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rdative to thc cגn.ו (unumpled) fiducial חectcr, and the crror 
 uid andסuem cenשee the deתe Euclidean diltance betwוi hנ
the trne center. (Fehtשr טeו of וde וmet ••tתecroid'' wiוdout 
othcr description rden oו cוd meuured, or sampled, 
diסrtne:c.) The uae of thc .iםrtחecd for location. and registtמion 
il widespread iת praCUce. lt il 1traightforward oז implement 
 c:cntroid can be 11וubpixeJ precilion. eו pidcsסd vומ
detcnnined qטickly just by accumWllting threc 1um1 over the 
imagc, and WI can bc done in ru«:r-וcan ordcr, ro there il 
oמ n� to 11םre the image. Fuehחתזזore, thcre is מo 
dependcnce on imagc פrolution., nor need for any paramcteמ 
 .... oו

Other mdhods, beaides ccntroid measun:mcn.ן are used 
for regisזtation u well. lnstead of finding thc centroid, the 
autocorre1ation peak can bc used as a good measure of 
locatioo. {2,3]. 1ת the lauer rderence, a random doc: pauc:m is 
used u thc fiducial becausc i1 is shown to have a high 
tolcrance to noisc. Thc method entails low-pass filtering of 
the pattem, autocondation, then peak se.arching. There are 
also method1 for matcשוlg lh81)es whosc boundarie.s are madc 
of eתil eוgmcnts and circular arcs [4] and thc accuracy of 
thesc is :נidcשsed i[5] ת. 

Subpixcl precision ha1 also been dealt with in thc 
literaנnre a1 a problem indepc:ndent of the registוntion 
application. תI [6], a statistical analysis is given of spatial 
wnpliתg eסnr fסr straight-edged geomeuic shapcs and the 
circular disk. תI contrtst to that paper's measuremcnt of 
aveiתge and variance of the eסnr, we place emphasis on 
worst-casי error, which is more peniתתct oז thc registiתt.ioת 
appl.ication. Aתalysis is givתc i7} ת], of crror for straight 
edges, but th.is does תot cover the ciנarlar cdges of iו.תerest 
here. תI (8,9,10), eסnr was examiתed in terms of domain or 
localי, that is the subpixel

acיז, 
within which the center of the 

1hape can move witbout causing a change to its samplcd 
image. For larger, non-recaזngular shapes conתiatתig many 
pixels, these locales beoome quite complicated. תI (10], a 
bound on the precision eסnr was foושd analytically for a 
one-dimcnsional liתe, and compared זס experimental resulu:. 
This is similar to the wont-casc crror problcm iת this papcr, 
cxc:ept our interest is תi two-dimensional shapes. Sampl.ing 
erסn for ciגarlar disks is analyzed תi [11,12]; however neither 
of these papcn complctely addresses our problem. In thc 
former, an iterative method is described for detenחiniתg the 
center of the noiseless circle. תJ the latter, there is the 
limitat.ion that the analysis is restriaed to a circular disk 
cen.וered cxactly סת a sample סpinl 

1. S.וו� and Slu ot Slmple Geometrlc רFddטall 

1n an earlier wok[1] ז the subpixel regi.stתוtion precision 
of simple geomeuically sh aped fiducitls was studicd. Using 
analysis and cxperimenl., the maximnש error in the centroi.d 
due 10 spatial sampling was e:xamined for diffe.םוrt shapes 
and parameters. For completeness, we summarizc this wokז 
here. 

For purposes of analysis and experiment, the image iJ 
assumed to be binayו. The binayו images are created by 
assigning a 1 to a pixe.l p(x.y) if its cתeter iJ folD'l.d to bc 
within the analog fiducial region, and O otherwise. For 
dctennination of the effcc.זs of sampling. the center of the 
concentric fiducial was shifted unifonnly within (0,0) to 
(O.S,O.S) at incremenu of 0.01 pixels תi x and y. The 
maximum of the erron for all (SOxSO = 2SOO) shifts within .וltis 
region is found and recorded. To test the effccu: of size, a 

AB>TRACT 
One way to fזeponn mgiltration and alignme.תז for machine 
asscmbly is wuh respect ש lesiceיpy locadeז landmarb, 
called fiטdcials, tbat are located by enihC8nז vilion תacms. 
For appliבctiווos sucb as el.ecuooics usembly, where densitics 
are bigh and tolennc:es mutו be low, tbe pr=siOl1 by which 
tbe fi.ducials are ldeוaco affecu evמihtyreg aligned rdative to 
tbem. We cnmine the effects of spcial sampling and image 
noise on tbe prcciliווo by which the centroidו of diffc.םוrt 
geometric abapeו can bc determined. Thc תxccenui.c rina 
fi.duci.8} - a bull • 1-eye pattcm - iו idתctified as bavתig 
dcsirable q.םilaueו of high location נicerpion and lanoi1גtor 
invari1תcc. Thc perfonnance d. the conccntric fidטci.al, as a 
function of diameter, nmטber of תirgs, and תirg spacing, has 
 .lts are shownטec resווeeb testcd, and hמ

L תllrodudlon 

Elinorזcecs uscmbly, robotics manipulatioo, and many 
other manufaםנcring applicarions, reqטire � registration 
 cnL One way toחg and aligmתk asmre proper positioniנ
pefזonn registration is to positi.ווo evnihוyreg with .זcepscr to 
ooe or more Jandmactזs, called fiducנtil נtומrlu, or simply 
fiducims. For thc electronics application, fidslaicונ are 
positioncd in precise and known locatioos relative to cimrii 
traces. Thcn regist1'81.ioo is perfonned relative only to the 
fiducials, independו:יתt of any impreci.sion of absolute 
positioning on the machinc. Thc numbcr of fidטcials requmd 
dcpends oo the dcgrees of freedom of the objea posit.ion and 
shapc, however the precision is only as good as that of each 

...Jiducial. In this paper, we deal with the location of a single 
fiducial by machine vision means. Subpixel prc.cision in 
dctenininחg the fiducial location is c:xamined as a fuתction of 
it.s shape and size, and imaging factors including sampling 
resolution and noisc. This paper e:xtחeds past work [1], whose 
results h.ave aiתce proven effect.ive iת a produc.וion 
cnvironmenL 

Tbere is no doubt that regisaיution is important, but why 
L!I it important that it be 10 su�ixcl precision? The answer to 
this addressנe the cl..ssic engineering tdמeoff be1ween 
efficiency and effectiveness. 0n one hand, there is the 
n:quirement that n:gistiתtion bc perfonncd at or above a 
specificd precision. However, the use of toס high a n:solui.וon 
will add זס thc computai.וon time with no additional benefiL 
Evcn for a conservative dנeiתg when: "over-engineering" is 
acccpted, an idea of the approximate bounds of this safcty 
region is helpfuL Knowlcdge o( the precision aiגUnable fn:rn 
• specific shape and size will enable both the requיmd 
prccisiוa to bc rnet, and th.is to be done in as efficien! aת 
implemc:ntation as possible. Therefore the benefits of mcthods 
that achieve subpixel preci.sion can be seen from two 
perspectives: .וieher as a means to obtain higher precision, or 
as • mתaes to obtain the samc precision at les1 oompuwional 
""'· 

The focus in this paper is the precisioo attainable via thc 
 troid measurement isתet. This ceתcctroid measuremת.
detennined from the image of the fiducial, by calculating the 
average of it.s ג,y pixcl coordinate�. Precision is measured 
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dimension of thc fiducial :נi תicremented in 0.25 pixel steps 
over a range of 2 t22 ס pixcls, and the change of crror is 
eתimuod. 

For thc squ� fiducial, it is shown iת Figure 1 (and 
provcn in [1]) tha t the maximurn חerס of thc cenו.roid location 
varics between 0.5 and 0.25 pixels for the 1idelcתgth1 of a 
square varying bctwתee an תiteger vaJue of pixcls tס an 
integer plus a haH pixel, respectively. Therefore, the best 
square size for least crror hu sidclengths equaJ t11 ס,+J t 2 
pixels, 11eZ. Larger or smaller sizes (ouuidc of ::1:11 2) do not 
reduce or iתcrease the maximmn digi.tiui.וon error. 
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Figure 1. Maximnש sampling cr'rסrfor the c.םוtroids of thc 
square (solid line), diamond (dashed), and circular 
disk (dotted), over different lengths of sidclength, 
venical diagonal, and diameter, respcctive}y. 

We choose to invcstigate the behavior of the diamond 
fiducial as a function of thc ratio between the diagonals. Frס 
this, the horizontal diagonal is fixed at 10 pixcls תad the 
veזrical diagonal is varied fran 2 to 22 pixcls. The beh avior 
of thc maximum erכm in thc horizontal directioo. is deמ:cpdcnt 
on hוe ratio of veiזrcal tס horizontal diagonals. For the .וntio 
1:1, and the siz.e parametcr equal to 10, the crror is the 1arne 
as that of the squa re with integer lengths. For integer ratios, 
2, 3, 4, cic., it is seen hc:re that thc maximum error peaks 
decrease for larger .וntios, and וhe minimum local norזe 
bctween peaks also dccrease as thc ratio וoocebes larger. 

For thc circular fiducial, it can be seen iת Figure 1 that 
the maximum error dcaease, as the idaזus increases, although 
not monatonically. The rתסe :נi appreciably less than that for 
the squarc, and this diffcrence is greater for larger sizc. lt :נi 
less nahז for the pcaks of the di.amond, but larger than for the 
valleys. 

Among these shapes tested, thc square iנ clcady infcrior 
for esiceזp oentroid locatim. lt is possible סt design the 
diamond such that the ratio of axis lcngths ensטres a local 
minimוnט in the סner. However, a small rotatim in the 
shape will cause eוd error סt ascend from the local minimum 
 t one of the surroun.ding peab. Depending oo. theס
magnitude of the וatoזtion. thc error for the di.amond can thcn 
be much guזter than thll. for the comparably sizcd (i.e. fitni:וg 
in the samc bounding box) circuJar disk. 1n contrast, the error 
for the dikו is rotationally independenL Because rowional 
indcpendencc is aevitcar.ם for fiducial regi1tration, wc choose 
 .t further examine the circular shape hereס

3. Cl:חular Fklוadul - Centrold Caleuiatlou 

The objective is tס detennine the fiducial location, תad for 
this wc mu::וure the תcctroid of the fiducial from the binary 
image plane. For this situarion, the mסst straightforward 
method of centroid detcnnination is just 10 find the avc.וnge of 
thc l-pixcl llacסioru:, (iגג,M1): 

1 '<' 1 M. = ALוL.x·p(%,J) • M, • AL,L,y·p(:ג,y) • 
 ג � ג 1

(1) 
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whae A=LLP(�y), p(�y)::{0,1}, 
, ' 

and where sununationנ are made over all pixels .ש the image. 
(For the rתםתiader of the paper, we show only the Mג 

calנalaiוons; those fנ,r M1 are analogoos.) In a praciוcal 
situation, the general location of the fidocial is known, aתd a 
came.חו-view or subimagc גcc be talcen that contain1 J.וay thc 
fiducial (including some of the suתuorזding region and noisc, 
but no othcr features). 

Knowledgc of the fiducial siz.e and shapc can be exploited 
10 improve the measure. Consider that it :נi not necesnry 10 
sum al1 the pixels within the fiducial; instead, wihו knowledge 
hז.וa the disk is filled (completcly 1-valued), the edges can be 
found, and the same ccntroi.d calculated just from these edge 
locaiוons. For the edges of x-run1 1tarting at z,,(y) and cndmg 
at xJ.fן) for rows of y, the cenoיuid and area can be calculated: 

,,., 
M, = _1_ 1; 1; ,·p(z.y) 

A. 1 ו-ג() 

= � :E [,i(y)+,,<y)-,:(y)+',,(y)] ' (2) 

A = 1; [,;,)-',,(y)+I] 
, 

The purpose of showing how the חectroid can be 
calוalated from the edges תi eaוd dimension is tס illustrate 
that, although calculation ia for the ccntroid of a filled disk, 
the intemal pixels of the disk do תtס actually have tס be 
inspcctcd. Because of this, we are free סt change thc vaJues 
wi\hin the disk edges without affecting the centroid 
calalגatioo.. Siתce the objective is a reliable centroid 
mea1ure, we choose tס change intemal pixel va]ue, withiת the 
disk in suוd a way as tס improve the estimate of the cenoיuid. 
Adopting the philosophy that "the more fiducials, the beuer" 
(this will be jusוified latcr), we insert into the originaJ disk, 
more disks, all conoentric, of • sequencc of unifonnly 
 ndii from the inner to ooter disks, and ofו. icreasingת
altemating 1,0 values, as in Figure 2. We detennine the 
<%ntroid of each disk, treat.ing them as filled eithcr with 1 or 
0 values. Then the wcighted ave.וngc of these r oentroids is 
found, and 1aid tס be thc centroid of thc conocntric fiducial. 
From refeזם:וcc [6], whcre thc varianoe is shown tס decrease 
linear]y with increasing disk diametcr. wc choose tס wcight 
the manents of cach disk pitזoporonally tס their respective 
diamcc.מו, d(i). Thereforc,. we define thc centroid for the 
oombiniגaon of disks in thc oonocntric pettem u, 

M. "' _!_ L, d(i)M.(I), i:: 1,2, · · · ,r (3) 
1,<(i) ' 
' 

where Mג(i) is calculated a1 for iגג in equation (2). 

Thc advan11gc of this concem.ric configuration is that 
more fiducials have becn added טbt aU additional disla arc 
colt/ai.Md in lht arca of tht original dist. Wlוen cach ring of 
the conoentric fiducial is considered as a filled disk, wc refer 
tס the tlatס area of thcse disks as thcir cffectiYc arca, A.. The 
effective area for r disks is, 

A,•1;A(i)=1;1; [(,,(Y)-',,(y)+I]. (4) 
i•I 1•1 1 1 

For a fixed diameter, 4., effecri.ve area incsםres with thc 
number of rings. Wc show bclow, fisזt how the effective arca 
is increased by 8dding riתgs, then how thc effeciוve variance 
is reduced deט to this. The improvםתent in effectivc area can 
be shown for the nטsampled case beJow. For a single disk, 
thc area is, 

.,,, 
A.(1)"" 4· (5) 

Withiת this disk, let ש build a concentric pattem of r disks 
with increasing diameterS unifonnly spaced by Ad:: df(2r-1), 
from thc smallest, d1 ""b,d,, tס thc largest, �"" (2r-l).1d ""d, 
and in genc.וnl, d;:: (i1-ו).1.:L The effectivc area is, 



F1gure 2. A fiduc ial with three rings can be thought of as 
the coocentric supe.rposition of all the diskנ. The 
area of the fiducial is that of the largest disk, but 
Ule effective area is the sum of individual disks. 

As(r) =tד (d1/ 2)1 
+ 11: [d1(2 / נ 

r� / 2)2 וו: + · · · +
• 

.,,, , = --:!;(2i-1? (6) 
 1 .. , ץ2-1וי)4

 r(2r+ 1) 1זט' _
12(2,-1) 

The effective are.a versus number of rings is plotted in Figure 
3. lt can be seen that f"f5:?;�. ס, the effeci.וve area, noוmalized 
by A(l) = dt114ז, increases approximately as -,-/ 3. 

Assuming the .םוctroid measunזereתts from each disk are 
indמepedent random variables with me ans equal to the גnte 
cenuoid and variances of o;, it can bc sbown that the variance 
of the measured centroid from a ooתcentric fiducial is less 
than that for a sתigle disk. For a concentric fiducial of , 
iתdepeתdent disks, the effective variance is, 

•• = :1: [-.•<•L]'•1- t1ג 
' L,d(i) 

lt is shown by Monte Carlo simulation i6) ת} that the 
variance of the centroid estimate for a sתigle disk is 
of = :1 ג d.,, where k is a constanL For the outer ring whose 
diameter is d, th.: variance is cr1 = kd. Therefore expressing the 
variance for eaנd ring with respect to that for the outer, 

of = fז<. i =0, · · ,r-1" 

Substiשting this in equatioo (7), 

oi=� 
L,d(i) 

Subsi.וtuting ford. = (2i-l)d t (2-1וי), and simpli fyתig, then 

(8) 

(9) 
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(10) oi = 2,י; 
1 

\T. 
' 

The effective variance, nonnaliz.ed by the variance for the 
outer disk, is plotted in Figure 3. lt can be seen that the 
effective variance is always less than or equal to 1יd, and that 
it decreases for larger r with the inverse relarionship 
approi:גmatcl y 21 r. 

Haתivg shown the above developmen,..ו it must be 
cautioned that the assumpcion was made of indcpcתdcnt תirg 
centroids. There is experimental cvidcnce (m Sectioo. 4) that 
the rings are not תidepcndent, b8I. weakly corrdated. The 
degree of corrdation affects bow closely the equivalent 
variance in eqaטtiתc (10) matchc, the .חנte resuls.1 .וn Se.זcion 
4, we give tcst results that show how the centroid error iJ 
reduced by inacasing the number of roncentric rings. 
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Figure 3. The top plot shoזs that effective aer.ו increases 
approximaiely as hזe nnשber of riתgs times 1/ 3. 
The bouom plot shows that the variance decreases 
with the number of rin gs. 

4. Con:סווtric Fiduciוl - Experimental Resulb 

Tesu were made on the perfonnance of the concenuic 
fiducial for subpixel translations on a sampling plane, and 
with noise. For these, the centroid was measured from the 
sampled, bmary image, and the Euclidean distתace between 
the teגn centroid and the measured centroid was calculated, 
and called the eחor, Two sets of tesu were carried ouL ln 
 ae, a noiseJess fiducial was shifted in subpixel incremenu onו
the sampling plane, and the error due to sampling deteתnined. 
ln the other, noise was added to the image, and the error due 
to this noise found. 

For the detemuתai.וon of. the effects of sampling, the 
center of the concenזric fiducial was shifted unifonn]y wilrun 
(0,0) to (0.5.0.5) pixels at תicrements of 0.01 pixels in x and y, 
and the maximum error was found as described in Sectin2 ס. 
Concentric fiducials of three outer diameters, 
J., = {50,100,300}, and with a number of riתgs, 
-,- = {l,3,5, · · · ,29}, were tested. 

The results are plotted in Figure 4. Note fint that, as the 
number of riתgs is increased, the maximum error generally 
decreases. Also, for larger diameters, the error pcaks are. 
generally lower. However, also note that the plots are tתס 
smooth. We will discuss these apparent anomalies as well as 
the general trends in Section 5. 
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For the sccond set of tests, the fidטcial w1s ccntcn:d at 
(0,0), and noise introduced with thc following charaa.eristics. 
At uch pixcl location, noisc was addcd wiזd probability P of 
scUing זhc valטe to 1 or 0. Thi1 yields I תחוdom spatial 
distribution of 1-valued noise ouuidc thc fiducial 1rea, and
0-valucd noise within thc fiducial area. Noise probabilitics of 
P = 0.05 and P = 0.1 were tested here. Aftcr thc noisc is 
added, a snעplc morphological filter fNU 1pplied to redטcc 
isolated 1 or O noisc, and to smooth spuוr and indentatioos on 
bouתdarics. Thus, the addition and n:ductioo of תoise lcaves 
rings with noisy boundaries. For each tcst casc, 15 im1ges 
were takcn with dufcerיnt randmס noisc. Thc results show thc 
avcragc and thc sdוward dcviarion of thc maximmונ srחסe 
over the 15 sampl.e imagcs of cach casc. 

Thc results an: pl.otted in Figurcs 5 and 6. They iתdicate 
thar.: i) both the crror and sdמatard deviation generally 
dccrcasc whתc thc numbcr of rings increases; ii) crror is 
gcתcrally smaller for larger diamctcn; and ili) hזcsc results 
are more prooounced for highcr noisc probability. Although 
thc gencm. umds an: clcar, thc results 1re מot monotonic, and 
this will bc :נidcus1ed in זhc תext 1caion. 

5. Dilc:uעlon and Summary 

The data indicatc hזc following gcncl.ז חוrcnds for hזc 
coocentric fiducial: 

i. as thc diametcrs an: incn:ucd, the rחסe duc both 10 
sampling and addirivc noisc dcuכcscs; 

ii. u thc numbcr of rings is Ulcrcased, the crror duc both 
to sampliתg and 1dditive noisc dccreascs; 

ili. as thc amtמuo of 1dditivc noisc il increascd, thc trends 
of (i) and ("ri) 1n: morc pronounced; 

iv. 11 thc number of. ring1 i1 �scd. זhc standard 
dcviatim of זhe roזrc mcuurement deט to 1dditivc 
noise is lסr:c:cdscd; and 

Alhסזogh thc gתecl.חו dנוerts are 11 100\'C, עו no cue are 
rr duc to aזhey monotonic. For thc plots of coז dditive noisc, 
there 1re local pcaks and vaD.ey1. 1ת ooe casc, for noisc of 
P = 0.05 in Fi gure 6, 1 valley in hזc plot for 4 = 100 occun 11 
 .a1סhc samc r u I pcak for d a 300, and thc pJou 1ז
Alוdough hזc samplc sie.ו (15 noisc im1ge1) m1y bc suspea. 
thc staמdard dcviatioos (not shown) 1n: small and fairly 
cmsistcnt for all points, so small samplc sizc is not the likcly 
problcm. An altemativc cxpi.וanalתo is 1ome leזroc1rion 
bctween the nmpling n:solurion and coocentric paucm 11 
cenain numbcr of rings and diamceזr siz.cs. This is similar to 
the explanll.ion for thc pcaks in כmer for thc diarnond sh1pe 
plottcd in Figurc 1. However, this rclatiooship bctw.וac the 
circlc and thc 11mpling plane is non-lincar for diffםerct shifts, 
diameזeוr, and nnשbcr of rings, and has so f1r defied 
analysis. 
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 dnats deviation ofעgc and dזFgure 5. Plou show avcaר
muimwn crror vcnus nnשber of rings for 
concenui.c fidטcials o( diamcter 300, with added 
noiוe of 5% on hוc top and 10% on the boaom. 

For thc plou of error duc to umpling only, the gencral 
dתפוts are ob1erved as listed. Howcver there are insזעוces of 
m<R makזed non-monotoni.city than for thc casc of addiLivc 
noisc. Two cxplaמatioos oould apply hcre. Onc is that thc 
sampling interval (0.01 pixcls) wu n1ס largc cnough, 
howcver partial :נerults for highcr sampling rewlutions (not 
sbown hcre) indicated the nmc peaks and vaUeys. Thc other
aplani..וaon is that thcsc an: due to sampling effecu u 
discusaed abovc. Thc cffects would be morc pnuשarced for 
this tcst becausc סם averagiתg is perfonncd hcrc (iת contrut 
to thc test s for additivc no:נic whcrc averaging is donc over 
many images). 

As is cvidcnt from the abovc discussi on, cffoUנ to
describe the behavior of concc:nuic disks in a sampling plane 
have 1ס far escaped mathematical exp.םanalon. Thc difficulty 
of thc problcm is also eviden.1 from the literatun:. This 
problcm is broached i10] ת), but duc oז hזc difficulty of 
analysis, no gcne.חוl two-dnn.ensilaםo relllionship was 
obtained. 11 ,[11] ת disםrce disk is 1:מalyud, but this is done 
oo]y for hזe more rcstrictcd cuc where זhc cenזer is fixcd סמ 
1 nmplc poinL Jn [8,10), it is evidוne: that זhcir localc, 
delcribing hזc rcgion of imprccisioo, beoomca morc c:omplex 
wiזh Ulcrcucd n:gion wnplca. Thc problem 1ppcaוr oז bc 
non-lincar becausc the circu1ar edgcs of hזe disks are 
unccrrel.ated with hזc Ca.תetr111 Pmplina: plane. 1ת any casc 
this problcm mc:rits futurc cffort.. 

h should be nw:d hז.זa. D1 prllCb.cc., hזcn: is an upper .זimil 
oo hזc number of rings nihזiw I certain diameter. Fo r  hזc 
cenסuid mcasuremcnt from cdges in e.quatioo1 (2) and (3), 
adjacent ring s must be individually dilliתguish1ble. i.e. 
topoJogy mטst be maintained. Thcrefoeז thc practical lower 
limit on ring spacing i s  I distance such that hזe probability 
that nוioc will mcrge two rings is llanת1 .ע our tests, for the 
different noise probabeiזilis testcd, the minimnש ring spacing 
was five pixeh. 

As fu 11 hזe mcthod of ring d.זeection, and the 1dded 
compuwion reqdeזiu, this is not dealt with עו this papcr. 

t
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F1gure 6. Plots oוdw averagc o( maximum crror versus 
numbcr of rings for concentric fiducials of 
diamc:tcrs 100 and 300, wiזh added noisc of 5% סמ 
hזc tpס and 10% סח the bouom. (Notc hזat thc plot 
for זhc diamctcr of 100 is only up to 9 rings. This 
is be.causc pixel spacing between rings becomcs 
too small for morc rings.) 

(See, for instancc, n:fcוםגcc [11] for mehזods of circlc 
detecti.oo.) The straightforward mcזhod used in thiJ paper 
was to find conncctcd rcgions of ring boundarics, זhcn to 
detennine thc cooceruric disk centroids bascd on hזcsc 
boundaries along each x,y scan linc. Th.is is not an cxpcnsivc 
tcchniquc relative to, for instancc, reנanive rcfinemcnt 
mclhods that might bc used, but it is morc computarionally 
expcnsivc than for hזc straightforward centroid calculatioo as 
in equation (1). Bccausc of this, a dccision would bc made 
in practice whcthcr the improvcd precision is wonh the added 
compl.זixcy and computation. 

1n תנmmary, it has becn shown that thc circular fiduci.a.l 
 tion can bc cxtcnded 10 aוcd for machinc vision regisnש
cmcentric pattcm זhar. נ.acopics the 1ame arca, but yiclds 
bcttcr centroid cstimaזes. A mcזhod of centroi.d calcularion 
wu sbown hזat tl'CaU זhc fidu.וicl wihז r coo.ccntric rings, as r 
scparatc but concentric disks, thus yiclding a largcr �ff�ctiv� 
ar�a. Experimcnts wcre pcrfonncd 10 find the crror in thc 
centroid measumeזcnt duc to additive noise, and due to 
1ampling quantization. Thesc showed hזat thc תectroid 
measuפחnent was gencrally more accu.וntc as thc outsidc 
diametcr and number of oon.centric rings increascd. Alhזoogh 
hזc bcncfits of this shapc and mcthod for rcgistration havc 
bccn shown by experirncnt, a challenging problem still 
rcmaining is to cxplain by analysis somc non-monotonicities 
in זhc results. 
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