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ABSTRACT

One way to perform registration and alignment for machine
assembly is with respect to precisely located landmarks,
called fiducials, that are located by machine vision means.
For applications such as elecuranics assembly, whese densities
are high and tolerances must be low, the precisian by which
the fiducials are located affects everything aligned relative to
tham. We cxamine the effects of spatial sampling and image
noise on the precision by which the centroids of different
geometric shapes can be detenmired. The concentric ring
fiducial — a btull'seye patem — is identified as having
desinble qualities of high location predision and ratational
invariance. The performance of the concentric fiducial, as a
function of diameter, number of rings, and ring spacing, has
been tested, and these results are shown.

L Introdvction

Elecuonics assembly, robotics manipulation, and many
other manufacturing applications, require precise registration
10 assure proper positioning and alignment. One way to
perform registration is 1o position everything with respect to
one or more landmarks, called fiducial marks, or simply
fducials, For the electronics application, fiducials are
positioned in precise and known locations relative to circuit
traces. Then registration is performed relative only to the
fiducials, independent of any imprecision of absolute
positioning on the machine. The number of fiducials required
depends on the degrees of freedom of the object position and
shape, however the precision is only as good as that of each

eofiducial. In this paper, we deal with the location of a single
fiducial by machine vision means. Subpixel predsion in
determining the fiducial location is examined as a function of
its shapc and size, and imaging factors including sampling
resolution and noise. This paper extends past work [1], whose
results have since proven effective in a production
envirownent.

There is no doubt that registration is important, but why
is it important that it be to subpixel precision? The answer to
this addresses the classic engineering tradeoff between
efficiency and effectivencss. On one hand, there is the
requircment that registmation be performed at or above a
specified precision. However, the use of too high a resolution
will add to the computation time with no additional benefit
Even for a conservative design where *‘over-engineening’’ is
accepied, an idea of the approximate bounds of this safety
region is helpful. Knowledge of the precision attainable from
a specific shape and sizc will enable both the required
precision to be met, and this to be done in as efficient an
implementation as possible. Therefore the benefits of methods
that achieve subpixel precision can be seen from two
perspectives: either as a means to obuain higher precision, or
as a means to oblain the same precision at less computational
cost.

The focus in this paper is the precision attainable via the
cenwoid measurement.  This  centroid  measurement  is
determined from the image of the fiducial, by calculating the
average of its x,y pixel coordinates. Precision is measured
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relative o the true (unsampled) fiducial center, and the avor
it the Euclidean distance between the measured centroid and
the tnue center. (Further use of the term *‘centroid’’ without
other ipdon refers 10 the measured, or sampled,
caenmroid.) The use of the cawraid for location and registration
is widespread in practice. It is straightforward to implement
and provides subpixel predsion The centroid can be
detewmnined quickly just by accumulating threc sums over the
image, and this can be done in raster-scan order, so there is
oo need to store the image. Furthermore, there is no
deperdonce on image resolution, nor need for any parameters
o seL

Other methods, besides centroid rement, are used
for registration as well. Instead of finding the centroid, the
autocorrelation peak can be used as a good measure of
location [2,3]. In the lauer reference, a random dot pattem is
used as the fiducial because it is shown to have a high
olerance 10 noise. The method entails low-pass filtering of
the pattern, autocorrelation, then peak searching. There are
also methods for matching shapes whose boundaries are made
of line segments and circulsr arcs [4] and the accuracy of
these is discussed in [5].

Subpixel precision has also been dealt with in the
literature as a problem independent of the registration
application. In [6], a statistical analysis is given of spatial
sampling error for straight-edged geometric shapes and the
circular disk. In contrast to that paper’s measurement of
average and variance of the eror, we placc emphasis on
worst-case error, which is more perinent 1o the registration
application. Analysis is given in [7], of error for straight
edges, but this does not cover the circular edges of interest
here. In [8,9,10], error was examined in terms of domain or
locale, that is the subpixel within which the center of the
shape can move without causing a change to its sampled
image. For larger, non-rectangular shapes containing many
pixels, these locales become quite complicated. In [10], a
bound on the precision error was found analytically for a
one-dimensional line, and compared 1o expenmental resulis.
This is similar to the worst-case error problem in this paper,
except our interest is in two-dimensional shapes. Sampling
error for circular disks is analyaed in [11,12]; however neither
of these papers completely addresses our problem. In the
former, an iterative method is described for determining the
center of the noiseless cirdle. In the latier, there is the
limitation that the analysis is restricted to a circular disk
centered exactly on a sample point.

2. Shape and Size of Simple Geometric Fiducials

In an carlier work [1) the subpixel registration precision
of simple geomeuically shaped fiducials was studied. Using
analysis and experiment, the maximum eror in the centroid
due to spatial sampling was examined for different shapes
and parameters. For completeness, we summarize this work
here.

For purposes of analysis and experiment, the image is
assumed 1o be binary. The binary images are created by
assigning a 1 to a pixel p(xy) if its center is found to be
within the analog fiducat region, and 0 otherwise. For
determination of the effects of sampling, the center of the
concentric fiducial was shifted uniformly within (0,0) to
05,05) at incroments of 0.01 pixels in x and y. The
maximum of the errors for all (S0xS0 = 2500) shifts within this
region is found and recorded. To test the effects of size, a
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dimension of the fiducial is incremented in 0.25 pixel steps
over a range of 2 1o 22 pixels, and the change of error is
examined.

For the square fiducial, it is shown in Figure 1 (and
proven in [1]) that the maximum error of the cenwroid location
varies between 0.5 and 0.25 pixels for the sidelengths of a
square varying between an inleger value of pixels to an
integer plus a half pixel, respectively. Therefore, the best
square size for least error has sidelengths equal 10 a+1/ 2
pixels, aeZ. Larger or smaller sizes (outside of %1/ 2) do not
reduce or increase the maximum digitization error.
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Figure 1. Maximum sampling eror’for the centroids of the
square (solid linc), diamond (dashed), and circular
disk (dotted), over different lengths of sidelength,
vertical diagonal, and diameter, respectively.

We choose 10 investigate the behavior of the diamond
fiducial as a function of the ratio between the diagonals. For
this, the horizontal diagonal is fixed at 10 pixels and the
vertical diagonal is varied from 2 to 22 pixels. The behavior
of the maximum error in the horizontal direction is dependent
on the ratio of vertical to horizontal diagonals. For the ratio
1:1, and the sizc parameter equal to 10, the error is the same
as that of the square with integes lengths. For integer rasos,
2, 3, 4, ac, it is seen here that the maximum error peaks
decrease for larger ratios, and the minimum local ermors
between peaks also decrease as the ratio becames larger.

For the circular fiducial, it can be seen in Figure 1 that
the maximum eror decreases as the radius increases, although
not monotonically. The error is appreciably less than that for
the square, and this difference is greater for larger size. It is
less than for the peaks of the diamond, but larger than for the
valleys.

Among these shapes tested, the square is clearly inferior
for precise centoid location. It is possible 1o design the
diamond such that the ratio of axis lengths ensures a local
minimum in the error. However, a small rotation in the
shape will cause the error 10 ascend from the local minimum
1o one of the surmounding peaks. Depending on the
magnitude of the rotation, the error for the diamond can then
be much greater than that for the comparably sized (i.e. fitting
in the same bounding box) circular disk. In contrast, the error
for the disk is rotationally independent. Because rotational
independence is atractive for fiducial registration, we choose
to further examine the circular shape here.

3. Circular Fiducial — Centraid Calculations

The objective is 10 dewenmine the fiducial location, and for
this we measure the centroid of the fiducial from the binary
image plane. For this situation, the most straightforward
mezhod of centroid derermination is just to find the average of
the 1-pixel locations, (M, M,):

M= =TT xpe). My= LTy, (1)
y y =z
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where A =YY p(xy), play)={01},
y x

and where summations are made over all pixels m the image.
(For the ramnainder of the paper, we show only the M,
calaulations; those for M, are analogous.) In a practical
sitwation, the general location of the fiducial is known, and a
camera-view or subimage can be taken that contains anly the
fiducial (including some of the surrounding region and noise,
but no other features).

Knowledge of the fiducial siac and shape can be exploited
10 improve the measure. Consider that it is not necessary 1o
sum all the pixels within the fiducial; instead, with knowledge
that the disk is filled (completcly 1-valucd), the edges can be
found, and the same centroid calculated just from these edge
ocations. For the edges of x-runs starting at z,(y) and ending
at x(y) for rows of y, the centroid and area can be calculated:

=
M, = 72 ¥ xp(xy)
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y
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The purpose of showing how the centroid can be
calculated from the edges in each dimension is to illustrate
that, although calculation is for the centroid of a filled disk,
the internal pixels of the disk do not actually have to be
inspected. Because of this, we are free w change the values
within the disk edges without affecting the centroid
calaulation. Since the objective is a reliable centroid
measure, we choose to change intemal pixel values within the
disk in such a way as 10 improve the estimate of the centroid.
Adopting the philosophy that *‘‘the more fiducials, the beuer™”
(this will be justified later), we insert into the original disk,
more disks, all concentric, of a sequence of unifonnly
inceasing madii from the inner to outer disks, and of
altemnating 1,0 values, as in Figure 2. We determine the
centroid of each disk, treating them as filled either with 1 or
0 values. Then the weighted average of these r centroids is
found, and said to be the centroid of the concentric fiducial.
From reference {6], where the vanance is shown to decrease
linearly with increasing disk diameter. we choose to weaght
the moments of cach disk proportionally to their respective
diameters, d(i). Therefore, we define the centroid for the
combination of disks in the concentric pattem as,
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where M, (i) is calculated as for M, in equation (2).

The advanuage of this cancentric configuration is that
more fiducials have been added but all additional disks are
contained in the area of the origiral disk. When each ring of
the cancentric fiducial is considered as a filled disk, we refer
to the total area of these disks as their effective area, A;. The
effective area for r disks is,

Ar= _}':l,A(s) - ‘zl % (aorsom) .
= =l y

For a fixed diameter, d, effective area increases with the
number of rings. We show belcw, first how the effective area
is increased by adding rings, then how the effective variance
is reduced duc 1o this. The improvement in effective area can
be shown for the unsampled case below. For a single disk,
the area is,

@
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(5)
Within this disk, let us build a concentric pattem of r disks
with increasing diamesers uniformly spaced by Ad = d/(2r-1),
from the smallest, d, = 4d, 1o the largest, d, = (2r-1)Ad =d,
and in genenal, d; = (2i~1)Ad The cfiective area is, L



Figure 2. A fiducial with three rings can be thought of as
the concentric superposition of all the disks. The
area of the fiducial is that of the largest disk, but
the effective area is the sum of individual disks.
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The effective area versus number of rings is plotted in Figure
3. It can be scen thal for »25, the effective arca, nomnalized
by A(1} = d*/4, increases approximately as r/ 3.

Assuming the centroid measurements from each disk are
independent random variables with means equal to the true
centroid and variances of o;, it can be shown that the variance
of the measured centroid from a concentric fiducial is less
than that for a single disk. For a concentric fiducial of »
independent disks, the effective variance is,
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It is shown by Monte Carlo simulation in [6] that the
variance of the centroid estimate for a single disk is
o2 =k / d;, where k is a constant  For the outer ring whose
diameter is 4, the variance is o® = kd. Therefore expressing the
variance for each ring with respect to that for the outer,

ci=3,

ﬁ:%d. i=0, 0 r-l. 8
Substituting this in equation (7),
od
o= T :
i 30 ()]

Substituting for & = (2i-1)d / (2r-1), and simplifying, then

d=2ole (10)

r?

The effective vaniance, normalized by the variance for the
outer disk, is plotted in Figure 3. It can be seen that the
effective variance is always less than or equal to ¢?, and that
it decreases for larger r with the inverse relationship
approximately 2/ r.

Having shown the above development, it must be
cautioned that the assumpton was made of independent ring
centroids. There is experimental evidence (in Section 4) that
the rings are not independent, bat weakly correlated. The
degree of corrclation affects how closely the equivalent
variance in equation (10) matches the true results. In Section
4, we give test results that show how the centroid error is
reduced by increasing the number of concentric rings.
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Figure 3. The top plot shoys that effective area increases
approximately as the number of rings times 1/ 3.
The bottom plot shows that the variance decreases
with the number of rings.

4, Concentric Fiducial — Experimental Results

Tests were made on the performance of the concentric
fiducial for subpixel translations on a sampling plane, and
with noise. For these, the centroid was measured from the
sampled, binary wmage, and the Euclidean distance between
the true centroid and the measured centroid was calculated,
and called the error. Two sets of tests were carmied out. In
one, a noiseless fiducial was shifted in subpixel increments on
the sampling plane, and the ervor due to sampling deterrnined.
In the other, noise was added to the image, and the error due
1o this noise found.

For the detcrmination of the effects of sampling, the
center of the concenisic fiducial was shifted uniformly within
(0.0) to (0.5,0.5) pixels at increments of 0.01 pixels in x and y,
and the maximum error was found as described in Section 2.
Concentric fiducials of three  outer  diameters,
d, = {50,100,300), and with a number of rings,
r={1,35, - ,29}, weretested.

The results are plotted in Figure 4. Note first that, as the
number of rings is increased, the maximum error generally
decreases.  Also, for larger diameters, the error peaks are
genenally lower. However, also note that the plots are not
smooth. We will discuss these apparent anomalies as well as
the general trends in Section 5.
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Figure 4. Maximum sampling error for concentric fiducial.
Solid line is for outer ring size of 50, dashed for
100, and doued for 300.

For the second set of tests, the fiducial was centered at
(0,0), and noise introduced with the following characteristics.
At cach pixel location, noisc was added with probability » of
seiting the value to 1 or 0. This yields a random spatial
distribution of 1-valued noise cutside the fiducial arca, and
0-valued noise within the fiducial area. Noise probabilities of
P =005 and P =01 were tested here. After the noise is
added, a simple morphological filter pvas applied to reduce
isolated 1 or 0 noise, and to smooth spurs and indentations on
boundanies. Thus, the addition and reduction of noise leaves
rings with noisy boundaries. For each test case, 15 images
were tzken with different random noise. The results show the
aversge and the standard deviation of the maximum avors
over the 15 sample images of each case.

The results arc plotted in Figures 5 and 6. They indicate
tha: i) both the error and standard deviation genenally
decrease when the number of rings increases; i) emor is
generally smaller for larger diameters; and iii) these results
are more pronounced for higher noisc probability. Although
the general trends are clear, the results are not monotonic, and
this will be discussed in the next secion.

5. Discussion and Summary

The data indicate the following general trends for the
cancentric fiducial:

i. as the diameters arc increased, the error due both 10
sampling and additive noise decreases;

ii. as the number of rings is increased, the eror due both
to sampling and additive noise decreases;

iii. as the amount of additive noise it increased, the trends
of (i) and (ii) are more pronounced;

iv. as the number of rings is incrcased, the standard
deviation of the error measurement due 10 additive
noise is decreased; and

Although the general trends are as above, in no case are
they monotonic. For the plots of error due to additive noise,
there are Jocal peaks and valleys. In one case, for noise of
P =0.05 in Figure 6, a valley in the plot for 4 = 100 occurs at
the same r as a peak for d=300, and the plots cross.
Although the sample size (15 noise images) may be suspect,
the standard deviations (not shown) arc small and fairly
consistent for all points, so small sample size is not the likely
probles. An alicmative cxplanation is some correlation
between the sampling resolution and concentric paticrn at
certain number of sings and diameter sizes. This is similar 10
the explanation for the peaks in ervor for the diamond shape
plotted in Figure 1. However, this relationship between the
circle and the sampling plane is non-lincar for different shifts,
diameters, and number of rings, and has so far defied
analysis,
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Figure 5. Plots show average and fiandard devistion of
maximum emor versus number of rings for
concentric fiducials of diameter 300, with added
noise of 5% on the top and 10% on the boaom.

For the plots of emar due to sampling only, the gencral
trends are observed as listcd. However there are instances of
more marked non-monotonicity than for the case of additive
noise. Two explanations could apply here. One is that the
sampling interval (0.0l pixels) was not large enough,
however partial results for higher sampling resolutions (not
shown here) indicated the same peaks and valleys. The other
explanation is that these are due to sampling effects as
discussed above. The effects would be more pronounced for
this test because no averaging is performed here (in contrast
10 the tests for additive noisc where averaging is done over
many images).

As is evident from the above discussion, cffonts 10
describe the behavior of concentric disks in a sampling planc
have so far cscaped mathematical explanation. The difficulty
of the problem is also evident from the literatre. This
problem is broached in {10}, but due to the difficulty of
analysis, no gencral two-dimensional relationship was
obtained. In [11], a discrete disk is analyaed, but this is done
oniy for the more restricted case where the center is fixed on
a sample point. In [8,10], it is evident that their locale,
describing the region of imprecision, becomes more complex
with increased region samples. The problem appears 10 be
non-lincar because the circular edges of the disks are
uncarrelsted with the Cartesisn sampling plane. In any case
this problem merits future effort.

It should be noted that, in practice, there is an upper limit
on the nmumber of rings within a centain diameter. For the
centroid measuramant from edges in equations (2) and (3),
adjacent rings must be individually distinguishable, i.e.
topology must be maintsined. Therefore the practical lower
limit on ring spacing is a distance such that the probability
that noise will merge two rings is small. In our tesis, for the
different noise probabilitics tested, the minimum ring spacing
was five pixels,

As far as the method of ring detection, and the added
computation required, this is not dealt with in this paper.
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Figure 6. Plots show average of maximum eror versus
number of rings for concentric fiducials of
diameters 100 and 300, with added noise of 5% on
the top and 10% on the botom. (Note that the plot
for the diameter of 100 is only up to 9 rings. This
is because pixel spacing between rings becomes
too small for more rings.)

(See, for instance, reference {11} for methods of circle
detection.) The straightforward method used in this paper
was 10 find connected regions of ring boundaries, then to
detecmine the concentric disk centroids based on these
boundarics along each x,y scan line. This is not an expensive
technique relative to, for instance, recursive refinement
methods that might be used, but it is more computationally
expensive than for the straightforward centroid calculation as
in equation (1). Becausc of this, a decision would be made
in practice whether the improved precision is worth the added
complexity and computation.

In summary, it has been shown that the darcular fiducial
used for machine vision registradion can be extended 10 a
concentric pattemn that ocaupies the same arca, but yields
better centroid estimates. A method of centroid calculation
was shown that treals the fiducial with r concentric rings, as 7
separate but concentric disks, thus yielding a larger effective
area. Experiments were performed to find the avor in the
centroid measurement due o additive noise, and due 10
sampling quantization. Thesc showed that the centroid
measurement was generally more accurate as the outside
diameter and number of concentric rings increased. Although
the bencfits of this shape and method for registration have
been shown by experiment, a challenging problem still
remaining is to explain by analysis some non-monotonicities
in the results.
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