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Abstract. A random method for exploring a continuous unknown pla-
nar domain with almost no sensors is described. The expected cover time

is shown to be proportional to the electrical resistance of the domain,

thus extending an existing result for graphs [11]. An upper bound on
the variance is also shown, and some open questions are suggested for

further research.
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1 Introduction

Exploring unknown terrain is an important issue in robotics. The problem has

been intensively investigated, and several deterministic methods have been sug-

gested and implemented. Most of those methods, however, rely on sophisticated,

expensive and fragile systems of sensors (e.g. odometers, infra-red sensors, ultra-

sound radar or GPS), and/or sophisticated mapping algorithms. In this paper

we suggest a minimalist approach in order to achieve the goal of covering with a

minimum of sensing and computing, even if some performance reduction is im-

plied. We show that on the average, a random walk is not too bad compared to

deterministic algorithms that use much more sensing and computing to calculate

their steps.

Formally, the on-line covering problem is to �nd a local rule of motion that

will cause the robot to follow a space-covering curve, such that every point of the

given region is in some prespeci�ed r-neighborhood of the robot's trail, r being

the covering radius of the robot. Such a rule, if obeyed for a su�cient number of

steps, should lead the robot to follow a covering path which is a polygonal curve

de�ned by the points z1; z2; : : : ; zT , that covers a region R, i.e.,

R =

T[
t=0

Br(zt); (1)
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where Br(z) is a disk of radius r around z, and for all i, jzi+1 � zij � r 3. Note

that the shape of R is not known in advance.

Existing methods for graph search (e.g. BFS, DFS) cannot be used for our

purpose since no vertices or edges exist in our setting; a robot can move to ar-

bitrary points on the continuum, while the BFS and DFS algorithms assume a

discrete and �nite set of possible locations. Also, those algorithms need a mem-

ory the size of which is, in general, proportional to the area to be explored. Yet

another drawback of fully deterministic algorithms is their inability to provide a

complete answer for realistic robotic problems, since both sensors and e�ectors

are extremely vulnerable to noise and failures. As opposed to some purely com-

putational problems, in robotics the environment of the robot is not known in

advance and even if it is - it may change during operation. One way to tackle these

problems is to make the robot itself non-deterministic by introducing random-

ness into its behaviour. This motivates our algorithm for the covering problem.

We call this method PC - Probabilistic Covering. The basic rule of behavior here

is to make a short step and then a random turn. Somewhat surprisingly, the

expected performance of the PC approach is not so bad; for example, it covers

a gridded rectilinear polygon in average time O(n� logn), where n is the area

of the polygon and � - its \electrical resistance," to be de�ned and explained

below.

Some related work has already been done in various areas:

{ Robotic covering: In previous work ([14],[15]) a discrete problem of graph-

exploration was solved using markers. More recently, the problem of covering

a tiled 
oor was addressed in two di�erent ways: In [29] the dirt on the 
oor

served as memory to help the robot's navigation, while in [31] and [30] a

vanishing trace was used for that purpose. In [6] the issue of inter-robot

communication is addressed in the context of various missions, among them

grazing - i.e. visiting every point of a region for purposes of object-fetching.

There, a reactive model of behavior is presented, and simulation shows that

detailed communication does not contribute too much to the performance.

In [5] many experimental works are presented for planetary exploration by

autonmous robots. Heuristic navigation methods are given in [17] for path

planning of an autonomous mobile cleaning robot, and in [20] for a robot

exploration and mapping strategy. However no rigorous analysis is given

in the above references. In [18] an algorithm is presented for exploration

of an undersea terrain, using exact location sensors and internal mapping.

Practical implementations of covering algorithms have been demonstrated

in [32] and [27]. In [32] a set of robots is described that help clean a railway

station, using magnetic lines on the 
oor as guidelines. This method seems

to work well, but is limited to pre-mapped regions. In [27] a cooperation of a

team of robots is created by an explicit level of inter-robot communication.

Each robot can choose one of multiple possible behaviors, according to its

3 Note that if r ! 0, a covering path tends to be a space �lling curve [28], which is

a continuous 1-dimensional curve that �lls a 2-dimensional domain.
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speci�c conditions. In one of these behaviors the robot plays the role of a

janitorial service man, by cleaning the dust around it.

{ Randomization and uncertainty in robotic tasks: Uncertainty is an

inherent factor in any real-life action, in particular one that relies on the

information gained from sensors and manipulations performed by actuators.

One way to cope with uncertainty is randomization - introducing a random

selection into the robot's control. In [16] and [22], randomization is used to

(partially) overcome uncertainty in various robotic tasks. In a sense, our PC

algorithm is an extreme case of randomization, whereas almost no sensors

are used.

{ Random Walk and Covering: The analogy between random walks on

graphs and the resistance of electrical networks was presented in [25], and

later in [13], where it was used for investigating the recuerrence properties of

random walks on 1, 2 and 3 dimensional grids. The rate of coverage of graphs

by a random walk has been studied intensively. Two representative results

in this context are the upper bounds of O(mn) on the cover time of a graph

with m edges and n vertices [2], and O(m� logn) where � is the resistance of

the graph, assuming all edges to be 1-Ohm resistors [11]. In [10] it was shown

that several random-walkers, if properly distributed in the graph, can bring

a signi�cant speed-up to the process of covering. Coverage of continuous

domains by a Brownian motion process was less investigated. A signi�cant

contribution was made in [24], where a simple relation was derived between

the cover time and the hitting time in a strong Markov process. The current

paper aims to make a further progress in this direction, by relating the cover

time of a Markov process (with discrete time and continuous location) to

the electrical resistance of the explored region.

{ O�-line covering: The o�-line version of the problem (i.e. �nding the

shortest covering path for a given polygon) is NP-hard. The proof, as well as

approximation algorithms for it are presented in [1]. The related (NP-hard)

problem of optimal watchman route is to �nd the shortest path in a polygon

such that every point of the polygon is visible from a point of the path. This

problem is investigated in [12]. The goal there is to design a minimum-length

path that will see each and every point in a given (i.e. known in advance)

polygon.

The rest of the paper is organized as follows. In Section 2 we show a lower

bound on the length of any covering path. Then in Section 3 we describe the PC

process and show that the expected cover time and its variance can be expressed

in terms of the electrical resistance of the shape to be covered. In section 4

we apply our results to prove the existence of a universal traversal sequence of

angles, and then conclude with a discussion and some open questions.

2 A Universal Lower Bound on the Cover Time

We shall now show a lower bound on the length of any covering path, independent

of the algorithm used to generate it.
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Lemma1. The number of points in a covering sequence of r-circles, say Z =

z1; z2; : : : ; zTc , such that jzi+1 � zij � r, is bounded from below

Tc �
�

6�

4� + 3
p
3
(A=a) � 1

�
; (2)

where A is the region's area and a = �r2 - the area covered by the robot in a

single step.

Proof: In each step (except, perhaps, the �rst one) the robot jumps at most

a distance of r, and hence (due to overlapping) adds at most (
p
3=2 + 2�=3)r2

to the covered area. Thus, after T points, the covered area is at most ST =

(T � 1)(
p
3=2 + 2�=3)r2 + �r2. By equating STc to A the lemma is implied. ut

Remark: It is intuitively reasonable to assume that as r decreases, the \quality

of covering" improves, i.e. the amount of overlap reduces. This intuition is made

clear by the following result from [21]. De�ne N (r) as the minimum number of

r-circles needed to cover a region of area A. Then

lim
r!0

N (r) = (2�=
p
27)(A=a); (3)

and the minimum is attained in the \honeycomb" (hexagonal) arrangement of

the circles, obtained by tiling the plane with congruent regular hexagons and

circumscribing each hexagon with a circle. Note that the above result from [21]

implies that, asymptotically, the cover time Tc cannot go below 1:209 : : :�(A=a),

while Lemma 1 implies that for any value of r, Tc � 1:06 : : :� (A=a).

In the rest of the paper we shall con�ne ourself to the problem of covering

a unit-grid polygon of size n, i.e. a polygon made of a connected set of n unit

squares on the grid. Two squares are considered connected if they have a common

edge. We shall also assume that the covering radius of the robot is
p
2; thus we

have that A = n and a = 2� and it follows from Lemma 1 that

Corollary 2. If R is a unit-grid polygon of size n, then at least
l

3n

4�+3
p
3

m
steps

of a
p
2-radius robot are necessary to cover it.

The o�-line version of the covering path problem (i.e. when the shape of

R is given in advance) is known to be NP-hard, and there are various heuris-

tics to solve it [1]. However in many practical situations, the on-line problem is

more relevant, since an e�cient on-line solution enables an autonomous robot

to cover a region without the need to be pre-programmed with a detailed map,

thus being able to serve di�erent shapes with the same hardware. Other advan-

tages of the on-line approach are the ability to tolerate changes in the geometry

and topolgy of the environment, and the 
exible mode of cooperation that can

only be achieved via on-line approach, while the pre-programming one is severly

limited in this respect. This, in addition to the high cost of implementing a re-

liable system of sensors (which is needed for deterministic covering algorithms)

motivates our probabilistic approach to the covering problem.
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3 PC (Probabilistic Covering) - A Randomized Approach

to the Covering Problem

In this section we consider a robot that acts with (almost) no sensory inputs;

it makes a step, chooses a random new direction, and then makes another step.

Clearly, the average performance of this method is not the optimal one, but it

has the advantage of being almost sensorless, thus it is cheap and tolerant. In

fact the only sensing is required for knowing how far are we from the boundary.

In the sequel we shall refer to the r-disk around z by Br(z), and to the r-circle

around z by Cr(z). Formally, the rule of motion is de�ned as follows:

/* PC - Probabilistic Covering with an r-disk */

Rule PC(z: current location)

A) cover Br(z);

B) set �(z) = min
�
r;max(B

2r0 (z)�R) fr0g
	

;

/* �(z) is half the maximum radius */

/* (not exceeding r) */

/* of a circle around z within R */

C) choose a random neighbor w from C�(z)(z);

D) go to w;

end PC.

See Figures 1, 2 and 3 for examples of the process 4. Note that if Cr(z)

intersects the boundary of R, then the duration of a PC step shall be shorter than

one unit of time, since the step length is �(z) < r. In each step the robot scans

around to see if a boundary exists within distance r; hence we shall assume that

the time spent at z is proportional to (�(z))2, where �(z) is half the maximum

radius not exceeding r of a circle around z within R. The reason for making the

step length half the possible maximum is to avoid the chance of the robot going

to @R, where it will get stuck forever since �(z) vanishes on the boundary.

We model the robot as a point that covers a circle of radius r around itself.

Due to the random nature of PC, no deterministic bound can be stated on the

cover time; we shall, however, draw some bounds on the expected cover time and

its variance, and both will be given as functions of the electrical resistance of

4 A JAVA simulator of the PC process is web-accessible through:

http://www.cs.technion.ac.il/~ wagner/pub/mac.html.
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Fig. 1. A lonesome PC robot; grey

area has not yet been covered.

Fig. 2. Four PC robots working to-

gether. A fellow robot is considered

as an obstacle, hence no collisions
should occur according to the PC

rule.

a conductive material in the shape of R. This resistance can be further related

to the geometrical properties of the robot and the region. More speci�cally, we

prove the following:

1. Expected time of complete coverage : E
h
TPC

i
, the expected time until

full coverage of R - a unit-grid polygon of size n by a PC robot which covers

a radius of
p
2, is bounded by

2n� � E
h
TPC

i
� 2n� logn; (4)

where � is the electrical resistance of R (assuming a material of unit sheet-

resistance, to be de�ned in the sequel). Note that the resistance � = �(R) can

sometimes be bounded in terms of the geometrical properties of the shape,

and can always be numerically approximated. E.g. if R is a
p
n�p

n square

then its resistance is O(logn), when measured between a bottom left and a

top right squares. In case of an a � b rectangle with a << b, � = O(b=a).

Recall from Corollary 2 that any covering path should have at least dn=
p
27e

steps.

2. Variance in the cover time: V
h
TPC

i
, the variance in time of complete

coverage, is bounded from above:

V
h
TPC

i
� 211n�; (5)

which yields an upper bound on the standard deviation of the cover time:

�
h
TPC

i
=

r
V
h
TPC

i
� 32

p
2n�: (6)
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Our results can be extended to more general shapes, but this involves various

types of cumbersome details that will be ommited in this extended abstract. Note

that The above results are achieved without using any sensors except collision

detectors, (the robot cannot distinguish "tiles" or "grid squares") and thus have

almost no vulnerability to noise. It can be used as is, or be combined with a

sensor-based algorithm to achieve a tradeo� between cover time and coverage

guarantee.

3.1 Analysis of the Cover Time by PC

There is a wealth of results in the literaure for cover times by random walk

on graphs, a sample of which was mentioned in the introduction. Our case is

di�erent, however, since the robot can occupy any point in the continuum of

the region, rather than being bounded to a �nite set of such points. One may

wish to partition the region into squares, and then consider a random walk on

a graph with the set of squares as its vertex set; but this will not do because

the transition probabilities are not constant; rather, they depend on the precise

location of the robot within a square (i.e. the process is not time-homogeneous).

Hence we shall use continuous arguments to analyse the process.

We �rst observe that the PC process is a strong Markov process, since the

probability of visiting a location depends only on the previous location but not

on the earlier history - the robot has no memory. It was proved in [24] that under

such a process, if Q = fq1; q2; : : : ; qng is a collection of subsets of a set R, then

E [T (q1; q2; : : : ; qn)], the expected time for visiting some point of every subset in

Q (starting from anywhere in R) is bounded as follows:

hmax � E [T (q1; q2; : : : ; qn)] � hmax

nX
i=1

1=i; (7)

where hmax = maxx2(RnQ);1�i�n fhi(x)g ; and hi(x) is the expected time to �rst

reach subset qi upon starting from x 2 R. Let us denote the set of unit-squares in

R by S = fs1; s2; : : : ; sng. This partition is not known to the robot, but will serve
us in our analysis. In order to establish bounds on the average cover time of the

PC process, we further observe that (since the robot's covering radius is r =
p
2)

if the robot has visited all the n squares inR, then R is totally covered. See Figure

3 for an example. Clearly, if a robot is located anywhere within such a square, the

whole square is covered (actually, some of the neighbor squares are also partially

covered, but this does not make any harm to our upper bound result). Thus,

visiting all the small squares is su�cient to guarantee a full coverage of R. On the

other hand, in order to cover R starting from any point in it, the robot should

make, at least once, the tour between the two farthest squares in R. Let us de�ne

the hitting time (also known as access time or �rst-passage time) from a point

x 2 R to a square sj , denoted hj(x), as the expected time of a PC process that

starts at x and ends upon �rst reaching a point in square sj . We also de�ne Ci;j,

the commute time between squares si and sj as the average time of a round trip

from si to sj and back, i.e. Ci;j = Cj;i = maxx2si;y2sj fhj(x) + hi(y)g : It is thus
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(z3)

R

z1

z2
z3

2µ

Fig. 3. A grid polygon R, partitioned into unit squares, and a possible sequence of

PC steps which take random continuous locations z1; z2; z3, thus covering the dashed
circles. In this case, �(z2) > �(z3), and hence the step size at time t = 2 is greater

than at time t = 3. The dashed circles designate the covered area. Note that, since the
covering radius is always 21=2 while the grid size is 1, it is su�cient to visit all squares

in order to guarantee a coverage of R.

implied by Equation 7 (using
Pn

i=1(1=i) < 2 logn) and the above observations

that the expected cover time of R can be bounded:

max
si;sj2R

fCi;jg � E
h
TPC

i
� 2(logn) max

si;sj2R
fCi;jg : (8)

In order to �nd the maximum commute time (Ci;j) in R, we now show that the

commute time between any squares si; sj in R is proportional to the product of

the number of squares in R and the electrical resistance between si and sj . The

following Lemma is a continuous analog to [11] which related the commute time

of a random walk on a graph with its electrical resistance, considering each edge

as a 1-Ohm resistor.

Lemma3. Ci;j, the commute time between squares si and sj in R, obeys Equa-

tion Ci;j = 2n�i;j; where n is the size of R and �i;j is the electrical resistance

between squares si and sj , assumming R to be made of a uniform material with

unit sheet resistance 5.

Proof: Let us denote the maximumstep size by r. In a step, the PC robot selects

a random angle and goes in that direction. The length of the step is �(z), half

the maximum radius not exceeding r of a circle around z within R. As explained

5 The sheet resistance of a material is de�ned as the voltage across a square of the

material caused by one unit of current (i.e. one Ampere) that is 
owing between two

parallel edges of the square. The sheet resistance is commonly expressed in units of

Ohms per square.
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before, we assume the time spent at z to be (�(z)=r)2 which is one unit in an

internal point of R (i.e. where �(z) = r), and less near the boundary, where

�(z) < r and steps are shorter (see Figure 3). If z =2 sj , then the expected time

to reach square sj from z is just the average of the step length plus the access

time over a �(z)-circle around z, i.e.

hj(z) = (�(z)=r)2 +
1

2�

Z 2�

�=0

hj(z + �(z)ei�)d�; (9)

where z + �(z)ei� refers to a point at distance �(z) from z and angle � to the x

axis, in the complex notation. Clearly if z 2 sj then hj(z) = 0:

Now consider R as a 
at surface of a uniformly resistive material with unit

sheet resistance, and assume that a current of I0 = 4=r2 Amperes per unit of

area is uniformly injected into R, and 4n=r2 Amperes are rejected from R via

the square sj . Let us also denote the electric potential at point z relative to

square sj by �j(z). Since there are no current sources within R, we know from

the Divergence Theorem (see, e.g. [19]) that for any closed surface, the amount

of current entering the surface should equal the current exitting through it (i.e.

the total current through the surface should vanish). Due to symmetry and

uniformity of the resistance, the average potential around a circle of radius �

can be calculated:

Proposition4. The average potential di�erence between the center and the cir-

cumference of a circle of radius � on a uniform surface with unit sheet resistance,

into which I0 Amperes of current are uniformly injected per unit area, is

�(�)� �(0)
def.

=
1

2�

Z 2�

�=0

(�(�ei�)� �(0))d� =
I0�

2

4
: (10)

The proof of Proposition 4 is deferred to the Appendix. Choosing I0 = 4=r2

one gets �(�)� �(0) = (�=r)2 and hence (writing � for �(z) and �j(z) for the

potential at z when the potential in square sj is kept at zero):

1

2�

Z 2�

�=0

(�j(z) � �j(z + �ei�))d� = (�=r)2; (11)

or

�j(z) = (�=r)2 +
1

2�

Z 2�

�=0

�j(z + �ei�)d�: (12)

From the equivalence of Equations 9 and 12, and the uniqueness 6 of the ex-

6 The function hj(z) is uniquely determined by

hj(z) =

1X
t=1

t � Prob fsquare sj is reachable from z in t stepsg

=

1X
t=1

t �
1

(2�)t

Z
2�

�1=0

Z
2�

�2=0

� � �

Z
2�

�t=0

�(�1; �2; : : : ; �t) d�1d�2 : : : d�t;

where �(�1; �2; : : : ; �t) = 1 if the sequence of angles �1; �2; : : : ; �t leads from point z

to (some point of) square sj, and 0 otherwise.
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pectation function hj(z), we see that hj(z) is equal to the potential di�erence

�j(z) � �j(sj) if 4r
�2 units of current are injected into each unit of area, and

4nr�2 units of current are rejected from sj . In a similar way one can show that

hi(z) = �i(z)��j(si), if 4=r
2 units of current are injected into each unit of area,

and 4n=r2 units of current are rejected from si. Now if we reverese the direction

of all currents in the second case, we get that hi(z) = �j(si) � �i(z), if 4=r
2

units of current are rejected from each unit of area across R, and 4n=r2 units

of current are injected into si. Due to linearity of resistive electrical systems, we

can superpose both sheets together, thus making all currents cancel each other,

except the 4n=r2 Amperes injected at si and rejected from sj . This, together

with Ohm's law 7, implies that Ci;j, the commute time between squares si and

sj obeys

Ci;j = max
x2si;y2sj

fhj(x) + hi(y)g

= max
x2si;y2sj

f�j(x)� �i(y)g = 4n

r2
�i;j ; (13)

where �i;j is the maximal electrical resistance between squares si and sj in R.

This resistance is measured by injecting a 1-Ampere current into one square, say

si, while rejecting it from sj . Then the maximum potential diiference between a

point in sj to one in sj is equal to �i;j .

Substituting r =
p
2 in Equation 13 yields the Lemma. ut

We now combine the above results to obtain

Theorem5. 2n� � E
h
TPC

i
� 2n� logn; where n is the size of R and � - its

resistance.

Proof: immediate, by substituting Lemma 3 in Equation 8. ut
A corollary is implied for a square room:

Corollary 6. If R is a square a � a room, then

c1a
2 loga � E

h
TPC

i
� c2a

2 log2 a; (14)

where c1; c2 are small constants.

Proof (sketch): We use the fact that the resistance of a square is �(loga)
8. Then we also note that for an a � a room, n = a2, which, substituted into

Theorem 5, implies the corollary. ut
7 Ohm's law says that the voltage drop between two points is equal to the product of

the current 
owing between the points and the point to point resistance.
8 It is of interest to mention a lumped circuit analogy: a square m�m mesh of 1-Ohm

resistors is known [11] to have resistance �(log n).
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3.2 An upper bound on the variance of TPC

In order for our results to be useful, we now show that the variance of the cover

time, denoted V
h
TPC

i
, is also bounded from above and hence there is only a

limited spread of the covering time around its average. It has been proved in

[3] that the variance in the cover time of a set S is at most constant times the

expected time of covering the last item in the set, i.e.

V
h
T cover of S

i
� c0 �E

h
T cover of the last item in S

i
; (15)

where co is a constant 9 less than 210. Applying it to our case, we can use the

maximum access time as an upper bound to the cover time of the last item (i.e.

a yet-unvisited square), so we get:

V
h
TPC

i
� 210 max

si;sj2R
fCi;jg � 211n�; (16)

which implies that the standard deviation is at most 32
p
2n�.

4 A Universal Traversal Sequence of Angles

Let us de�ne a universal traversal sequence of angles (UTSA) for a family of

planar sets F as a �nite sequence of real numbers � = (�1; �2; : : : ; �M), all in

[0; 2�), such that if a PC robot takes the turn �t in step t, it is guaranteed to

cover any shape from F , independent of the starting point. In this section we

shall show that if F is the set of all n-size unit-grid polygons, (i.e. polygons

made of n attached 1� 1 squares), then such a sequence exists and has a length

polynomial in n. For this purpose we follow the probabilistic method invented

by Erd�os and used in [2] to prove that a sequence of length O(n3 logn) exists

that covers any edge-labelled k-regular graph 10 with n vertices.

Theorem7. There exists a sequence of 2n4 logn angles that guarantees covering

of any rectilinear gridded polygon of size n.

Proof: First let us observe that if F is the set of all n-size unit-grid polygons,

then jFj < 2n
2

(since all polygons of size n can be enclosed by an n�n square).

We next apply Theorem 5 to obtain an upper bound of t = 2n2 logn on the

expected cover time of any polygon in F , using the fact that the resistance �

obeys � � n for such polygons. Hence, after a sequence of t random turns, the

9 This value of the constant does not appear in [3], but can be calculated based on

the analysis done there.
10 a graph is k-regular if exactly k edges emanate from every vertex. It is edge-labelled

if the edges emanating from each vertex are numbered in some order.
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probability of complete coverage is at least 1=2, and after an mt-long sequence

it is at least 1� 2�m. On the other hand,

Prob f9R 2 F s.t. R is not covered by a random mt-long sequence g
�

X
R2F

Probf R is not covered by a random mt-long sequence g

� 2�m jFj � 2n
2�m: (17)

Hence if we choose m > n2 then the probability for existence of an mt-long

sequence that does not cover all polygons in F is less than one, i.e. there exists

such a sequence which does guarantee covering of all polygons in F , and hence

there is a (2n4 logn)-long sequence of angles which is a UTSA for F . ut
Note that �nding a universal sequence of length O(4n) is easy - just traverse

the quaternary tree of height n with the starting point as the root and with four

sons to each vertex, each representing a turning angle from f0; �=2; �; 3�=2g.
Backtracking is possible thanks to the \compass" that our robot has. Clearly,

not all steps will be of length r because of walls and obstacles, but eventually

all squares will be reached.

5 Summary

We have shown that the expected cover time by a process of random steps in

a continuous polygon is related to the electrical resistance of the polygon. The

setting of continuous space is more relevant to robotics than the discrete struc-

ture of graphs, since robots move continuously, and even if a discrete partition is

dictated by some external signs (e.g. a tiled 
oor), it is still hard for a low-cost

robot to precisely identify those signs. The problem of continuous covering has

various implications for both theory and practice. The analysis suggested in this

paper can serve as an inspiration for further research in several directions, some

of which are described below.

1. Cooperating PC robots In a multi-robot setting we just add robots and

let them all follow the same PC rule. It is intriguing to see what if a more

signi�cant communication is enabled, e.g. if a collision with another robot

or with the wall makes the future steps biased against the (alleged) location

of other robots/walls.

2. Finding a \short" universal traversal sequence of angles: We have

shown the existence of a polynomial-length universal sequence of angles

(UTSA) for gridded polygons. However we do not know how to �nd one.

The similar question for graphs is also wide open, with the only exceptions

(known to us) being paths and cycles [9], [8]. Intuitively, one may think

that �nding a UTSA in our case is easier, since the robot is assumed to

have a kind of \compass", while in the UTS problem for graphs, edges are

arbitrarily ordered.

127Robotic Exploration, Brownian Motion and Electrical Resistance



6 Acknowledgement

We would like to thank David Aldous for his advice with respect to the results

in [3].

References

1. Arkin E. M., Hassin R., \Approximation Algorithms for the Geometric Covering
Salesman Problem," Discrete Applied Math. 55, pp 197-218, 1994.

2. Aleliunas R., Karp R.M., Lipton R. J., Lovasz L., Rako� C., \Random Walks,

Universal Traversal Sequences, and the Complexity of Maze Problems,"in 20'th
Annual Symposium on Foundations of Computer Science, p. 218-223,San Juan,

Puerto Rico, October 1979.

3. Aldous D. J. , \Threshold Limits for Cover Times," Jornal of Theoretical Proba-
bility, Vol. 4, No. 1, 1991, pp. 197-211.

4. Berger M., Geomtery II, Springer-Verlag, Berlin-Heidelberg 1987.

5. Giralt G., Weisbin C., (Editors), Special issue on autonomous robots for planetary
exploration,Autonomous Robots, 2 (1995) pp. 259-362.

6. Balch T., Arkin R. C., \Communication in reactive multiagent robotic sys-

tems,"Autonomous Robots, 1 (1994) pp. 27-52.

7. Baeza-Yates R., Culberson J. C., Rawlins G. J. E. , \Searching in the Plane,"

Information and Computation, 106 (1993) pp. 234-252.

8. Bar-Noy A., Borodin A., Karchemer M., Linial N., Werman M., \Bounds on Uni-
versal Sequences," SIAM J. Comput., Vol. 18, No. 2, pp.268-277, (1989).

9. Bridgland M.F., \Universal Traversal Sequences for Paths and Cycles," J. of Alg.,

8, (1987), pp.395-404.

10. Broder A. Z., Karlin A. R., Raghavan P., Upfal E., \Trading Space for Time in

Undirected s� t Connectivity," SIAM J. COMPUT., Vol. 23, No. 2, pp. 324-334,
April 1994.

11. Chandra A. K., Raghavan P., Ruzzo W. L., Smolensky R., Tiwari P., \The Elec-

trical Resistance of a Graph Captures its Commute and Cover Times," Proc. 21st
ACM STOC, (1989), pp. 574-586.

12. Chin W. P., Ntafos S., \Optimum Watchman Routes," 2'nd Annual Symposium

on Computational Geometry, Yorktown Heights, NY, June 2-4, 1986, pp. 24-33.

13. Doyle P. G., Snell J. L., Random Walks and Electric Networks, Mathematical

Association of America, Washington, D. C., 1984.

14. Dudek G., Jenkin M., Milios E., Wilkes D., \Robotic Exploration as Graph Con-
struction,"IEEE Trans. on Robotics and Automation , Vol. 7, No. 6, Dec. 1991.

15. Deng X., Mirzaian A., \Competitive Robot Mapping with Homogeneous Mark-

ers,"IEEE Trans. on Robotics and Automation , Vol. 12, No. 4, Aug. 1996.

16. Erdmann M., \Randomization in robot tasks,"Int. J. Robot. Res.,11(5):399-436,

October 1992. Hall P., Introduction to the Theory of Coverage Processes,John Wi-

ley & Sons, New York, 1988

17. Hofner C., Schmidt G., \Path planning and guidance techniques for an autonomous

mobile cleaning robot,"Robotics and Autonomous Systems (1995), 14:199-212.

18. Hert S., Tiwari S., Lumelsky V., \A terrain covering algorithm for an AUV,"Auton.
Robots , Vol.3, No.2-3 June-July 1996, pp. 91-119

19. Kaplan W., Advanced Calculus, 3'rd Ed., Addison-Wesley, Reading, MA, 1984.

128 I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein



20. Kuipers B., Byun Y. T., \A robot exploration and mapping strategy based on a
semantic hierarchy of spatial representations,"Robotics and Autonomous Systems

(1981), 8:47-63.

21. Kershner R., \The number of circles covering a set,"Amer. J. Math. (1939), 61:665-
671.

22. LaValle S. M., Hutchinson S. A., \Evaluating Motion Strategies under Nondeter-

ministic or Probabilistic Uncertainties in Sensing and Control," Proc. of the 1996
IEEE Intl.Conference on Robotics and Automation, pp. 3034-3039.

23. Lovasz L., \Random Walks on Graphs - a Survey," in: Combinatorics, Paul Erd�os

is Eighty, Part 2 Ed. D. Miklos, V. T. Sos, T. Szony, Janos Bolyai Mathmatical
Society, Budapest, 1996, Vol. 2, pp. 353-398.

24. Matthews P., \Covering Problems for Brownian Motion On Spheres," The Annals

of Probability, 1988, Vol. 16, No. 1, pp. 189-199.
25. Nash-Williams C. St. J. A., \Random walk and electric currents in networks,"

Proc. Camb. Phil. Soc., 55:181-194, 1959.

26. Pach J. (Ed.), New Trends in Discrete and Computational Geometry,Springer-
Verlag, Berlin Heidelberg 1993.

27. Parker L. E., \On the design of behavior-based multi-robot teams,"Advanced

Robotics, Vol. 10, No. 6, pp. 547-578 (1996).
28. Sagan H., Space-Filling Curves,Springer-Verlag, New York, 1994.

29. Wagner I. A., Bruckstein A. M., \Cooperative Cleaners - a Study in Ant-

Robotics,"in A. Paulraj, V. Roychowdhury, C. D. Schaper - ed.,Communications,
Computation, Control, and Signal Processing: A Tribute to Thomas Kailath,

Kluwer Academic Publishers, The Netherlands, 1997, pp. 289-308.

30. Wagner I. A., Lindenbaum M., Bruckstein A. M., \On-Line Graph Searching by a
Smell-Oriented Vertex Process,"Working notes of AAAI'97 Workshop on On-Line

Search,July 28, 1997, Providence, Rhode Island, pp. 122-125.

31. Wagner I. A., Lindenbaum M., Bruckstein A. M., \Smell as a Computational Re-
source - A Lesson We Can Learn from the Ant," Proceedings of the 4'th Israeli

Symposium on the Theory of Computing and Systems, Jerusalem, June 10-12, 1996.

32. Yaguchi H., \Robot introduction to cleaning work in the East Japan Railway
Company,"Advanced Robotics, Vol. 10, no. 4, pp. 403-414 (1996).

Appendix: Potential Di�erenceAcross A Uniformly-Resistive
Circle

Proof of Proposition 4 :

Consider a circle of radius � and unit sheet-resistance, and assume that a current

of I0 Amperes per unit area is uniformly injected into the circle. We seek for the

average potential di�erence (or "voltage drop") between the center of the circle

and its circumference, de�ned by

�(0)� �(�) =
1

2�

Z 2�

�=0

(�(0)� �(�ei�))d�: (18)

Consider a ring of radius u and in�nitesimal width du (see Figure 4).

We know (from the Theorem of Divergence) that, since there are no sources

or sinks of current on the surface, all the current injected into the u-circle should


ow out across its boundary and into the ring. This amount of current is I0�u
2.
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i θ

I(u, θ )

u e
θ

duµ

0 θ
u

ud

Fig. 4. An in�nitesimal ring within a circle. The average voltage drop across the ring

is obtained by integrating over small trapezoids like the one in gray, through which the

centrifugal current I(u; �) is 
owing.

Let us denote by I(u; �) the centrifugal current 
owing at uei� in direction �, by

d�(u; �) the voltage drop between the inner and outer edges of an in�nitesimal

part of the ring, and by d�(u) the average voltage drop across the ring. One can

now write

d�(u) =
1

2�

Z 2�

�=0

d�(u; �)d� =
1

2�

Z 2�

�=0

I(u; �)dud�

ud�

(the resistance of a rectangle is length/width)

=
du

2�u

Z 2�

�=0

I(u; �)d� =
du

2�u
�u2I0 =

I0udu

2
: (19)

Note that the voltage drop across the ring due to the current 
owing into the

ring itself is proportional to the product of this current (o((u + du)2 � u2) =

o(udu)) and the ring's resistance ((o(du=u)), hence is o((du)2), and vanishes in

integration. Thus the total voltage di�erence can be found by integrating along

u:

�(0)� �(�) =

Z �

u=0

d�(u)du =

Z �

u=0

I0u

2
du =

I0�
2

4
: (20)
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