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Abstract: This paper addresses several issues arising in the
modeling of discrete event processes for which the sample-
path evolution depends on the past trajectory and is also
controlled by an independent modulating process. While
information on local, sampie-path evolution is sometimes
readily obtainable or measurable, in many applications it is
more important to predict ensemble averaged responses to
variations in the modulation process. We shall discuss this
problem in the framework of a general model for rate-
modulated selfexciting processes and, under certain
assumptions, derive a nonlinear ordinary differential equa-
tion for approximately predicting ensemble behavior from
known sample-path evolution laws. A successful application
of this method to a neural encoding process has already
been made.

1. INTRODUCTION

Point processes arise as natural models for optical
communications, for traffic analysis in computer networks
and for transmission of information in nervous systems. As
such they are extensively used to evaluate the performance
of various man-made systems and also to explain the experi-
mentally recorded behavior in neurophysiological research.
The properties of sample-path evolution for such processes
are usually not very difficult to obtain. In many applications
however one is interested in predicting an ensemble aver-
aged behavior rather than some local properties. This is the
case, for exampie, in communications networks where the
important parameters are average throughput and delays,
rather than the exact evolution of a particular data transfer
scenario. The philosophy of this approach is that if the aver-
age behavior is satisfactory, the actual realizations will not
significantly depart from it in their performance. Thus sys-
tem engineers are faced with the problem ot designing the
local processing {protocols, routing laws etc.) that induces
good global behavior. In research of neurosensory systems
one obtains ensemble averaged responses by repeating the
experiment many times under similar stimuli and environ-
mental conditions. However, unlike the engineers’ problems
of design, the scientists strive to discover what kind of local
stimulus encoding principles and influences from environ-
ment could have led to the recorded behavior.

In this paper we discuss the interrelations that exist
between the given local sample-path evolution laws of a con-
trolled selfexciting point process and its ensemble
occurrence rate or density process. We shall present a gen-
eral model for such processes that accounts for the
assumed local behavior and use the model to obtain an ordi-
nary, possibly nonlinear difflerential equation that relates
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the modulating time function with the ensemble rate of the
controlled point process.

. AMODEL FOR CONTROLLED SELFEXCITING
POINT PROCESSES

A realization of a point process is an ordered sequence
of occurrence times {7,|,.x. and for convenience we may
formally define it as a time function

St = 2‘.—‘6(‘ -7 (1

It is usual to associate with a point process a counting (or
unit-juinp) process, with realizations defined as follows

¢
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The complete definition of a selfexciting point process
specifies, given a realization of the process up time 7, or the
sigma fleld o, = {Nef<T{, a function TI(¢ |g,) for ¢>T which
provides the probability that the next occurrence of the
process will exceed ¢. Thus formally

I](tlo,)=PriT~,n>t!ov! (3)

Clearly, the function [I(-|'), determines the sample-path
evolution of the selfexciting process completely. We may
think of it as the process model since in fact it provides the
causal realization-dependent statistics of the next
interevent interval. Associated with the sample-path evolu-
tion there is also an instantaneous rate function p(t|g,)
deflned as

PriTh ae(t t+6)|ad
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and it is easy to show (see e.g. Snyder,[1]) that it can be
obtained from I1(¢ | o,) as foilows
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Note that if [I(¢ | g,) = [I(t -7y ) then the instantaneous rate
will also depend only on the time elapsed since the last
occurrence of the process. This is indeed the case when the
process is generated by choosing the interevent intervals
independently according to a given distribution density. In



this case one obtains what is called a renewal process, and
there are many results available for such processes. In fact,
if the interoccurrence intervals are independent and distri-
buted according to the density p(¢), then it is easy to see
that

= p(t ~Ty)
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In the sequel we assume that the function [I{t |g,) also
depends on a positive modulating function m(¢), the realiza-
tion of a “slowly varying” continuous stochastic process. The
modulation will therefore influence the local rate function
too. Suppose that the local rate function is affected by the
modulation in the following way

p(tjonMe) = Fe,E{ﬂM(t)imld g elm(t)o,] (7

where M; = {m(¢)it<t{. If in the above equation F,{-{ is
regarded as the instantaneous rate of some selfexciting pro-
cess, then the interpretation of the above formula is a
time-scaling controlled by the modulating function via the
past-dependent functional $[-|-]. Indeed this would be the
result if we considered a stochastic integrate to threshold
pulse frequency modulation model, with two feedback
effects: one influencing the eflective modulation (through ¢)
and the other controlling the threshold behavior. Such a
model recently proved fruitful in describing neural coding
processes, see for example [2] or [3]. In the sequel we
adopt the above formula as a model for modulated selfexcit-
ing point processes.

11I. SAMPLE-PATH BEHAVIOR AND ENSEMBLE, RATES

Segall and Kailath [4], introduced a method for model-
ing randomly modulated jump procesees based on mar-
tingale theory. Their results state that, under rather mild
assumptions, given the increasing set of sigma fields g, or
some other, richer set of sigma fieids £,>0, one can associ-
ate to the sample-path of a jupnp process an adapted local
rate process A; so that N; — f A.d7 will be a martingale. 1t
is not difficult to show (see e.g. [1]) that the local rate pro-
cess is, for the example discussed above, given by

A =p(tlog,) for t €fTe.Teyy) (8)

It has been also pointed out by Segall and Kailath that the
local rate process is a function of the associated increasing
seguence of sigma flelds. In the rate modulated example of
the previous section we consider the increasing sequence of
past information as I; = {N,m (¢):¢<t|. Then the rate is
again given by the above formula, and clearly the local rate
would be different if we would have no knowledge of the past
rate-modulation process realization. All the above results
however concern the local sample-path evolution and give
no clue as to what the ensemble rate of the modulated pro-
cess is as a function of the modulation process realization.
As we pointed out earlier, knowing the mapping between
m(t) and the ensemble rate is sometimes of more impor-
tance than characterizing the local evolution. in fact what
we would like to determine is £, [A;|M;] ie. the rate
adapted to the causal sigma field induced by realizations of
the modulating process alone. This however proves Lo be an
impossible task, since it is not known how to assess the pro-
bability measure induced by all possible sample-path on the
values of the rate process. In order to obtain the ensemble
rate evolution we thus have to introduce further assump-
tions and make some "engineering” approximations. Let us
first give some ailternative definitions for what we under-
stand by the ensemble rate. The most obvious definition is

d
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where the last eguality follows from the fact that the
diference between the counting process and the integrated
rate is a martingale (and of course under the assumptions
of differentiability and the usual commutativity of linear
operations).

Let us now consider the modulation model given by (7). Sup-

pose that we have for the effective modulation (or time-
rescaling derivative) the following form

[m(t)lo] = m(t) + ¢(o,) (10)

Also assume that F}{ corresponds to a seguence of

exponential interevent distributions with past-dependent
parameter ag,. This provides, using (6).

Fv,u;’@ia‘; = a, (11)
Therefore we have
A = ag, (m(t) + p(0,) ] (12)
and taking expectations w.r.t o, we readily get
R(EIM) = ELINTM] =mE)Elas, | M)+ Ela.,0(a) | 4] (13)

Now we shall make the following approximation: we assume
that expectations of bolth a and ap can be well approxi-
mated by some function of a weighted integration on the
past sutput rate, as follows

E[Gq.“'fe]=H1[{‘U1(‘*E)R(€lﬂfe)d§} (14)

and
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Therefore we shall have the following functional equation,
approximating the evolution of the ensemble rate

¢
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o
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This equation in fact describes a nonlinear system with
input m (¢} and output R(¢ [ M,) as depicted in the diagram
below

In order to find the suitable functions and linear weightings
in the above equations we have to rely on the assumed past
dependence of a,, and of ¢, . It is worth noting that one can



always obtain ahevaluation of the ensemble approximation
considered by extensive simulations, which can subse-
quently be used to improve the model.

Suppose, for example, that a, = A (constent) and that
@(o¢)} = 0. This immediately yields that the ensemble rate
simply follows the modulation function, as expected from a
simple Poisson process with a trivial time-rescaling modula-
tion. If however we assume that %, decreases proportionally
to the number of discrete events that occurred in the
recent past then the ensemble rate will be, approximately,
the output of an "automatic gain control” type system.
When both feedback effects are in action, their interplay
may lead to some rather interesting nonlinear interactions.
The freedom to choose those interactions led to the develop-
ment of a neural encoder model which was able to ade-
quately reproduce the recorded experimental behavior, see
e.g. [3]. However we wish to point out here that the above
presented theory is quite general and can be adapted to
model a wide variety of rate controlled selfexciting point
processes, as for example those considered by Hawkes [5].
This theory may be regarded as an ordinary differentiat
equations approach to the prediction. in a first approxima-
tion, of the ensembie behavior from given local sample-path
evolution laws.

IV. CONCLUDING REMARIGS

In this short paper we suggested a rather general
approach to the description of both sample-path and ensem-
ble behavior of seilexciting rate modulated point processes.
A special case of the above analysis already proved useful in
modeling neural coding processes, however the approach is
general and applicable to a variety of problems involving
point processes with memory. Once a formal model for a
discrete event process has been defined one stili has to pro-
vide some evidence for its validation. In case one has an
ensemble of experimental responses to a variety of input or
modulating functions, one may apply likelihood tests on it in
order to compare several competing models. If however one
only has access to ensemble averaged responses, an approx-
imate model for the ensemble rate behavior may prove to
be an useful tool for evaluating the validity of various
assumptions on the local behavior.
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