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Holographic representations of data encode information in packets of equal im-
portance that enable progressive recovery. The quality of recovered data improves 
as more and more packets become available. This progressive recovery of the in-
formation is independent of the order in which packets become available. Such 
representations are ideally suited for distributed storage and for the transmission of 
data packets over networks with unpredictable delays and or erasures.
Several methods for holographic representations of signals and images have been 
proposed over the years and multiple description information theory also deals with 
such representations. Surprisingly, however, these methods had not been consid-
ered in the classical framework of optimal least-squares estimation theory, until 
very recently. We develop a least-squares approach to the design of holographic 
representation for stochastic data vectors, relying on the framework widely used in 
modeling signals and images.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Reducing the dimension of data in manners that preserve some important properties or guarantee a 
desired level of recovery, despite the presence of noise, has been a recurring theme of research in data 
processing. Examples of prominent techniques include successive refinement of information, compressive (or 
compressed) sensing, and multiple description coding.

One may want to optimally describe a data given a particular level of distortion before deciding, later 
on, that the data needs to be described more accurately. This naturally leads to the need for a successive 
refinement of information. The goal is to achieve an optimal description at each stage as more and more 
information is supplied. Equitz and Cover provides a characterization of such problems from rate-distortion 
theory in [1]. They discuss two major tasks. The first is to determine the minimum rate at which information 
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about the source must be conveyed to the user in order to achieve a given level of fidelity. The second is to 
investigate channels that have the minimum capacity to convey the information for a prescribed distortion. 
Their work is the basis of many follow-up inquiries.

Compressive sensing simultaneously senses and compresses a signal that, under sparsity conditions, re-
tains complete information on the data. In the sensing process, the signal is projected onto a set of vectors, 
which can be specifically designed or randomly chosen. The recovery process is subsequently performed by 
solving an inverse problem. Several seminal papers, e.g., the works of Donoho [2] and Candès, Romberg 
and Tao [3] set up a strong theoretical foundation for compressed sensing. Since then researchers have 
come up with more detailed analyses and algorithms based on various practical models with accompanying 
constraints and optimization objectives. The work of Elad [4] is an early example that provides significant 
improvement over the random projection model. Many other approaches can already be found in textbooks, 
such as [5]. More recent refinements include the adaptive model where the measurement, i.e., the projection 
matrix, is adaptively designed using either prior information on the sparse signal or from previous measure-
ments. Another common thread (see, e.g., the discussion in [6]) is the design of some linear compression 
matrix that minimizes the mean squared error (MSE) or maximizes the information rate at the optimal 
compression ratio under some bandwidth limitation.

Multiple description coding (MDC) (see, e.g., the exposition of Goyal in [7]) is motivated by the need to 
reduce our dependence on the delivery mechanism where the ordering of the data packets is crucial. Its design 
philosophy assumes that the transport mechanism, i.e., the modulation, channel coding, and transmission 
protocol, is somewhat flawed or unpredictable. Hence, it is imperative to ensure that the usefulness of the 
bits that do arrive is more important than how many bits are available. A notable extension of MDC is the 
use of wavelet for image coding treated by Servetto et al. in [8].

In this work we focus on holographic sensing where information is encoded in packets of equal importance, 
enabling progressive recovery. As more and more packets become available, the recovered data improves 
progressively. The quality of this improvement must remain independent of the order in which packets 
become available. Several methods for holographic representations of signals and images have earlier been 
proposed, e.g., in [9]. We develop a least-squares approach to the design of holographic representation 
for stochastic data vectors using the framework widely used in modeling signals and images. The design 
criteria emphasizes smoothness, an important aspect that has often been overlooked. Such representations 
are ideally suited for distributed storage and transmission or communication of data packets over networks 
with unpredictable delays or erasures.

We start by fixing some notations in the rest of this introduction. Section 2 explains our objectives and 
design philosophy by way of a toy example. Sections 3 and 4 discuss, respectively, the situations for stochastic 
data vectors under the assumption that the projections are either aligned or unaligned with the standard 
representation basis. The treatment for the cyclostationary data vectors is given in Section 5. Section 6
details computational implementations. Some examples in various scenarios highlight insights gleaned from 
actual input parameters. Section 7 compares and contrasts our design with that of Kutyniok et al. in [10]. 
Their method, based on the Grassmannian packing and the theory of frames, was an initial inspiration in 
our investigation. Section 8 concludes this work with a brief summary and a list of further directions to 
pursue.

Let 0 ≤ k < � be integers. Denote by ��� the set {1, 2, . . . , �} and by �k, �� the set {k, k + 1, . . . , �}. Let 
N, R, and C denote, respectively, the set of positive integers, the field of real numbers, and the field of 
complex numbers. The conjugate of c ∈ C is denoted by c∗. Vectors are expressed as columns and denoted 
by bold lowercase letters. Matrices are represented by either bold uppercase letters or upper Greek symbols. 
An n × n diagonal matrix with diagonal entries vj : j ∈ �n� is denoted by diag(v1, v2, . . . , vn). The identity 
matrix is I or In if the dimension n is important. Concatenation of vectors or matrices is signified by the 
symbol | between the components. The transpose and the conjugate transpose of a matrix A are A� and 
A†, respectively.
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2. Preliminaries

Audio and video signals as well as still images and a wealth of other spatio-temporally indexed data 
are effectively encoded in high dimensional vectors. They may be regarded as realizations of a stochastic 
process {xω : ω ∈ Ω} for some index set Ω where ω denotes the random choice of a particular realization and 
xω ∈ RM with M being the (often very high) dimension of the signal space. A classical way to characterize 
the properties of the process is via ensemble averages. Here the first two moments, namely the mean and 
the autocovariance, are of particular interest and importance. Letting E{ω∈Ω} to be the ensemble averaging 
operator, the mean is x = E{ω∈Ω}[xω] and the autocovariance is Rxx = E{ω∈Ω}[xωx�

ω ]. When there is no 
confusion, we use E or E{ω} instead of E{ω∈Ω}.

We often center the data to have x = 0 and, hence, the M × M autocovariance matrix Rxx displays 
the variances of the entries of xω and the possible covariances between them. It is well-known that Rxx is 
symmetric positive definite with a spectral decomposition

Rxx = ΨΛΨ† where Λ = diag(λ1, λ2, . . . , λM ), with λ1 ≥ λ2 ≥ . . . ≥ λM (1)

that displays the ordered eigenvalues λjs and the columns of Ψ are their corresponding eigenvectors.
This work assumes that a vector x ∈ RM is a realization of a random process with zero mean and a 

given autocovariance matrix Rxx. For representation purposes x will be projected into subspaces of RM

of dimension m << M . It is also assumed that there is an error associated with these projections that 
can be modeled as an additive noise. The noise vectors are also realizations of a stochastic process {nω̃}
with zero mean and autocovariance Rnn � σ2

nIm. Hence, we assume that the noise process has independent 
identically distributed entries of variance σ2

n.
Suppose that the orthogonal projection operator Pw projects vectors from RM onto a subspace of dimen-

sion m. If Uw is an M ×m matrix whose columns form an orthonormal basis for Pw, we have Pw = UwU�
w

and the operation U�
wx produces a vector of m entries displaying the coefficients of the representation of 

Pwx in the basis represented in Uw. Indeed, Pwx = Uw(U�
wx). We probe the vector x by measuring the 

vector U�
wx of coefficients of Pwx to construct the data packet which is a column vector of length m given 

by z � U�
wx + n where n, independent of x, is the above-mentioned realization of a white noise process 

with zero mean and covariance σ2
nIm.

The classical theory of Wiener filtering (see, e.g., [11, Chapter 3]) provides us with the following result. 
Given the data z and the matrix U�

w and the second order statistics of n and x, namely Rnn = σ2
nI and 

Rxx = E[xωx�
ω ], the optimal estimator for x in the expected mean squared error sense is x̂ = RxzR−1

zz z with 
error e � x − x̂ of covariance Ree = E{ω,ω̃}[ee�] = Rxx − RxzR−1

zz Rzx. Here, using

Rxz = E[xz�] = RxxUw of size M ×m,

Rzx = E[zx�] = U�
wRxx of size m×M,

Rzz = E[zz�] = U�
wRxxUw + σ2

nIm of size m×m,

one derives

Ree = Rxx − RxxUw

(
U�

wRxxUw + σ2
nIm

)−1 U�
wRxx =

(
R−1

xx + 1
σ2
n

UwU�
w

)−1

. (2)

The second equality comes from the Sherman-Morrison-Woodbury Formula, given below, for matrix inver-
sion with A = R−1

xx , C = σ−2
n Uw, and D = U�

w . We assume σ2
n > 0 since, otherwise, we are in the noiseless 

case, which can easily be treated separately.
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Proposition 1 (Sherman-Morrison-Woodbury Formula). [12, p. 65] Given an n × n invertible matrix A, 
an n × k matrix C, and a k × n matrix D, let B = A + CD. Let (Ik + DA−1C) be invertible. Then 
B−1 = A−1 − A−1C(Ik + DA−1C)−1DA−1.

Given a single projection operator Pw = UwU�
w , the matrix Ree in (2) can be written as Ree =(

R−1
xx + 1

σ2
n
Pw

)−1
. We consider the following interesting cases.

1. Rxx = λIM for a given λ > 0.
2. Rxx = Λ � diag(λ1, λ2, . . . , λM ).
3. Rxx = ΨΛΨ† with Ψ a unitary or orthogonal matrix, i.e., Ψ−1 = Ψ† or Ψ−1 = Ψ�.

Let the chosen orthonormal basis for RM be the natural basis {bj}j∈�M� with bj the vector (0, . . . , 0, 1, 0,
. . . , 0)� having 1 in the jth position. The projection operators select m samples from the vector x, i.e., 
Uw = (bk1 |bk2 | . . . |bkm

), implying that Pw = UwU�
w is a diagonal matrix with entries 1 at locations 

k1, k2, . . . , km and 0 elsewhere.

Proposition 2. Let {bj}j∈�M� be the orthonormal natural basis. Using the projection operator Pw = UwU�
w

with Uw = (bk1 |bk2 | . . . |bkm
) we obtain the following results.

1. If Rxx = λIM for a given λ > 0, then

MSE = Tr(Ree) = Mλ− mλ2

σ2
n + λ

= λ

(
M − m

1 + σ2
n

λ

)
.

2. If Rxx = Λ, then

MSE = Tr(Ree) =
M∑
�=1

λ� −
m∑
j=1

λ2
kj

σ2
n + λkj

. (3)

Proof. In all cases, we use (2) to compute for Ree.
Let Rxx = λIM . Note that Ree =

(
λ−1IM + 1

σ2
n
Pw

)−1
is diagonal with positive entries

βj =

⎧⎨⎩λ if j /∈ {k1, k2, . . . , km},(
1
λ + 1

σ2
n

)−1
= λσ2

n

σ2
n+λ if j ∈ {k1, k2, . . . , km}.

Hence, Tr(Ree) is given by

λ(M −m) + m
λσ2

n

σ2
n + λ

= λM + m

(
λσ2

n

σ2
n + λ

− λ(σ2
n + λ)

σ2
n + λ

)
= λM − λ2m

σ2
n + λ

.

If Rxx = Λ, then Ree is a diagonal matrix with positive entries

β� =

⎧⎨⎩λ� if � /∈ {k1, k2, . . . , km},(
1
λ�

+ 1
σ2
n

)−1
= λ�σ

2
n

σ2
n+λ�

if � ∈ {k1, k2, . . . , km}.

Hence, Tr(Ree) =

⎛⎝ M∑
λ� −

m∑
λkj

⎞⎠ +
m∑ λkj

σ2
n

σ2
n + λkj

=
M∑

λ� −
m∑ λ2

kj

σ2
n + λkj

. �

�=1 j=1 j=1 �=1 j=1
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The situation is more complicated if Pw is any orthogonal projection operator, i.e., Pw = UwU�
w where 

Uw is a known but otherwise arbitrary left-orthogonal basis for the subspace onto which Pw projects. Note, 
however, that if we project onto a subspace with basis vectors given by the columns of the matrix ΨUw, 
which is a matrix “adapted” via Ψ to the statistics of the x-process, we obtain P̃w � ΨUwU�

wΨ� = ΨPwΨ�

where Pw is now, again, the diagonal matrix with entries 1 at locations kj : j ∈ �m� and 0 elsewhere.

Proposition 3. In the general case of Rxx = ΨΛΨ�, with P̃w and z̃ � U�
wΨ�x + n, we estimate the vector 

x via x̂ = RxxRz̃z̃ z̃. The MSE is given in (3).

Proof. The resulting optimal error covariance matrix R̃ee is given by

((
ΨΛΨ�)−1 + 1

σ2
n

P̃w

)−1

=
(

Ψ
(

Λ−1 + 1
σ2
n

Pw

)
Ψ�

)−1

= Ψ
(

Λ−1 + 1
σ2
n

Pw

)−1

Ψ�.

The fact that the trace mapping is linear and invariant under cyclic permutations implies that MSE =
Tr(R̃ee) is the one already derived in (3). �

To design the holographic representations we use the types of probings of the vector x ∈ RM described 
above. The vector is a realization of a random process {xω : ω ∈ Ω} with known statistics E{ω}[xω] = 0 and 
E{ω}[xωx�

ω ] = Rxx. Probings are done via orthogonal projections onto subspaces of RM . The measurements 
are in general contaminated by noise vectors that are independent of x with independent and identically 
distributed (i.i.d.) entries of mean 0 and variance σ2

n. We aim for arrangements of subspaces that yield 
“equally important” projections in the sense of providing similar information about x. These projections 
must combine in the process of estimating x in such a way that any pair, any triplet, and more generally 
any �-tuple of them yield similar restoration quality in their estimation of x. Furthermore, as the number 
of projections increases, the quality of the recovery should improve to a level that reaches the best possible, 
given the amount of data that has been made available up to that point. The holographic representation 
property ensures that the quality of estimating x depends only on the number of probing data packets 
available, independent of the specific projections involved.

To set the stage, consider Rxx = λIM , i.e., the data is a vector with uncorrelated entries having variances 
all equal to λ. Assume further that M = N · m. It is immediate to propose the design of N subspaces of 
RM , each of dimension m, having orthonormal bases selected from the set {b1, b2, . . . , bM} such that no 
bj appears in two distinct subspace bases. This yields a set of N subspaces {W1, W2, . . . , WN} so that the 
corresponding projection operators P1, P2, . . . , PN are diagonal with m ones in locations that are pairwise 
disjoint and 

∑N
j=1 Pj = IM . In the language of fusion frames (see, e.g., [13, Sect. 1.3]) we form a rather 

trivial Parseval fusion frame.

Definition 1. A fusion frame for RM is a finite collection of subspaces {Wj}Nj=1 in RM such that, for any 
x ∈ RM , there exist constants 0 < A ≤ B < ∞ satisfying

A ‖x‖2 ≤
N∑
j=1

‖Pjx‖2 ≤ B ‖x‖2
, i.e., AI ≤

N∑
j=1

Pj ≤ BI. (4)

It is tight if A = B and a tight fusion frame is a Parseval frame when A = 1. Here ‖x‖ denotes the length or 
the modulus of x and matrix inequality is defined according to the entries in their corresponding positions.

In the case discussed, each data packet z provides information on x, giving estimates for m en-
tries in x. From Proposition 2, the optimal mean squared error of estimating x from a single frame is 



JID:YACHA AID:1309 /FLA [m3L; v1.256; Prn:29/04/2019; 10:52] P.6 (1-20)
6 A.M. Bruckstein et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Fig. 1. The MSE curve for the toy example.

MSE1 packet = λ

(
M − m

1 + σ2
n

λ

)
. Getting r pieces of data, i.e., some zk1 , zk2 , . . . , zkr

means having a big-

ger projection subspace of dimension r ·m, yielding

MSEr packets = λ

(
M − r ·m

1 + σ2
n

λ

)
.

The availability of all N packets results in estimating x with mean squared error

MSEall packets = λ

(
M − N ·m

1 + σ2
n

λ

)
= Mσ2

n

1 + σ2
n

λ

,

with perfect recovery of x as σ2
n → 0. We have achieved our dream of having a perfect solution with a 

holographic representation that satisfies all of our requirements. The data packets are {zj : j ∈ �N�} and 
their performance is ideal. The best estimate of x is reached when it is probed with all N projections, i.e., 
when all N packets are available. Fig. 1 shows that any data set of r ∈ �N� packets yield the same MSE.

The case we have just analyzed, albeit being trivial, explains our aim clearly. The general case, when 
subspaces of the projections intersect and their bases do not necessarily align with the standard basis for 
the data vector, poses several interesting challenges.

Our general design philosophy in allocating the subspaces is as follows. First, we want the subspace 
arrangements that produce the best possible MSE when all N packets are available. Among the candidates 
satisfying this requirement we select one that has an overall smoothness property in the recovery when the 
number of available measurement packets is between 1 and N − 1. Smoothness is computed based on the 
relative variances of the MSE reductions, given any � packets selected from all of the projections. We will 
discuss the numerical methods to come up with suitable choices below.

3. The aligned case

This section considers the first two cases of Rxx when the projections on intersecting subspaces have 
bases that are still aligned with the standard basis representation of RM for x. If several data packets 
are available, we can apply the Wiener filter and then compute the general formula for the error from the 
observation
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zcombi =

⎛⎜⎝zk1
zk2
. . .
zk�

⎞⎟⎠
︸ ︷︷ ︸
(�·m)×1

=

⎛⎜⎜⎝
U�

k1
U�

k2
. . .
U�

k�

⎞⎟⎟⎠
︸ ︷︷ ︸
(�·m)×M

x +

⎛⎜⎝nk1
nk2
. . .
nk�

⎞⎟⎠
︸ ︷︷ ︸
(�·m)×1

.

The white noise is by assumption i.i.d. with variance σ2
nI(�·m). The M ×M combined projection matrix is

Pcombi = (Uk1 |Uk2 | . . . |Uk�
)︸ ︷︷ ︸

�U

⎛⎜⎜⎜⎝
U�

k1
U�

k2
...

U�
k�

⎞⎟⎟⎟⎠ =
�∑

j=1
Ukj

U�
kj

=
�∑

j=1
Pkj

,

yielding the error covariance matrix

Ree =

⎛⎝R−1
xx + 1

σ2
n

�∑
j=1

Pkj

⎞⎠−1

=
(
R−1

xx + 1
σ2
n

UU�
)−1

= Rxx − Rxx
1
σ2
n

U
(
I + U�Rxx

1
σ2
n

U
)−1

U�Rxx. (5)

Let Wkj
be the subspace onto which Pkj

projects. Suppose that Wkj
for each j ∈ ��� is aligned with the 

standard basis {b1, b2, . . . , bM}, i.e., Pkj
is a diagonal matrix with diagonal entries 1 or 0 corresponding, 

respectively, to whether a certain coordinate of x is probed or not. This implies that 
∑k

j=1 Pkj
is also 

diagonal with nonnegative integer diagonal entries displaying how often a certain coordinate of x is probed. 
Then the Ree has a pleasingly simple formula for its trace that gives the expected MSE from the Wiener 
filter recovery. Let Ps for s ∈ �0, �� be the set of positions in the diagonal of Pcombi whose entries are s. 
Note that 

∑�
s=0 |Ps| = M and 

∑�
s=1 s |Ps| = � ·m.

Theorem 1. Let Rxx = λIM . Let there be � ∈ �N� arbitrary measurement packets available to approximate x. 
Then

MSE(λIM , σ2
n, �) = Mλ−

�∑
s=1

|Ps|λ
1 + σ2

n

sλ

. (6)

Proof. We infer from (5) that Ree =
(
R−1

xx + 1
σ2
n

∑�
j=1 Pkj

)−1
is diagonal with positive entries αj =

λσ2
n

σ2
n + sλ

for j ∈ Ps with s ∈ �0, ��. Hence, Tr(Ree) is

MSE(λIM , σ2
n, �) =

�∑
s=0

∑
j∈Ps

λσ2
n

σ2
n + sλ

=
�∑

s=0
|Ps|λ

(
1 − sλ

σ2
n + sλ

)

=
�∑

s=0
|Ps|λ−

�∑
s=1

|Ps|
sλ2

σ2
n + sλ

= Mλ−
�∑

s=1

|Ps|λ
1 + σ2

n

sλ

. �

Remark 1. In the toy example of Section 2, s ∈ {1}, with |P1| = �·M
N = � ·m, is the only possibility. Hence, 

MSE(λ, σ2
n, �) = λM

(
1 − λ�

N(λ + σ2
n)

)
, as had been shown.
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Theorem 2. Let Rxx = Λ = diag(λ1, λ2, . . . , λM ) and assume that all Pj with j ∈ �N� are projections onto 
subspaces of equal dimension m, i.e., Tr(Pj) = m. Then

MSE(Λ, σ2
n, �) =

M∑
j=1

λj −
�∑

s=1

∑
j∈Ps

sλ2
j

σ2
n + sλj

. (7)

Proof. Given all N packets, 
∑N

j=1 Pj = diag(s1, s2, . . . , sM ) with integers 0 ≤ sj ≤ N and 
∑N

j=1 sj =
N · m. To determine the values of sj that minimize the MSE we start from (5) to get Ree =(
diag(λ−1

1 , λ−1
2 , . . . , λ−1

M ) + 1
σ2
n

diag(s1, s2, . . . , sM )
)−1

. This implies

MSE(Λ, σ2
n, N) =

M∑
j=1

σ2
nλj

σ2
n + λjsj

=
M∑
j=1

λj

1 +
(

λj

σ2
n

)
sj

. (8)

To minimize the MSE in (8) we solve the optimization problem min
{ζj}

MSE(Λ, σ2
n, N) using the 

Lagrange multipliers method, subject to 
∑M

j=1 ζj = N · m and 0 ≤ ζj ≤ N , with ζj ∈ R. 

Let Θ(ζ1, ζ2, . . . , ζM ) �
M∑
j=1

λjσ
2
n

σ2
n + λjζj

+ β

⎛⎝ M∑
j=1

ζj −N ·m

⎞⎠ with β > 0. Solving for ζj in 
∂Θ
∂ζj

=

−
λ2
jσ

2
n

(σ2
n + λjζj)2

+ β = 0 yields
(
σ2
n + λjζj

)2 =
λ2
jσ

2
n

β
, implying ζj = σn√

β
− σ2

n

λj
. From 

M∑
j=1

ζj = M
σn√
β

−

σ2
n

⎛⎝ M∑
j=1

1
λj

⎞⎠ = N ·m, one obtains

M
σn√
β

= N ·m + σ2
n

⎛⎝ M∑
j=1

1
λj

⎞⎠ =⇒
√

β = Mσn

N ·m + σ2
n

(∑M
j=1

1
λj

) .
We can then conclude that

ζj = σn

Mσn

[
N ·m + σ2

n

(
M∑
k=1

1
λk

)]
− σ2

n

λj
= N ·m

M
+ σ2

n

(
1
M

M∑
k=1

1
λk

− 1
λj

)
. (9)

The second derivative test on Θ confirms that ζj is indeed a local minimizer since 
∂2Θ
∂ζ2

j

=
2λ3

jσ
2
n

(σ2
n + λjζj)3

> 0. 

Thus, the optimal ζj , in the sense of the one leading to the least MSE, measures the departure of 1
λj

from 

the average contribution 1
M

∑M
k=1

1
λk

. Note that in (9), there may be a threshold t such that ζj ≥ 0 for 
j ∈ �t� and ζj < 0 for j > t. Applying the constraint ζj ≥ 0, we set ζj = 0 for j ∈ �t + 1,M�. To ensure that ∑M

j=1 ζj = N ·m still holds when there is such a t, we recompute 
√
βt � t · σn

N ·m + σ2
n

(∑t
j=1

1
λj

) and use it 

to determine the new ζj = σn√
βt

− σ2
n

λj
. The process is repeated until N ≥ ζj ≥ 0 for all j ∈ �M�. Finally, 

we round each ζj off to an integer sj ≥ 0.
After ensuring that we obtain the best possible recovery when all N packets are available, we would 

now like to have a graceful degradation when any � ∈ �N� packets, say zk1 , zk2 , . . . , zk�
, are available. 
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Then Ree =
(
Λ−1 + 1

σ2
n

∑�
j=1 Pkj

)−1
is a diagonal matrix with positive entries λjσ

2
n

σ2
n + sλj

for j ∈ Ps with 

s ∈ �0, ��. Taking the trace yields

MSE(Λ, σ2
n, �) =

�∑
s=0

∑
j∈Ps

λjσ
2
n

σ2
n + sλj

=
∑
j∈P0

λj +
∑
j /∈P0

λj −
∑
j /∈P0

λj +
�∑

s=1

∑
j∈Ps

λjσ
2
n

σ2
n + sλj

=
M∑
j=1

λj +
�∑

s=1

∑
j∈Ps

(
λjσ

2
n

σ2
n + sλj

− λj

)
=

M∑
j=1

λj −
�∑

s=1

∑
j∈Ps

sλ2
j

σ2
n + sλj

. (10)

In particular, when all N packets are available, we get (8) from (10) since, by design,

MSE(Λ, σ2
n, N) =

M∑
j=1

λjσ
2
n

σ2
n + sjλj

. � (11)

4. The unaligned case

We move to the more general setup. Let Pw be any orthogonal projection operator, i.e., Pw = UwU�
w

where Uw is an arbitrary orthonormal basis for the subspace onto which Pw projects.

Theorem 3. Let Rxx = λIM . All subspaces in the given setup provide the same mean squared error reduction 
if they have equal dimension mw = m. The minimum value for the MSE when all N packets are available 
is achieved when we have an A-tight fusion frame with A = N ·m

M .

Proof. The formula when probing x by projecting onto all subspaces described via Uj of respective dimen-

sions mj for j ∈ �N� is Ree =
(

1
λIM + 1

σ2
n

∑N
j=1 Pj

)−1
. Suppose that only a single subspace projection, 

say Pw, is made available. Then, by applying Proposition 1 with A = λ−1IM , C = 1
σ2
n
Uw, and D = U�

w , 
the error covariance matrix Ree is given by

(
1
λ

+ 1
σ2
n

Pw

)−1

=
(

1
λ
IM + 1

σ2
n

UwU�
w

)−1

= λIM − λ2

σ2
n

Uw

(
Imw

+ λ

σ2
n

Imw

)−1

U�
w .

Taking the trace establishes MSE = λM −mw
λ2

σ2
n + λ

. Thus, if we want all subspaces to yield the same 

mean squared error reduction, they must have equal dimension mw = m.
If � ≥ 2 packets of data are available, then Ree =

(
1
λIM + 1

σ2
n

∑�
j=1 Pwj

)−1
with Pwj

= Uwj
U�

wj
being 

M ×M matrices for all j ∈ ���. When all N packets are available we write Ree =
(

1
λIM + 1

σ2
n

∑N
j=1 Pj

)−1

by letting Ũ � (U1|U2| . . . |UN ). Since 
∑N

j=1 Pj is symmetric positive semidefinite, its trace is N ·m. In 

other words, if {ζt : t ∈ �M�} is the set of all of its eigenvalues, then 
∑M

t=1 ζt = N ·m and there exists an 
orthogonal matrix Ψ such that 

∑N
j=1 Pj = Ψ diag(ζ1, ζ2, . . . , ζM )Ψ�. Hence, the MSE is given by

Tr
((

1
λ

ΨΨ� + 1
σ2
n

Ψ diag(ζ1, ζ2, . . . , ζM )Ψ�
)−1

)

= Tr
((

1
λ
IM + 1

σ2 diag(ζ1, ζ2, . . . , ζM )
)−1

)
=

M∑ λσ2
n

σ2 + λζt
.

n t=1 n
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Solving min
{ζt}

σ2
n

M∑
t=1

1
ζt + σ2

n

λ

such that 
∑M

t=1 ζt = N · m and N ≥ ζt ≥ 0 gives us the best MSE. Let 

Υ(ζ1, ζ2, . . . , ζM ) �
M∑
t=1

λσ2
n

σ2
n + λζt

+ α

(
M∑
t=1

ζt −N ·m
)

. Solving for ζt in 
∂Υ
∂ζt

= α− λ2σ2
n

(σ2
n + λζt)2

= 0 gives 

ζt = σn√
α
− σ2

n

λ
and 

M∑
t=1

ζt = M

(
σn√
α
− σ2

n

λ

)
= N ·m leads to 

σn√
α

= N ·m
M

− σ2
n

λ
. Hence, ζt = N ·m

M
. To 

see that this value is indeed a local minimum, notice that the second derivative 
∂2Υ
∂ζ2

t

= 2λ3σ2
n

(σ2
n + λσt)3

> 0. 

Thus, to minimize the error, we need to make ζt as uniform as possible for all t ∈ �M�. In particular, it 
is desirable to have M | (N ·m), i.e., to have an A-tight fusion frame with A = N ·m

M . The local minimum 
value for MSE is, in this case,

M∑
t=1

λσ2
n

σ2
n + λ

(
N ·m
M

) = M2λσ2
n

λN ·m + Mσ2
n

. � (12)

Theorem 4. Let Rxx = ΨΛΨ�. Then the MSE(ΨΛΨ�, σ2
n, �) formula is the same as the formula for 

MSE(Λ, σ2
n, �) derived in Theorem 2.

Proof. Given all N packets, we use projections of the form zj = U�
wj

y with y � Ψ�x, making Ryy = Λ. In 

this case we have Ree =
(
R−1

xx + 1
σ2
n

∑N
j=1 P̃wj

)−1
with 

∑N
j=1 P̃wj

= Ψ 
(∑N

j=1 Pwj

)
Ψ�. Hence,

Ree =

⎛⎝ΨΛ−1Ψ� + 1
σ2
n

Ψ
N∑
j=1

Pwj
Ψ�

⎞⎠−1

= Ψ

⎛⎝Λ−1 + 1
σ2
n

N∑
j=1

Pwj

⎞⎠−1

Ψ�,

yielding the same MSE(Λ, σ2
n, N) as the one already determined in (11). Similar reasoning yields the same 

formula for MSE(Λ, σ2
n, �) already deduced in (10) whose shorter form is given in (7.) �

5. Cyclostationary data vectors

This section considers data whose statistical characteristics vary periodically with time. The processes 
that produce such data are said to be cyclostationary or periodically correlated. They are abundant in 
econometry, telecommunication, and astronomy. Relevant definitions, prominent examples, and further ref-
erences are available in [14].

Henceforth, i �
√
−1 and ω � e−i 2π

M , which is a primitive Mth root of unity. Here we have M a power 
of 2 and the correlation matrix Rxx is circulant with first row entries, for some 0 < γ ∈ R:

1, γ, γ2, . . . , γ
M
2 −1, γ

M
2 , γ

M
2 −1, . . . , γ2, γ.

As a consequence of the Circular Convolution Theorem from the theory of Discrete Fourier Transforms, we 
can write Rxx as FΛF† where F is a (unitary) DFT matrix with entries Fj,k = ω(j−1)(k−1)

√
M

for j, k ∈ �M�, 
i.e.,

F � 1√
M

⎛⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 ω ω2 . . . ωM−1

1 ω2 ω4 . . . ω2(M−1)

...
...

...
...

...
M−1 2(M−1) (M−1)(M−1)

⎞⎟⎟⎟⎟⎠ , (13)
1 ω ω . . . ω
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and Λ a diagonal matrix diag(λ1, λ2, . . . , λM ). Note that the entries λjs are no longer monotonically non-
increasing. Let c := (1, γ, γ2, . . . , γ

M
2 −1, γ

M
2 , γ

M
2 −1, . . . , γ2, γ)� be a vector in RM . We use a well-known 

result [12, Theorem 4.8.2] to conclude that the diagonal entries in Λ are the elements in vector F†c. Since 
F is unitary, after some manipulation we obtain

λj = 1√
M

⎛⎝1 + (−1)j−1γ
M
2 +

M
2 −1∑
k=1

γk2 cos
(

2πk(j − 1)
M

)⎞⎠ for j ∈ �M� . (14)

Hence, λj = λM+2−j for j ∈ �2,M/2� and 
∑M

j=1 λj =
√
M =

√
Tr(Rxx).

Example 1. For M = 4, we have c� = (1, γ, γ2, γ) and

F† = 1
2

⎛⎜⎝1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞⎟⎠ , making

⎧⎪⎪⎨⎪⎪⎩
λ1 = (1 + 2γ + γ2)/2,
λ2 = λ4 = (1 − γ2)/2,
λ3 = (1 − 2γ + γ2)/2.

The measurements are given by zk = U�
k F†x + ñk � U�

k y + ñk for k ∈ �N�. Now that we have Ryy =
E[yy�] = F† (FΛF†)F = Λ, the Wiener Theory allows for the derivation of the expected error when 
measurements from � arbitrary subspaces are available. As before, let zcombi and Ucombi be the respective 
concatenations of available zkj

and Ukj
for j ∈ ���. The MSE in this case is exactly the same as the MSE

in the aligned case. This follows since Ree = E
[
(y − Fzcombi)(y − Fzcombi)†

]
= Ryy − RyzR−1

zz Rzy with

Ryy = Λ, Ryz = RyyUcombi = Λ
�∑

j∈1
Pkj

, and Rzz = U�
combi Λ Ucombi + σ2

nI(�·m).

The derivation of the MSE follows the steps done in Section 3. Thus, MSE(Λ, σ2
n, �) is the one given in (10)

while MSE(Λ, σ2
n, N) is in (11), with Λ as defined in this section. To get the best approximation x̃ of x, we 

apply F on the approximation ỹ of y.

6. Computational implementation

We implement the holographic sensing design computationally in a program written in python 2.7. The 
program has three different modes, namely, standard, linear, and cyclostationary, in correspondence with 
the different models of Λ. On input (M, m, N, Λ, σ2

n) the program determines N ≥ ζk ≥ 0 for k ∈ �M� and 
then computes for the absolute distance of each ζk to the nearest integer to properly round off ζk to sk. 
To ensure that 

∑M
k=1 sk = N ·m, there may be values of ζj with relatively large distance that need to be 

assigned to 
ζj�. The program then computes for MSE(N) from (8). For a given M we call the constant 
term 

∑M
j=1 λj in (10) the base point. To highlight the gain in recovery as more packets are made available, 

we call Δ(�) �
�∑

s=1

∑
j∈Ps

sλ2
j

σ2
n + sλj

the MSE(�) reduction, which we want to maximize.

For relatively small values of (M, m, N) users may choose to generate all subspace arrangements. The 
program comes with an option to specify a number, say 100, of arrangements with maximal Δ(N) for 
each input parameter set to be uniformly generated. Two plots are produced to illustrate, respectively, the 
minimum MSE(�) and the variance of Δ(�) for � ∈ �N − 1�. The subspace arrangements are ranked from 
smoothest, i.e., the one with smallest normalized �2-norm of the variances of the Δ(�) to the largest. The 
selected best arrangement is represented by the corresponding bold curves in the plots. As expected, the 
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Table 1
Computed values for typical stochastic data with λj = 0.8j−1 : j ∈ �M� and σ2

n = 0.05.

No. M N m
∑M

j=1 λj Max Δ(N) MSE(N) t {sk : k ∈ �t�} δ0.1

1 64 8 4 5.00 4.53 0.47 17 [3][2]13[1]3 6
2 8 8 4.69 0.31 19 [4]11[3]5[2]2[1] 4
3 16 4 4.69 0.31 19 [4]11[3]5[2]2[1] 9
4 1024 8 8 4.69 0.31 19 [4]11[3]5[2]2[1] 4
5 16 8 4.81 0.19 22 [7]10[6]6[5]2[4][3]2[2] 6
6 2048 16 8 5.00 4.81 0.19 22 [7]10[6]6[5]2[4][3]2[2] 6
7 16 10 4.83 0.17 23 [9][8]13[7]3[6]2[5][4][3][2] 5

smoothest arrangement, while not lagging far behind, is usually not the best-performing in terms of the 
MSE reduction gain Δ(�) for each chosen �.

The smoothness threshold δε specifies the minimum number of available packets such that all subspace 
arrangements have variances of their Δ(�) reductions below ε. If a user can tolerate ε = 0.1, then δ0.1
gives the number of required packets to ensure that any arbitrarily chosen subspace arrangement from 
the generated list is good enough. This works the other way as well. If at least a number of measurement 
packets always makes it through the channel, then one knows the variance of the MSE reductions that can 
be expected from using any subspace arrangement.

The next three subsections explain how the program handles different types of data.

6.1. A typical stochastic data: λj decays exponentially with j

First, let us consider a typical stochastic data where Λ = diag(λ1, λ2, . . . , λM ) and λj = γj−1 for 0 < γ < 1
and j ∈ �M�. On input (M, m, N, Λ, σ2

n) the program determines the largest positive integer t ≤ M such 
that ζk > 0 for k ∈ �t� and then computes for the absolute distance of each ζk to the nearest integer for a 
proper rounding off of ζk to sk, starting from the index corresponding to the lowest distance to the largest. 
A method to determine t has been given in Section 3.

We start with a simple example. Let M = 8, m = 4, N = 5, σ2
n = 0.5, and λj = 0.8j−1

for j ∈ �8�. Computation shows that ζj > 0 for all j. Up to three significant figures, they are 
3.24, 3.12, 2.96, 2.76, 2.52, 2.21, 1.83, 1.36. Rounding off, we get sj = 3 for j ∈ �5�, s6 = s7 =
2, and s8 = 1. The maximal Δ(5) is 3.0864, making MSE(5) = 1.075 since the base point is 
4.161. There are 3770 possible arrangements. The smoothest one, represented by its set of indices, is 
{{1, 2, 7, 8}, {1, 3, 4, 7}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 5, 6}}. It has normalized variance 0.0135. As one can 
easily see, each of the first 5 coordinates is sampled 3 times, i.e., sj = 3 for j ∈ �5�, and so on until the last 
coordinate sampled only once, i.e., s8 = 1.

Separately, we generate 300 randomly selected arrangements having the required maximal Δ(5). In a 
particular run, the smoothest of these 300, with normalized variance of 0.0147 is {{1, 2, 5, 8}, {1, 3, 4, 5}, {1, 4,
6, 7}, {2, 3, 4, 7}, {2, 3, 5, 6}}. In both the exhaustive and random runs, if at least 3 packets are guaranteed 
to be available, then any choice of subspace arrangement has variance of MSE reductions less than 0.05, 
i.e., δ0.05 = 3. Fig. 2 presents the respective sets of two plots, one for the exhaustive run and the other for 
the random run, for an easy comparison.

From Section 3 it is clear that, regardless of the dimension M , given fixed (Λ, σ2
n), the values of MSE(N), 

t, and the set {sj : j ∈ �t�} depend only on N · m. Table 1 illustrates the fact. The set {sk : k ∈ �t�}
is written in shorthand with [x1]y1 [x2]y2 . . . [xr]yr denoting sk = x1 for k ∈ �y1� followed by sk = x2 for 
k ∈ �y1 + 1, y1 + y2� and so on until sk = xr for k ∈ �t− yr + 1, t�. We remove the superscript if it is 1. 
For example, Entry 1 in Table 1 has [3][2]13[1]3 in the specified column of {sk : k ∈ �t�} with t = 17. This 
means that s1 = 3, sk = 2 for 2 ≤ k ≤ 14 and sk = 1 for 15 ≤ k ≤ 17.
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Fig. 2. A typical stochastic data with M = 8, m = 4, N = 5, σ2
n = 0.5, and λj = 0.8j−1 for j ∈ �8�. The plot on the left depicts 

the MSE as a function of the number of 1 ≤ � ≤ N available packets for different arrangements. The base point is computed by 
setting � = 0. The plot on the right shows the trend on the variance of the MSE reduction given the number of available packets. 
Above: all 3770 arrangements. Below: uniformly selected 300 arrangements.

Table 2
Computed values for stochastic data with M = 128, N = 10, m = 8, and λj = γj−1.

No. σ2
n γ

∑M
j=1 λj Max Δ(N) MSE(N) t {sk : k ∈ �t�} δ0.1

1 0.05 0.9 10.00 9.11 0.89 36 [3]13[2]18[1]5 7
2 0.8 5.00 4.74 0.26 20 [5]8[4]7[3]3[2][1] 5
3 0.7 3.33 3.21 0.12 14 [7]6[6]4[5][4][3][2] 3
4 0.1 0.9 10.00 8.68 1.32 32 [3]20[2]8[1]4 7
5 0.8 5.00 4.59 0.41 18 [6]3[5]9[4]2[3]2[2][1] 4
6 0.7 3.33 3.14 0.19 13 [8]5[7]3[6][5][4][3][1] 2
7 0.5 0.9 10.00 7.01 2.99 22 [5]7[4]7[3]3[2]3[1]2 4
8 0.8 5.00 3.99 1.01 13 [8]5[7]2[6]2[5][4][3][2] 2

One can fix M , N , and m while varying Λ or σ2
n. Table 2 presents some results for M = 128, N = 10, 

m = 8.
Swapping N and m does not alter MSE(N), t and {sk : k ∈ �t�}. We keep N and m small compared 

to M and use m ≤ N for smoother recovery, especially when few packets are available. Computation is 
longer for m > N since, as m increases, partitioning an M -dimensional space into subspaces of dimen-
sion m requires exponentially more steps. The resulting plots confirm that the MSE reductions initially 
exhibit a larger fluctuation but converge relatively more rapidly when m > N . Fig. 3 illustrates the differ-
ences.
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Fig. 3. Comparison when N and m are interchanged for a stochastic data with M = 1024, σ2
n = 0.1, and λj = 0.8j−1. Above: 

N = 10 and m = 4. Below: N = 4 and m = 10.

Fig. 4. Linear data with M = 128, m = 8, N = 10, and σ2
n = 0.1.

6.2. When λj decreases linearly with j

For j ∈ �M�, let λj = 1 − j − 1
M

and Λ = diag(λ1, λ2, . . . , λM ). Such data is linear, with base point 
(M + 1)/2, since the value of λj decreases linearly with j. Compared to the data type in the preceding 
subsection, the output for linear data type shows higher variances in the MSE reduction among the subspace 
arrangements. The minimum MSE(�) values, however, are much closer to each other for any available �
packets. The coordinates are sampled more evenly as shown by the distribution of sks. Fig. 4 presents the 
plots for the input M = 128, m = 8, N = 10, and σ2

n = 0.1. Table 3 has more examples.
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Table 3
Computed values for linear data.

No. M N m σ2
n Max Δ(N) MSE(N) t {sk : k ∈ �t�} δ0.1

1 32 4 4 0.05 11.50 5.00 16 [1]16 4
2 8 4 15.13 1.37 31 [2][1]30 8
3 64 8 8 0.05 29.80 2.70 61 [2]3[1]58 8
4 0.1 27.72 4.78 59 [2]5[1]54 8
5 128 10 8 0.05 51.60 12.90 80 [1]80 10
6 0.1 48.38 16.12 80 [1]80 10
7 0.5 32.50 32.00 80 [1]80 10

Fig. 5. Cyclostationary data with M = 128, m = 8, N = 10, γ = 0.8, and σ2
n = 0.05.

Table 4
Computed values for cyclostationary data.

No. M N m γ σ2
n Max Δ(N) MSE(N) {sk : k ∈ �M�} δ0.1

1 64 8 8 0.8 0.05 6.84 1.16 [3]3[2]9[1]6[0]29[1]6[2]8[3]3 6
2 16 4 12
3 128 10 8 0.9 0.05 9.90 1.42 [3]6[2]9[1]5[0]89[1]5[2]8[3]6 8
4 0.7 8.33 2.98 [2]12[1]17[0]71[1]17[2]11 8
5 256 8 8 0.8 0.05 11.02 4.98 [2][1]31[0]193[1]31 8
6 0.1 9.83 6.17 [2]9[1]15[0]209[1]15[2]8 7
7 16 4 0.5 6.57 9.43 [3]6[2]6[1]3[0]226[1]4[2]6[3]5 5

6.3. For cyclostationary data

We also perform the computational analysis on the cyclostationary data with various γ values. Recall that 
the nonzero diagonal entries λj in Λ is given by the formula in (14). The generated plots for a cyclostationary 
data with M = 128, m = 8, N = 10, γ = 0.8, and σ2

n = 0.05 form Fig. 5.
Table 4 lists some computed values for the specified input parameters. The base point is 

√
M and the 

diagonal entries in Λ are no longer monotonically nonincreasing. The presentation of {sk} for k ∈ �M�

must be adjusted accordingly since the threshold t is meaningless here without a proper manipulation. 
Our strategy is to first order the diagonal entries in Λ in a nonincreasing way and store the corresponding 
permutation τ of the indices. We then apply the method of determining t and the sk for k ∈ �t� as in the 
case of the typical stochastic data. Finally, we apply τ−1 to the set of indices to retrieve the correct index k
for each sk. We use Entry 1 in Table 4 to explain their presentation. The notation [3]3[2]9[1]6[0]29[1]6[2]8[3]3
says that sk = 3 for k ∈ �1, 3� ∪ �62, 64�, sk = 2 for k ∈ �4, 12� ∪ �54, 61�, sk = 1 for k ∈ �13, 18� ∪ �48, 53�, 
and sk = 0 for k ∈ �19, 47�.
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Fig. 6. An adaptive design for a stochastic data with M = 1024, λj = 0.8j−1, N = 16, m = 8, and σ2
n = 0.1. Above: original setup. 

Below: only up to 12 arbitrary packets are available.

6.4. An adaptive design

A user may want to set a minimal acceptable number of available packets. Depending on the current 
channel situation, the user may prefer some flexibility in adapting the input parameters. Our implementation 
routine naturally reflects various requirements. To illustrate this point, consider a stochastic data with 
M = 1024, λj = 0.8j−1 for j ∈ �1024�, N = 16, m = 8, and σ2

n = 0.1. The base point is 5.00 and the best 
MSE(16) is 0.304. Given a current channel, the user infers that, out of the 16 possible packets, only up to 
12 arbitrary packets can be made available within a desirable time. With this additional constraint, the 
best MSE(12) is 0.366. Imposing the smoothness condition, the best subspace arrangement for the original 
setup is generally no longer the best in the adapted situation. The user then adjusts accordingly by using 
this newly calculated best subspace arrangement. Fig. 6 allows for an easy comparison of the relevant plots.

7. Connection to Grassmannian packings

We now discuss how our approach relates to the work of Kutyniok et al. in [10]. We begin with their 
setup. As in our estimation above, they use the linear minimum mean squared error estimation. The data 
is a random vector x ∈ RM of mean 0 and covariance matrix Rxx = λIM with λ � σ2

x. The projections 
Pwj

for j ∈ �N� are general projections, not necessarily aligned with the standard basis. The estimation 
is based on the data’s fusion frame measurements in the presence of additive white noise with possibilities 
of erasures. Their objective is to design a fusion frame which is robust against noise and erasures starting 
from erasures of any one subspace to those of any two or more subspaces.
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Their analysis leads to three design criteria. First, in the presence of noise but without any erasure, the 
subspaces are best arranged in the form of a tight fusion frame with A ·M =

∑N
k=j mj where mj is the 

dimension of subspace Wj. To robustly handle any one subspace erasure, the dimensions of the subspaces 
must be equal, i.e., mj = m for all j. Continuing to robustness against any two erasures, the Grassmannian 
packing of the subspaces yields the best error reduction in the estimation. With three or more subspaces 
unavailable, one should use subspace arrangement that forms an equidistance tight fusion frame with all 
subspaces having an equal dimension [10, Theorem 3.3]. Note that, in order to compare the results with 
our approach, the statement of the theorem needs to be refined. The MSE still depends on the number r of 
erased subspaces and is not constant for all r ≥ 3. The refined statement reads:

Let {Wk}Nk=1 be an equidistance tight fusion frame with dim(Wk) = m for all k ∈ �N�. Then the 
MSE(λ = σ2

x, σ
2
n, N − r) due to r subspace erasures for each r ∈ �3, N − 1� depends only on r.

The work of Kutyniok et al. in [10] made use of two simplifying assumptions that, given the results that we 
have obtained above, can be removed to yield better MSE performance. First, their choice of using the matrix 
I −E, accounting for the loss of data, to avoid recalculating Ree on every occasion ([10, Section 3]) degrades 
the performance of the estimation process. A more careful analysis on the matrix Ree given information 
about the specifics of any set of � available packets allows for a sharp determination of the achievable MSE
for each particular instance. Second, considering only the case of Rxx = σ2

xIM does not reflect many realistic 
situations. It is more common to have data with Rxx = ΨΛΨ� where Λ = diag(λ1, λ2, . . . , λM ) depends on 
the exact, and usually given or estimated, statistical characteristics of the data.

We now follow the setup in [10] with σ2
xI replaced by Λ and retrace the analysis, starting from 

the no erasure case onward. We form the composite measurement matrix zcombi by concatenating the 
zk for k ∈ �N� and define the sum of the projections by using the composite basis matrix U :=
(U1| . . . |UN ). When there is no erasure, the error covariance matrix is Ree =

(
R−1

xx + 1
σ2
n
UU�

)−1
. 

Let φ−1
j for j ∈ �M� be the jth eigenvalue of R−1

ee . Hence, Tr(Ree) =
∑M

j=1 φj . For each j, we have 

1
λj

+ A

σ2
n

≤ 1
φj

≤ 1
λj

+ B

σ2
n

by (4). This implies 
M∑
j=1

λjσ
2
n

σ2
n + λjB

≤
M∑
j=1

φj ≤
M∑
j=1

λjσ
2
n

σ2
n + λjA

. Highlighting the 

noise-to-signal ratio, 
M∑
j=1

λj

1 +
(

λj

σ2
n

)
B

≤ Tr(Ree) =
M∑
j=1

φj ≤
M∑
j=1

λj

1 +
(

λj

σ2
n

)
A

. Let L �
∑N

k=1 mk. Then the 

minimal MSE is achieved when A = B, i.e., when the fusion frame is tight. Thus, A = L

M
and

MSE(Λ, σ2
n, N, tight fusion frame) =

M∑
j=1

λj

1 +
(

λj

σ2
n
· L
M

) . (15)

Remark 2. If we simply have a frame without requiring 
∑N

j=1 Pk ≥ AIM , then R−1
ee is diagonal with entries 

φ−1
j = 1

λj
+ s

σ2
n

, making φj = λjσ
2
n

σ2
n + sλj

for j ∈ Ps. Hence, MSE(Λ, σ2
n, N) =

M∑
k=1

φk =
N∑
s=0

∑
j∈Ps

λjσ
2
n

σ2
n + sλj

, 

which was established earlier in (11).

It is clear that removing the requirement of using a fusion frame yields lower MSE estimators when 
Rxx = Λ. When Rxx = σ2

xI, however, we have already seen in the derivation of (12) that the minimum 
value for MSE(σ2

x, σ
2
n, N) is indeed achieved when an A-tight fusion frame is used.

Continuing our analysis on the general erasure model described in [10, Section 3], still with Ree = Λ, 
let r subspaces out of the N forming the frame be erased. Assume that all packets have equal dimension 
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m. Let Ξ ⊂ �N� be the set of indices of the erased subspaces and let E be the corresponding (symmetric) 
L × L block diagonal erasure matrix. Its jth diagonal block is Im if j ∈ Ξ and is an m ×m zero matrix if 
j /∈ Ξ. Then the composite measurement vector with erasures is z̃ = (I −E)z. Thus, in z̃ the measurement 
vectors associated with the erased subspaces are set to 0.

The estimate of x is x̃ = Fz̃. The error covariance matrix R̃ee for this estimate is

E[(x − x̃)(x − x̃)�] = E[(x − F(I − E)z)(x − F(I − E)z)�].

Let Ree � Rxx − RxzR−1
zz Rzx and Ree � RxzR−1

zz ERzzE�R−1
zz Rzx. We use them to define R̃ee � Ree +

Ree. Now we minimize the trace of Ree, which can be written as

RxxU(σ2
nIL + U�RxxU)−1E(σ2

nIL + U�RxxU)E�(σ2
nIL + U�RxxU)−1U�Rxx. (16)

Let αj � λj

σ2
n + L

M λj

. By Proposition 1 with A = σ2
nIL, C = U�, and D = RxxU, we write the symmetric 

matrix R−1
zz = (σ2

nIL + U�RxxU)−1 as

1
σ2
n

IL − 1
σ4
n

U�
(
IM + L

Mσ2
n

Rxx

)−1

RxxU = 1
σ2
n

IL − 1
σ2
n

U� diag(α1, . . . , αM )U.

Let Y � RxxU 
(

1
σ2
n
IL − 1

σ2
n
U� diag(α1, . . . , αM ) U

)
. Performing the calculation,

Y = 1
σ2
n

diag(λ1, . . . , λM ) U − L

Mσ2
n

diag(λ1, . . . , λM ) diag(α1, . . . , αM ) U

= diag(α1, . . . , αM ) U.

Hence, Ree = YE(σ2
nIL + U�RxxU)E�Y�. Since UEU� =

∑
�∈Ξ P�, Ree is given by

diag(α1, . . . , αM ) σ2
n

(∑
�∈Ξ

P�

)
diag(α1, . . . , αM )

+ diag(α1, . . . , αM )
(∑

�∈Ξ

P�

)
diag(λ1, . . . , λM )

(∑
�∈Ξ

P�

)
diag(α1, . . . , αM ).

Rearranging for better computation of the trace, we conclude that Ree is given by

diag(α1, . . . , αM )

⎛⎝σ2
n

∑
�∈Ξ

P� +
∑
�∈Ξ

P� diag(λ1, . . . , λM )
∑
j∈Ξ

Pj

⎞⎠ diag(α1, . . . , αM ). (17)

Let MSE0 � MSE(Λ, σ2
n, N, tight fusion frame) in (15) and MSE := Tr(Ree). Our MSE(Λ, σ2

n, N −
r, tight fusion frame) is therefore given by Tr[R̃ee] = MSE0 +MSE.

Remark 3. It is immediate to verify that our results include the corresponding results in [10] as special 
cases. One simply replaces each λj in (15) and (17) above with σ2

x. In the former, one arrives at

M∑ σ2
x

1 + Aσ2
x

2

= Mσ2
xσ

2
n

σ2
n + Aσ2

x

with A = L

M
,

k=1 σn
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which is the MSE0 in [10, Equation (7)]. In the latter, the result is [10, Equation (9)]

α2 Tr

⎛⎜⎝σ2
n

∑
j∈Ξ

Pj + σ2
x

⎛⎝∑
j∈Ξ

Pj

⎞⎠2
⎞⎟⎠ with α � σ2

x

σ2
n + Aσ2

x

.

Hence, following the approach of Kutyniok et al. using a more general Rxx confirms that their results 
are obtained when Rxx = σ2

xIM . It is however clear that in all applicable instances, the MSE(Λ, σ2
n, � =

N − r) in (10) is more precise since, given any r out of N packets missing, the error covariance matrix 
Ree is recalculated. It is here where Grassmannian packings no longer provide any benefit. The better MSE
performance indeed requires more yet still reasonable computations.

In designing packets of measurement for estimating the unknown vector x to be robust against noise 
and erasures, starting from one erasure onward, we have the following conclusions. First, the best setup 
for recovery when all packets are available is as follows. When Rxx = σ2

xI, we can indeed use a tight 
fusion frame. When Rxx = Λ, one first determines the best values of s1, s2, . . . , sM that maximize the 
Θ or Υ function. Here we do not even have a fusion frame if there is a t < M such that sj = 0 for all 
j ∈ �t + 1,M�. Given that there is one subspace erasure, we have the following strategy: If Rxx = σ2

xI, then 
we ensure that all subspaces have equal dimension m. When Rxx = Λ, compute for MSE(Λ, σ2

n, N−1) using 
the information on the particular missing packet. Our work still assumes that all subspaces are of equal 
dimension m. It remains an interesting possibility to consider letting the subspace Wj be of dimension mj

which is determined to be a function of λj for j ∈ �M�. In the framework of [10], when any two subspaces 
are erased and Rxx = σ2

xI, one uses suitable Grassmannian packings. If, subsequently, r ≥ 3 erasures occur, 
the formula for the corresponding MSE depends only on r. On the other hand, when Rxx = Λ and r ≥ 2
erasures take place, one should use the formula for MSE(Λ, σ2

n, N − r), incorporating the exact set Ξ of the 
missing packets in the computation, to evaluate the system’s MSE performance.

8. Conclusion and other directions

We put forward a general sensing method that produces holographic representations of data. Packets 
that encode the information are designed to be equally important and the progressive recovery of the 
unknown vector from those packets will have as smooth decreasing error profiles as possible. Thus, the 
quality of recovery depends on the number of available packets, regardless of the order in which they 
arrive. An optimality analysis based on the least-squares estimation theory is supplied in detail. We are 
currently investigating if other known techniques, such as network coding and projection matrix designs for 
compressive sensing, can further improve our method.

To gain significantly from our holographic sensing, the data must be useful at various quality levels. Our 
approach is well suited for storage and distributed retrieval of information such as speech, audio, image, 
video, and volumetric data where there is unpredictable delay in gathering the full data and, hence, an early 
degraded preview can be very useful to decide whether or not to proceed with the retrieval process.
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