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the modulating time function with tbe ensemble rate of the 
controlled point process. 

11. A llODEL FOR ::וONTROLLED SEI.FEXJ::11וNG
POINT PRO::וESSES 

A realization of a point process is an ordered sequence 
of occurrence times !TnJneא, and for convenience we may 
formally define it as a time function 

- o(t� = (t)ן (1 ) r,) 
' 

It is usual to associate with a point process a counting (or 
unit-juזnp) process, with realizations defined as follows 

(2) 
 י

N1 = j/(()d( 

The complete definition of a selfexciting point process 
specifies, given a realization of t.he process up time ס ,זr the 
slgma חeld uT ::; !Ni;(�זj, a tuncllon ח(t I uT) ror t >ז whlch 
provides the probability that the next occurrence of lhe 
process will exceed t. Thus formally 

(3) U(t la,) = PrlTא,•, > t la,I 

Clearly, the function il(· I · ), determines the sample-path 
evolution of the sclfexcit.ing process completely. We may 
think of it as ttגe process model since in fact it. provides the 
causal realiza.tion-depeת(lent slat.istics of t.he next 
interevent interval. Associated wit.h the sample-pat.h evolu­
tion t.here is also an inslantaneous rate function p(t I aT) 
defined as 

(4) 
PrlTא ,,e(t,l+o)la,I 

::; lim 
T 6 .. , 

p(t I a,) 

and it. is easy t.o show (see e.g. Snyder,[1]) that it. can be 
obtained from IJ(t ן aז) as follows 

(5) ,., = r.,(1) 
a ln U(( ו a,) 

8(p(t I a,) = 

Not.e thal if ת(t ! aT)::; IJ(t -Tא.,,) t.hen t.he instantar1eous r;,.le
w-111 also deper1d only on the tlme elapsed slnce the last 
occurrence of Lhe process. This is indeed the case when t.tוc 
process is generated by choosin� the intereveחt intervals 
irגdependently according to a given distribution densit.y. Jn 

Abstract: This paper addresses several issues arising in the 
modeling of discrete event. processes for which t.he sample­
pat.b evolution depends חס the past traject.ory and is also 
cont.rolled by an independent modulat.ing process. While 
information חס local, sample-pat.h evolut.ion is sometimes 
readily obtainable or measurable, in many applicat.ions it is 
more import.ant to predict ensemble averaged responses to 
variations in the modulation process. We shall discuss this 
problem in the framework of a general model for rate­
modulated selfexciting prסcesses and, under certain 
assumpt.ions, derive a nonlinear ordinary different.ial equa­
t.ion for approximate(y predict.ing ensemble behavior from 
known sample·path evolution laws. A successful application 
of this metbod t.o a neural encoding process has already 
been made. 

1. INTRODUIT::וON
Point processes arise as חatural models for optical 

communications, for traffic analysis in computer net.works 
and for t.ransmission of information in nervous systems. As 
such they are ext.ensively used to evaluate t.he performance 
of various man·made systems and also t.o explain the experi­
mentally recorded behavior in neurophysiological research. 
The propert.ies סf sample-path evolution for such processes 
are usually not very difficult t.o obtain. ln many applicat.ions 
however one is interested in predict.ing an ensemble aver· 
aged behavior rather t.han some local properties. This is the 
case, for example, in communications networks where the 
import.ant. paramet.ers are average throughput and delays, 
rather than the exact. evolution of a particular data transfer 
scenario. The philosophy of this approach is t.hat. if the aver­
age behavior is satisfactory, the act.ual realizations will not 
significantly depart. from it in their performance. Thus sys­
tem englneers are racect w1th the problem or ctesוgn1ng the 
local processing (prot.ocols, rout.ing laws et.c.) that induces 
good global behavior. In researcb of neurosensory systems 
one obtains ensemb(e averaged responses by repeating t.he 
experimenl many times under similar st.imuli and environ­
ment.al condit.ions. �lowever, unlike t.he engineers' problems 
 f design, lhe scientists st.rive t.o discover what. kind of localס
stimulus encoding principles and inftuences from environ­
ment. could have led to the recorded behavior. 

ln this paper we discuss the int.errela.tions that. exist. 
between the given local sample-path evolut.ion laws of a con­
trolled selfexciling point process and it.s ensembte 
­ccurrence rate or densit.y process. We shall presenL a genס
eral model ror such processes that accourנts for the 
assumed local betiavior and use the model to obtain an ordi­
nary. possibly nonlinear difierent.ial equation that. relat.es 
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this case one obtains what is called a renewal process, and 
there are many results available for such processes. ln fact, 
if the inl:.eroccurrence intervals are independent and distri­
buted according to l:.he density p (t ), then it is easy l:.o see 
l:.hat 

t I)ח •.) = 1 - j p (()d ( and 
t - TאT 

p (t - Tא ) 
p(t I aT) = 11(t I aT)T 

(6) 

ln the sequel we assume that the function ח(t j u.,.) also 
depends: חס a positive modulal:.ing funcl:.ion m ( t ), l:.he realiza-
1:.ion of a "slowly varying" conl:.inuous sl:.ochastic process. The 
modulation will 1:.herefore infiue nce tl1e local rate func tion 
l:.oo. Suppose 1:.hat lhe local rate funcl:.ion is atiecled by the 
modulal:.ion in the following way 

' 

p(t l aT,M, ) = F,Tlf�[m (() l aT]d (I � [m (t ) l aT] (7)

where M, :;;: !m (t);�st j .  lf in l:.he above equation F
a� · j  is 

regarded as the instantaneous rate of some s elfexciting pro­
cess, then the interprel:.al:.ion of the above formu(a is a 
time-scaling control(ed by the mo dulating function via the 
past-dependenl:. funcl:.ional tP [ ·  I · ]. Indeed this would be the 
result if we considered a stochastic integrate to 1:.hreshold 
pulse frequency modulation model, with l:.wo feedback 
eזtects: one influencing l:.he eזtect.ive modulal:.ion (through ,P) 
and the other controlling the threshold behavior. Such a 
model re cenl:.ly proved [ruitful in describing neural coding 
processes, see for example [2] or [3]. In the sequel we 
adopt the above formula as a mode l for modulated selfexcit­
ing point. processes. 

 SAMPLE-PATH BEHAVIOR AND ENSEMBLE RATES .ווו
Segall and Kailath [ 4], introduced a method for model­

ing randornly .וnodulal:.ed jun.וp proce1:1&88 based סn n.וar­
tingale theory. Their result.s state that, under rathe r mild 
assumptions, given l:.he increasing set of sigma fields uT or 
some othe r, richer set of sigma fields E.,.כuT one can assoc i­
ate to the sample-path of a jup.רp process an adapted local 
rate process 1ג so that N1 - f0 ,..גd , will be a martingale. i t
is  not  diזticult 1:.ס show (see e .g .  [ 1 ] )  that the local rate pro­
cess is, for tbe example discussed above, given by 

:;;: 1ג p(t l ur
,1:

) for t e:[ T,1: , T,1: ... 1 ) (8) 

]t has been also pointed out by Segall and Kailath that the 
local rate process is a funcl:.ion of l:.he associated increasing 
sequence of sigma fields. ln the ral:.e modulated example of 
the previous section we consider the increasing sequence of 
past information as I: m,1או = 1 ({) ;t�t j .  Then the rate is
ag ain given by the above formula, and clearly the local rate 
would be diזtere nl:. if we would have no knowledge of the past 
rate-modulal:.ion process re alizal:.ion. All the above results 
howeve r concern. the loca( sample-path evolul:.ion and give 
no c lue as to what the ensem ble rate of the modulated pro­
c ess is as a function of the modulation process realization. 
As we pointe d out earlier, knowing the mapping b etween 
m(t ) and l:.he ensemble rate is sometimes of more impor­
tanc e than characteriz ing the local evolution. In fact what 
we would like to determine is Eo-1 M1 ן ,.-<] ] i.e. the rate 
adapt.ed to the cauו!al 1יווig.רna field induced by realizat.ion!I of 
the modulal:.ing process alone. This howeve r proves to be an 
impossible task, since it is not known how to assess the pro­
bability measure induced by all possible sample-path חס the 
value s סf the rate process. In סrder 1:.ס obtain the ens emble 
rate evolution we t.hus have to introduce furlh er assump­
ti ons and make some "engine erin�" approximations. Let us 
first give some alte rnative definitions for what we under­
sl:.and b)• l:.he enscmble ral:.e. The mosl obvious de finil:.ion is 

d 
R(t  I M, ) = ;fi""E,, [N, 1 M, ]  = E,,[1 ,ג M, ] 

where the last equalit}· follows from the fact that the 
difYerence between lhe countiחi process and lhe inlcgrated 
rate is a marlingale (and of course under the as sump tioחs 
of difte re ntiability and the usual commutat ivit.y of line ar 
operations}. 

l,et us now consider the modulation model given b)' (7).  Sup­
pose that we have for the e ffective modulation (or time­
rescaling derivative) the following form 

�[m (t ) l a, ] = m (t ) + ,(a, ) ( 1 0) 

Also as sume that Fיo1 � - j  corresponds to a sequence of 
exponential intereve nt distributions with past-dependent 
parameter aa, · This provides, using (6) ,

Therefore we have 

' 

F,, lf� l a, I  a,, 

a,, [m = ,ג (t )  + ,(a, ) ] 

and taking expe ctations w.r, t ui we readily g et 

( 1 1) 

( 12) 

R(t  I M, ) = E., ,M 1 ,ג] ] = m (t )E[a., 1 M, ] + E[a., ,(a, ) 1 JJ, ] ( 13)  

Now we shall make the following approximation: we ass ume 
that expectations of both cr. and o..rp can be well approxi­
mated by some function of a weighted integration on l:.he 
past output rate, as follows 

E [a,, l lJ1 ] = H 1 [Iw 1 (t -()R (( I Mi) d.} ) ( 14)

and 

E[a,, ,(a, )] = H,[Iw,(t -()R ( � I M, )) ( 15) 

Tberefore we shall have the fo\lowing func tional e quat ion, 
approximating 1:.he evolution of the en.semble rate 

R(t  I M, ) = m ( t ) H י !I w 1 (t -()R (( I  M,)J� .) 

+ H,!I w,(t -()R(t l M, )) 

( 16) 

This equation in fact dcscribe s a nonlinear system with 
input m (t } and oul:.put R(t I M, )  as de picted in the diae:ram 
below 

R( tl Md 

Tn order to flnd the suitable funct.ions and l inear weiJ;htings 
1n the above equations we have to rely on the assumed past 
depend enc e of a"1 and סf rp"1 • 1 t  i !.  wort.h noting that. one can 



always obtain a� evaluation of the ensemble approximation 
considered by extensive simulations, which can subse­
quently be used to irnprove the model. 

Suppose, for example, that .וc
o-1 

= A (constant) and that 
9'(ae) = 0. This immediately yields that the ensemble rate 
simply follows the modulation function, as expected from a 
simple Poisson process with a trivial time-rescaling modula­
tion. ]f however we assume that cr.

o-, decreases proportionally
to the number of discrete events that occurred in the 
recent past then the ensemble rate will be, approxi.mately, 
the output of an "automatic gain control" type system. 
When both feedback efiects are in action, their interplay 
.may Lead to some rather interesting nonlinear interactions. 
The freedom to choose those interactions led to the develop­
ment of a neural encoder model which was abLe to ade­
quately reproduce the recorded experimental behavior, see 
e.g. [3). However we wish to point out here that the above 
presented theory is quite general and can be adapted to 
model a wide variety of rate controlled selfexciting point 
processes, as for example those considered by Hawkes [5]. 
This theסry may be regarded as an ordinary differential 
equations approach to the prediction. in a first approxima­
tion, of the ensemble behavior from given local sample-path 
evolution laws. 

IV. CONCLUDING 1/EMARKS
In t.his short paper we suggested a rather �encral 

approe.ch lo t.he descript.ion of both sample-pat.h and cnscm­
ble bet1avior of selfexciting ratc modulated point processes, 
A special case of the above analysis already proved userul in 
modeling neural coding processes, however t.he approach is 
general and applicable to a variet.y of problcms involving 
point processes wit.h memory. Once a forma( model for a 
discret.e evcnt process has been defmed one st.ill has t.o pro­
vide some evidence for its validat.ion. In case one has an 
ensemble of experimental responses to a variety of input. or 
modulat.ing functions, one may apply likelihood test.s חס it. in 
order to compare several compet.ing models. If however one 
only has access to ensemble averaged responses, an approx­
imate model for the ensemble rate behavi.or may prove to 
be an useful tool for evaluating the validity of various 
assumptions on the local behavior. 
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