti−1, a

opt
i

)
.

16: Update the local monotonicity-type via
s ← (−1)Ji s .

17: end if
18: Set the segment in the piecewise-constant

reconstructed signal as

ϕ̂ (t) = ϕ
opt,est
i for t ∈

[
aopti−1, a

opt
i

)
.

19: end for
20: Output: ϕ̂ (t) for t ∈ [0, 1).

also to the resolution of the discrete approximation of time-
continuous notions. Accordingly, we losslessly encode these
sequences using a procedure designed for coding of mono-
tonic sequences of integers (see “Appendix D”).

The additional information required for the signal recon-
struction is encoded as follows. The number of extrema,
J , is losslessly encoded using bJ bits, assuming that
J ∈ {

0, . . . , 2bJ − 1
}
). The extreme values,

{
ϕx j

}J
i=1

,
are quantized using a uniform fixed-rate quantizer of bext
bits considering the value range [ϕmin, ϕmax]. The starting
monotonicity-type, s0, can valued 1 or -1 and, thus, repre-
sentable using a single bit. The signal value at t = 0, ϕt=0,
is uniformly quantized using bval0 bits (the quantizer value
range is [ϕmin, ϕmax]). The threshold Topt is encoded as a
64-bit floating-point value.

The reconstruction process remains the same as presented
inAlgorithm2, except for the need of decoding the input data.
Of course that reconstruction quality is affected by the addi-
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tional inaccuracies introduced in the quantization of
{
ϕx j

}J
i=1

and ϕt=0.

3.5 Experimental Evaluation of the Proposed
Method

We conducted experiments to evaluate the practical sam-
pling method presented in Algorithms 1–2 and its utilization
for signal compression. The results provided here, for com-
pression of analytic and audio signals, exhibit that our
sampling method outperforms the optimized adaptive tree-
based approach for large sample and bit budgets.

Our compression implementation is as overviewed in
Sect. 3.4, with the specific parameters of bJ = 8, bext = 13,
ϕmin = −255, ϕmax = 255, and bval0 = 15. Recall that we
do not need to encode the sample values.

We constructed a competing compression process by uni-
formly quantizing the samples provided by the optimized
adaptive tree-based approach. (A fixed rate of 8 bits per sam-
ple is used considering the value range of [− 255, 255].) Note
that the quantization is not considered in the tree-structured
optimization in order to maintain fairness with respect to
our approach where the sampling is also independent of the
quantization. The binary tree (representing the segmentation
over the uniformly-spaced discrete grid of the input signal) is
encoded into a sequence of bits using the procedure explained
in [11].

We consider again the cosine and chirp signals intro-
duced in Fig. 4a and 5a, respectively, here scaled to have
amplitude values in the range [− 255, 255]. The corre-
sponding distortion-rate curves (Fig. 7) exhibit that our
method achieves more than 30% bit-rate savings for the
very high-resolution representations. In Fig. 8, we exemplify
the piecewise-constant reconstruction (the magenta solid-
line curve) and the auxiliary signal estimate used in the
reconstruction (the black dotted line curve) produced by
our method from the compressed chirp signal. Fig. 8a is a
zoomed-in version of a monotonic portion of the signal, and
Fig. 8c is a zoom-in on a part including a signal maximal
value—both cases exhibit the suitability of the linear and
quadratic models used for constructing the signal estimate in
the reconstruction process.

We evaluated our method also for compression of real
(i.e., nonanalytic) signals. For this purpose, we used two
audio signals (at an initial digital format of 24 bit per sam-
ple and sampling frequency of 192kHz) of classical music;3

specifically, we considered segments of 65,536 samples that
were moderately smoothed using a Gaussian kernel (see an
example for the obtained signal in Fig. 9). The distortion-
rate curves in Fig. 10 show that, also for nonanalytic signals,

3 The audio signals were downloaded from http://www.2l.no/hires/
index.html.

Fig. 7 Performance comparison of compression based on the pro-
posed sampling method and the optimized tree-structured sampling.
The curves present the coding MSE obtained for various bit rates (mea-
sured in bits per input sample, i.e., considering NU and not N )

our method outperforms the use of optimized adaptive tree
segmentation.

4 Analysis for Multidimensional Signals

In this section, we discuss the theoretic analysis of opti-
mal high-resolution sampling by studying the problem for
samplingmultidimensional signals. The analysis for the one-
dimensional case is relatively simple since the partition is
characterized by sampling-interval lengths (see Sect. 2).
However, when considering the multidimensional problem,
the required analysis becomes more intricate as the sam-
pling regions are, in general, of arbitrary shape and size.
Accordingly, our analysis in this section is conceptually
and mathematically similar to the study of multidimensional
high-rate quantization provided by Gersho [3], which gen-
eralized the one-dimensional theory of Bennett [1] and the
distortion formula of Panter and Dite [2]. Thus, we provide
a theoretic framework for optimal multidimensional signal
sampling at high resolution.

The given differentiable signal, ϕ (x), is defined over a
K -dimensional unit cube, CK � [0, 1]K , and is scalar real-
valued from a bounded range, i.e., ϕ (x) ∈ [ϕL , ϕH ] for any
x ∈ CK . The signal goes through a sampling procedure in
order to provide a discrete representation using N ∈ N (scalar
valued) samples, {ϕi }Ni=1, corresponding to a partitioning of
CK to N distinct multidimensional regions, {Ai }Ni=1, such
that ∪N

i=1Ai = CK . Again, we consider a reconstruction pro-
cedure providing the continuous-domain piecewise-constant
signal

ϕ̂ (x) = ϕi for x ∈ Ai , (63)

and optimization in the sense ofminimizing the overallMSE,
here formulated as (note the implicit normalization in the
unit-cube volume)
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Fig. 8 Our method reconstruction of a chirp signal compressed using
1532 samples at a bit-rate of 0.288 bits per original sample (the input
has 32,768 uniformly-spaced samples). a The full signal and its recon-
struction.bAzoom-in on amonotonic signal segment. cAzoom-in on a

segment including a local maximal value. The original signal is the cyan
solid line, the piecewise-constant reconstruction ϕ̂ is the magenta solid
line, and the auxiliary signal estimate, ϕest , used in the reconstruction
is the black dotted line

Fig. 9 An example of an audio signal (‘Mozart’) used in the experi-
ments. a The complete signal considered. b Zoom-in for better view of
the signal characteristics. The time axis of the signal is scaled to the
interval [0, 1) for compatibility to the settings of this paper

MSE
(
{Ai }Ni=1 , {ϕi }Ni=1

)
=

N∑

i=1

∫

Ai

(ϕ (x) − ϕi )
2dx. (64)

Moreover, as before, the optimal sampling coefficients given
the partitioning {Ai }Ni=1 can be analytically determined,
showing that

ϕ
opt
i = 1

V (Ai )

∫

Ai

ϕ (x) dx, i = 1, . . . , N (65)

where V (Ai ) is the volume of the region Ai .
We consider the case of optimal high-resolution sampling

(i.e., N is very large) and assume that the optimal sampling
regions are all small enough and appropriately shaped such
that we can further presume that the signal ϕ (x) is well
approximated within each region by a linear form that is
locally determined. The last assumption emerges as a gen-
eralization of the assumptions for the one-dimensional case
thatwere presented and analyzed in detail in Sect. 2.1. Specif-
ically, here

ϕ(x) ≈ βT
i x + γi for x ∈ Ai , (66)

Fig. 10 Performance comparison of compression based on the pro-
posed sampling method and the optimized tree-structured sampling.
The curves present the coding MSE obtained for various bit rates (mea-
sured in bits per input sample, i.e., considering NU and not N )

where β i is a K -dimensional column vector and γi is a scalar
value. Moreover, the above linear form can be determined in
the i th region by the first-order Taylor approximation of the
signal around the region center, xi � 1

V (Ai )

∫
Ai
xdx, namely,

ϕ(x) ≈ ϕ (xi ) + ∇ϕ(xi ) (x − xi ) (67)

where ∇ϕ(xi ) is the signal gradient, evaluated at the region
center, here having the form of a K -length row vector con-
sisting of the K partial derivatives, i.e.,

∇ϕ(xi ) =
[
∂ϕ (x)
∂x1

∣
∣∣
x=xi

,
∂ϕ (x)
∂x2

∣
∣∣
x=xi

, . . . ,
∂ϕ (x)
∂xK

∣
∣∣
x=xi

]
,

(68)

where ∂ϕ(x)
∂x j

∣∣∣
x=xi

is the partial derivative of the signal in the

j th standard direction ( j = 1, . . . , K )measured at the region
central point xi . Accordingly, the linear-form parameters of
the i th region are set to

βT
i = ∇ϕ(xi ) (69)

γi = ϕ (xi ) − ∇ϕ(xi )xi . (70)

123



Journal of Mathematical Imaging and Vision

The local linear approximation within each region (66)
yields an optimal sampling coefficient that is approximately
the signal value at the region center, i.e.,

ϕ
opt
i ≈ 1

V (Ai )

∫

Ai

(
βT
i x + γi

)
dx = βT

i xi + γi ≈ ϕ (xi ) .

(71)

Then, the sampling MSE of the i th region is

MSEi (Ai ) = 1

V (Ai )

∫

Ai

(
ϕ (x) − ϕ

opt
i

)2
dx

≈ 1

V (Ai )

∫

Ai

[
βT
i x + γi −

(
βT
i xi + γi

)]2
dx

= 1

V (Ai )

∥∥β i

∥∥2
2

∫

Ai

‖x − xi‖22 dx. (72)

Inspired by the analysis given by Gersho [3] to high-rate
quantization, we turn to interpret the last error expression
using the normalized moment of inertia of the region Ai

around its center xi , defined as

M(Ai ) �

∫

Ai

‖x − xi‖22dx

K · V (Ai )
1+ 2

K

, (73)

where this quantity is invariant to proportional scaling of the
region. Now, the region MSE becomes

MSEi (Ai ) ≈ K
∥∥β i

∥∥2
2 M(Ai )V (Ai )

2
K , (74)

and the total MSE is expressed as

MSE
(
{Ai }Ni=1

)
=

N∑

i=1

V (Ai ) · MSEi (Ai )

≈ K
N∑

i=1

∥∥β i

∥∥2
2 M(Ai )V (Ai )

1+ 2
K . (75)

We now assume that in the high-resolution scenario there
is a sampling-point density function, λ (x), such that for any
small volume A that contains x, the fraction of sampling
points contained in it is approximately λ (x) V (A). Further-
more, the density function satisfies the approximate relation

λ (x) ≈ 1

N · V (Ai )
, for x ∈ Ai . (76)

Hence, the above assumption implies that adjacent sampling
regions have similar density values.

Na and Neuhoff [32] introduced (in the context of vec-
tor quantization) the important notion of the inertial profile,
denoted here as m (x). The function m (x) is assumed to be
smooth and to approximate the normalizedmoment of inertia
of the cells (around their mass centers) in the neighborhood
of x. The smoothness of the inertial profile is based on the
assumption that neighboring regions have similar values of
normalized moment of inertia in a high-resolution segmen-
tation.

The definitions of the sampling-point density function in
(76) and the inertial profile let us to express the MSE in (75)
as

MSE
(
{Ai }Ni=1

)
≈ K

N
2
K

N∑

i=1

∥∥β i

∥∥2
2

m (xi )

λ (xi )
2
K

V (Ai ). (77)

Furthermore, due to the high-resolution assumption we
approximate the previous sum by the following integral,

MSE (λ,m) ≈ K

N
2
K

∫

x∈CK

β2(x)
m (x)

λ (x)
2
K

dx. (78)

where

β2(x) �
∥∥∇ϕ(x)

∥∥2
2 . (79)

The error expression in (78) can be interpreted as Bennett’s
integral for multidimensional sampling. This formula shows
that the sampling MSE for a given signal, which is repre-
sented by its gradient-energy density, is determined by the
sampling-point density and the inertial profile of the sam-
pling structure.

We now argue that optimal high-resolution sampling of
a multidimensional linear signal with a uniform gradient-
energy density evaluated as 1 everywhere in CK is obtained
by partitioning the signal domain, CK , based on a tessella-
tion generated by a single optimal (in the sense of minimum
normalized moment of inertia) convex polytope, A∗

K , such
that all the regions in the segmentation are congruent to it.4

Accordingly, this optimal division results in a constant nor-
malized moment of inertia to all of the sampling regions,
namely,

M(Ai ) = M(A∗
K ) for i = 1, . . . , N , (80)

or in inertial profile terms: m (x) = M(A∗
K ), i.e., a constant

function. We further assume that optimal high-resolution
sampling of a nonlinear signal is obtained by regions that

4 Based on the high-resolution assumption, we neglect cells that are
intersected by the boundary of the signal domain, CK , and thus may not
be congruent to the optimal tessellating polytope.
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are approximately congruent and scaled versions of the opti-
mal polytope used for sampling a linear signal. Then, Eq.
(80) is satisfied also in our case of sampling a nonlinear sig-
nal, since scaling does not change the normalized moment
of inertia. The latter hypothesis mirrors the conjecture made
by Gersho [3] for high-rate quantization. Consequently, the
MSE expression (78) is reformed to

MSE (λ) ≈ K · M(A∗
K )

N
2
K

∫

x∈CK

β2(x)
1

λ (x)
2
K

dx. (81)

We optimize the sampling procedure by characterizing the
best sampling-point density,λopt(x), thatminimizes theMSE
as expressed in (81). Similar to the optimization in the one-
dimensional case (see “Appendix B”), we rely on Hölder’s
inequality that provides us a lower bound to the MSE in (81)
in the form of

MSE (λ)

≥ K · M(A∗
K )

N
2
K

⎛

⎜
⎝
∫

x∈CK

(
β2(x)

) K
K+2

dx

⎞

⎟
⎠

1+ 2
K

(82)

Here, following the application of Hölder’s inequality, the
MSE lower bound is attained when λ(x) is proportional to
β2(x) 1

(λ(x))
2
K
implying that the optimal sampling-point den-

sity is

λopt(x) =
(
β2(x)

) K
K+2

∫

z∈CK

(
β2(z)

) K
K+2 dz

. (83)

Note that we used the fact that integrating a density function
over the entire domain should be 1.

The optimal sampling-point density demonstrates that in
regions where the derivative energy is higher, the sampling
should bedenser by reducing the volumesof the relevant sam-
pling regions.Moreover, returning to the discrete formulation
for high-resolution sampling MSE in (75) and by utilizing
(76) together with (83) and (80) shows that in the optimal
solution all the sampling regions contribute the same amount
of MSE. In addition, the results in this section are general-
ization of those obtained in the analysis of one-dimensional
signals in the previous section, this can be observed by set-
ting K = 1 and M(A∗

1) = 1
12 , which is the normalized

moment of inertia for one-dimensional intervals (or any other
K -dimensional cube) around their center.

The high-resolution analysis provides a theoretic eval-
uation of a sampler based on its sampling-point density
function. As we described above, the suggested framework
lets to determine the optimal sampling procedure in terms

of the best sampling-point density function. In the one-
dimensional case, the sampling-point density can be directly
translated to a practical sampling procedure via the compand-
ing model (see Sect. 2). However, in the multidimensional
case, in general, there are no direct ways to implement a
sampler based on a given sampling-point density function.
This conclusion is based on results from the quantization
field [3,34,35]. In [34,35], it was shown that optimal com-
panding requires a compressor function that is a conformal
mapping. This result implies that a direct implementation of
multidimensional sampler based on a given point density is
limited to a minor class of signals with a suitable gradient-
energy density—thus, in general, optimal multidimensional
companding is impractical. This result was followed by
a treatment of multidimensional companding for the vec-
tor quantization problem in limited settings that consider
suboptimal solutions and/or particular source distributions
[36–39]. Consequently, as in the high-rate quantization liter-
ature, the analysis provided here for the multidimensional
case is a theoretic framework for studying sampling of
multidimensional signals. Specifically, it describes the opti-
mal sampler and allows to assess its possible theoretic
performance. This together with Bennett’s integral for mul-
tidimensional sampling (Eq. (78)) can be used to evaluate
the performance of practical suboptimal sampling proce-
dures (similar to the analysis of practical vector quantizers in
[32]).

5 Conclusion

We analyze the topic of nonuniform sampling of determinis-
tic signals as a mirror image of nonuniform quantization.
With the advent of new technologies, adaptive sampling
becomes a viable alternative to be considered in data com-
pression applications. In all the above developments, the
crucial local-density controlling parameter turns out to be
the local energy of the signal gradient. A new adaptive sam-
pling method for one-dimensional signals is proposed and
experimentally established as an interesting novel nonuni-
form sampling approach.

Appendix A: Analysis of Inaccuracies Due to
the Signal Linearity Assumption

Our main high-resolution assumption suggests to consider
the signal via its local linear approximation. Let us assume
that the second derivative of the signal, ϕ′′(t), is continuous
and bounded, i.e.,

∣∣ϕ′′(t)
∣∣ ≤ M for some positive constant

M . Expressing the remainder of the first-orderTaylor approx-
imation using its integral form, lets us to rewrite (5), for
t ∈ [ai−1, ai ) (recall that ti is the interval center), as
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ϕ(t) = ϕ (ti ) + ϕ′ (ti ) · (t − ti ) + Ri (t), (84)

where the remainder (for the i th sampling interval) is

Ri (t) =
t∫

ti

(t − z) ϕ′′ (z) dz (85)

Considering the remainder in its integral form will be useful
for the analysis in this appendix. The absolute value of the
remainder is bounded for t ∈ [ai−1, ai ) as follows

|Ri (t)| ≤ M

2
(t − ti )

2 (86)

where the last inequality conforms with Ri (t) = o(|t − ti |)
for t → ti , as in Eq. (5).

As explained in Sect. 2, the optimal sample value is the
signal average over the sampling interval (seeEq. (4)). There-
fore, averaging the signal in its form from (84) gives

ϕ
opt
i = ϕ (ti ) + 1

�i

ai∫

ai−1

Ri (t)dt . (87)

Hence, the remainder average is the amount of inaccuracy in
the optimal sample value due to the signal linearity assump-
tion. We analyze this quantity by bounding it

∣∣
∣∣∣∣

1

�i

ai∫

ai−1

Ri (t)dt

∣∣
∣∣∣∣
≤ 1

�i

ai∫

ai−1

|Ri (t)| dt

≤ M

2�i

ai∫

ai−1

(t − ti )
2 dt = M

24
�2

i (88)

where we used the remainder bound from (86). Using the
bound in (88), we can state that the inaccuracy in the sample
value is

1

�i

ai∫

ai−1

Ri (t)dt = o(�i ) (89)

for �i → 0, as was presented in (6).
Now we proceed to analyzing the sampling MSE in the

i th interval. The basic expression given in (7) is equivalent
to

MSEi = 1

�i

ai∫

ai−1

ϕ2(t)dt −
(
ϕ
opt
i

)2
(90)

Then, setting the expressions from (84) and (87) in (90),
followed by some calculations that rely on the result∫ ai
ai−1

(t − ti ) dt = 0, shows that the interval MSE becomes

MSEi = 1

12

(
ϕ′ (ti )

)2
�i

2 + Di (91)

where

Di = 1

�i

ai∫

ai−1

R2
i (t)dt

+ 2ϕ′ (ti )
1

�i

ai∫

ai−1

(t − ti ) Ri (t)dt

−
⎛

⎝ 1

�i

ai∫

ai−1

Ri (t)dt

⎞

⎠

2

(92)

evaluates the deviation from theMSE obtained for the linear-
approximation signal. Let us bound the MSE deviation term,
Di , as follows:

|Di | ≤ 1

�i

ai∫

ai−1

R2
i (t)dt

+ 2

�i

∣∣ϕ′ (ti )
∣∣

∣∣∣∣
∣∣

ai∫

ai−1

(t − ti ) Ri (t)dt

∣∣∣∣
∣∣
. (93)

Then, using the bound (86) we get

1

�i

ai∫

ai−1

R2
i (t)dt ≤ M2

4�i

ai∫

ai−1

(t − ti )
4 dt = M2

320
�4

i , (94)

and also

∣
∣∣∣∣∣

ai∫

ai−1

(t − ti ) Ri (t)dt

∣
∣∣∣∣∣
≤

ai∫

ai−1

|t − ti | |Ri (t)| dt

≤ M

2

ai∫

ai−1

|t − ti |3 dt = M

64
�4

i . (95)

Plugging (94) and (95) into (93), together with assuming that∣∣ϕ′ (ti )
∣∣ < M1, yields

|Di | ≤ M2

320
�4

i + M · M1

32
�3

i (96)
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implying that the MSE deviation follows

Di = o
(
�2

i

)
(97)

as �i → 0.

Appendix B: Sampling-Point Density Opti-
mization via Hölder’s Inequality for The One-
Dimensional Case

We aim at minimizing the sampling MSE given in (11) as

MSE (λ) ≈ 1

12N 2

1∫

0

(
ϕ′ (t)

)2

λ2(t)
dt . (98)

Using Hölder’s inequality, we can write

⎛

⎝
1∫

0

(
3
√

(ϕ′ (t))2 · 1

λ
2
3 (t)

)3

dt

⎞

⎠

1
3
⎛

⎝
1∫

0

(
λ

2
3 (t)

) 3
2
dt

⎞

⎠

2
3

�
1∫

0

3
√

(ϕ′ (t))2dt . (99)

Simplifying the left side of (99) gives

⎛

⎝
1∫

0

(
ϕ′ (t)

)2 · 1

λ2 (t)
dt

⎞

⎠

1
3
⎛

⎝
1∫

0

λ (t) dt

⎞

⎠

2
3

�
1∫

0

3
√

(ϕ′ (t))2dt . (100)

Then, since λ (t) is a density function, its integration over the
entire domain is equal to 1, reducing (100) into

1∫

0

(
ϕ′ (t)

)2 · 1

λ2 (t)
dt �

⎛

⎝
1∫

0

3
√

(ϕ′ (t))2dt

⎞

⎠

3

. (101)

Here, Hölder’s inequality is attained with equality when
λ (t) is proportional to

(
ϕ′ (t)

)2 · 1
λ2(t)

; therefore, the optimal
sampling-point density is

λopt (t) =
3
√

(ϕ′ (t))2
∫ 1
0

3
√

(ϕ′ (z))2dz
. (102)

Setting the lower bound from (101), which is achieved by
λopt(t), in the MSE expression from (98) gives the following
optimal sampling MSE

MSE
(
λopt
) ≈ 1

12N 2

⎛

⎝
1∫

0

3
√

(ϕ′ (t))2dt

⎞

⎠

3

. (103)

Appendix C: The Main Competing Sampling
Method: Tree-Structured Nonuniform Sam-
pling

Let us consider sampling based on a nonuniform partitioning
that is represented using a binary tree. The approach exam-
ined here is inspired by the general framework given in [40]
for optimizing tree structures for various tasks, and is also
influenced by the discrete Lagrangian optimization approach
[41] and its application in coding [42,43].

The suggested approach relies on an initial tree, which is a
full d-depth binary tree, representing a uniform segmentation
of the interval [0, 1) into 2d sampling intervals of 2−d length
(see example in Fig. 11a). The segmentation of the interval
[0, 1) is described by the leaves of the binary tree: the interval
location and length are defined by the leaf position in the tree,
specifically, the tree levelwhere the leaf resides in determines
the interval length. The examined nonuniform segmentations
are induced by all the trees obtained by repeatedly pruning
neighboring leaves having the same parent node (examples
are given in Figs. 11b, c). The initial d-depth full tree together
with all its pruned subtrees form the set of relevant trees,
denoted here as Td .

The leaves of a tree T ∈ Td form a set denoted as
L(T ), where the number of leaves is referred to as |L(T )|.
Accordingly, the tree T represents a (possibly) nonuniform
partitioning of the [0, 1) interval into |L(T )| sampling inter-
vals. A leaf l ∈ L(T ) resides in the h(l) level of the

tree and corresponds to the interval
[
aleft(l) , aright(l)

)
of length

�(l) = 2−h(l). Following the analysis in Sect. 2, the optimal
sample corresponding to the leaf l ∈ L(T ) is expressed via
(4) as

ϕ
opt
(l) = 1

�(l)

aright
(l)∫

aleft
(l)

ϕ (t) dt . (104)

Consequently, as the tree leaves correspond to a segmentation
of the [0, 1) interval, the sampling MSE induced by the tree
T ∈ Td is calculated based on the leaves, L(T ), via

MSE (T ) =
∑

l∈L(T )

aright
(l)∫

aleft
(l)

(
ϕ (t) − ϕ

opt
(l)

)2
dt . (105)
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For a signal ϕ(t) and a budget of N samples, one can
formulate the optimization of a tree-structured nonuniform
sampling as

minimize
T∈Td

MSE (T )

subject to |L(T )| = N ,

(106)

i.e., the optimization searches for the tree with N leaves
that provides minimal sampling MSE. The unconstrained
Lagrangian form of (106) is

min
T∈Td

{MSE (T ) + μ|L(T )|} , (107)

where μ ≥ 0 is a Lagrange multiplier that reflects the con-
straint |L(T )| = N . However, it should be noted that due to
the discrete nature of the problem such μ does not necessar-
ily exist for any N value (for details see, e.g., [40,41]). The
problem (107) can also be written as

min
T∈Td

⎧
⎪⎪⎨

⎪⎪⎩

∑

l∈L(T )

aright
(l)∫

ale f t
(l)

(
ϕ (t) − ϕ

opt
(l)

)2
dt + μ|L(T )|

⎫
⎪⎪⎬

⎪⎪⎭
. (108)

Note that, due to the nonintersecting sampling intervals, the
contribution of a leaf, l ∈ L(T ), to the Lagrangian cost is

C (l) =
aright
(l)∫

aleft
(l)

(
ϕ (t) − ϕ

opt
(l)

)2
dt + μ, (109)

evaluated for the corresponding sampling interval.
The discrete optimization problem (108) of finding the

optimal tree for a given signal and a Lagrange multiplier
μ is addressed by the following procedure. Start from the
full d-depth tree and determine the corresponding sampling
intervals and their optimal samples, squared errors, and con-
tributions to the Lagrangian cost (109). Go through the tree
levels from bottom and up, in each tree level find the pairs of
neighboring leaves having the same parent node and evaluate
the pruning condition: if

C (left child) + C (right child) > C (parent) (110)

is true, then prune the two leaves—implying that two sam-
pling intervals are merged to form a single interval of double
length. (Thus, the total samples in the partitioning are reduced
by one.) If the condition (110) is false, then the two leaves
(and the corresponding sampling intervals) are kept. This pro-
cedure is continued until reaching a level where no pruning
is done, or when getting to the tree root.

Fig. 11 Segmentations of the [0, 1) interval produced by binary trees.
The leaves, which determine the partitioning, are colored in green. a A
full binary tree of depth 3 and the corresponding uniform segmentation
into 8 subintervals. bA tree obtained by a single pruning of the full tree,
and thus the partitioning includes 7 subintervals. c A tree obtained by
several prunings resulting in 4 leaves/segments (Color figure online)

Appendix D: Differential Coding of Mono-
tonic Sequences of Integers

Following the practical compression method suggested in
Sect. 3.4, we elaborate here on the coding procedure of the
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segmentation and extrema time points. Let us consider, for

example, the sequence of time points
{
aopti

}N−1

i=1
, describing

the nonuniform segmentation. In practice, we approximate
the continuous time interval [0, 1) using a discrete uniform
grid in a high resolution corresponding to the small interval
length of �U . Accordingly, the to-be-encoded time points

practically obey aopti = τi�U where τi ∈
{
0, 1, . . . , � 1

�U
�
}

is the appropriate integer satisfying the relation. Since �U

is known to the reconstruction process, we can accurately

infer the sequence of time points
{
aopti

}N−1

i=1
from the integer

sequence {τi }N−1
i=1 . Note that {τi }N−1

i=1 is monotonic in the
sense that τi ≤ τi+1 for any i = 1, . . . , N − 2. Similarly,
the extrema time points

{
x j
}J
j=1 can be also translated to a

corresponding sequence of monotonic integers
{
τ̃ j
}J
j=1.

Let us overview the coding procedure for the sequence
{τi }N−1

i=1 .Wedefine the sequenceof differences as
{
τdiff,i

}N−1
i=1

where τdiff,1 = τ1 and τdiff,i = τi−τi−1 for i = 2, . . . , N−1.
Assume that we have an integer amount of bdiff bits for
representing the basic encoding symbol. Since using bdiff
bits one can describe a symbol with values in the integer
range

{
0, 1, . . . , 2bdiff − 1

}
, we propose to encode each ele-

ment of
{
τdiff,i

}N−1
i=1 as follows. For i = 1, . . . , N − 1, if

τdiff,i ≤ 2bdiff − 2, then it is encoded using a single bdiff -bit
symbol; otherwise, τdiff,i can be encoded using 1+� τdiff,i

2bdiff −1
�

symbols of bdiff bits, where these symbols correspond to the
value 2bdiff − 1, except to the last symbol that represents the
value of τdiff,i − (2bdiff − 1

) · � τdiff,i

2bdiff −1
�.

Evidently, the difference values
{
τdiff,i

}N−1
i=1 are more

likely to be small. Hence, while setting a too large bdiff will
minimize the total number of coding symbols used, the total
bit-cost will not be the minimal achievable by the above sug-
gested procedure. Consequently, we precede the coding by
finding the best bdiff in terms of minimal bit-cost for repre-
senting the given difference sequence. This search starts at
themaximal value of bdiff = �log2

(
maxi

{
τdiff,i

})� and con-
tinues to lower values, that for each an estimate of the total
number of symbols and bits required is computed, without
needing an explicit coding of the sequence. The best value
found for bdiff is encoded using a small number of bits (in our
experiments we used 4 bits) and associated with the encoded
sequence of differences.
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