


Gathering Multiple Robotic Agents

with Crude Distance Sensing Capabilities

Noam Gordon, Yotam Elor, and Alfred M. Bruckstein

Center for Intelligent Systems, CS Department
Technion — Israel Institute of Technology, Haifa, Israel

{ngordon,yotame,freddy}@cs.technion.ac.il

Abstract. In this follow-up to an ANTS2004 paper we continue to in-
vestigate the problem of gathering a swarm of multiple robotic agents
on the plane using very limited local sensing capabilities. In our pre-
vious work, we assumed that the agents cannot measure their distance
to neighboring agents at all. In this paper, we consider a crude range-
limited sensing capability that can only tell if neighboring agents are
either near or far. We introduce two new variants of our previously pro-
posed algorithm that utilize this capability. We prove the correctness of
our algorithms, and show that the newly added capability can improve
the performance of the algorithm significantly.

1 Introduction

The gathering problem is roughly defined as the problem of gathering multiple
agents on the plane into a point or a small region, within finite or finite expected
time. In some variants, it is sometimes also referred to as the problem of point
formation, convergence or rendezvous. In the emerging field of theoretical swarm-
robotic research, the gathering problem has been given increasing attention in
recent years. This follows a general increase in interest in swarm robotics, and,
in particular, what we feel as an increasing urge to attain more substantial
theoretical backing to this field which has been initially mostly experimental.
Being such a fundamental problem, a basis to many formation and consensus
problems, it is an ideal setting for theoretical exploration of swarm robotics.

Several theoretical works on this subject exist. Current approaches include
agreement on a meeting point with some unique geometrical property, assuming
unlimited visibility [1,2,3,4]; using a common compass [5,6]; cyclic pursuit [7,8,9];
and others [10,11,12,13,14]. Sugihara et al. suggested a simple way to fill a convex
shape, which is also useful for gathering [15].

These methods rely on strong assumptions about the agents: Some rely on
labeling (e.g., pursuit), some on common orientation, and many on infinite-
range visibility. Nearly all works rely on the agents’ ability to measure their
mutual distances. We focus on the problem under the ant-robotic paradigm,
which assumes anonymous, homogeneous, memoryless agents lacking common
knowledge and communication capabilities, and having only limited local sens-
ing. In previous works [16,17] we proposed gathering algorithms which do not

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Gathering Multiple Robotic Agents 73

utilize distance sensing at all. To our best knowledge, the gathering problem un-
der the ant-robotic model and without sensing distances has not been considered
elsewhere.

The initial inspiration and motivation for our work came from experiments
with real robots in our lab [18], made from LEGO parts and very simple sensors,
which are range-limited and do not provide usable distance measurements.

The algorithm proposed in [16] was validated in simulations which showed
that the agents always converge into a small dense cluster. The key property
which ensured the convergence, was that the algorithm maintains mutual visi-
bility. However, since the agents were not aware of their mutual distances, their
movement was quite conservative, in order to maintain visibility. As a result,
and as evidenced by our simulations, the convergence rate was slow. A formal
correctness proof of this algorithm currently remains an open problem. In [17] we
proposed a randomized variant of that algorithm, which we were able to prove,
yet its behavior in simulations was similar with regard to the convergence rate.

In this work we investigate whether adding a crude distance sensing capability
to the agents can help them gather more efficiently. We feel that this added
ability, done minimally, does not violate the ant-robotic paradigm. It is plausible
that robots will be able to tell near from far at the least. That’s exactly what
we give them, and the answer to our question is clearly affirmative.

In Sect. 2 we provide the basic definitions and the system model. In Sect. 3
we present and prove the termination of the main proposed algorithm. In Sect. 4
we present a variant of the model and the algorithm, which adds the capability
of collapsing into nearby agents. We present and discuss simulations of the al-
gorithms in Sect. 5, and conclude in Sect. 6. Most proofs were omitted due to
space constraints, and will be published in a forthcoming paper.

2 The System Model

2.1 Basic Definitions

The world consists of the infinite plane R
2 and n point agents living in it.

We adapt Suzuki et al.’s convenient way of modeling a system of asynchronous
agents [4], sometimes referred to as the semi-synchronous model: Time is a
discrete series of time steps t = 0, 1, . . .. In each time step, each agent may
be either active or inactive, having no control over the random scheduling of
its activity times. An active agent atomically senses its environment, performs
calculations, and optionally moves instantly to another point within a distance
σ (the maximum step length).

An agent is able to see other agents within distance V (the visibility radius
or range). However, it cannot measure its exact distance from them. Rather, it
can only tell if a visible agent is at either less or more than the near-visibility
distance r. We assume that 3r < V . There are no collisions. Several agents may
occupy the same point. All agents are memoryless, anonymous (indistinguishable
in their appearance) and homogenous (they lack any individuality or identity,
and perform the same algorithm).



74 N. Gordon, Y. Elor, and A.M. Bruckstein

In what follows, we use the following definitions and notations:

– Denote a closed disc of radius R centered at a point p by Bp(R);
– Denote the number of agents in the system by n.
– For an agent a, we also denote its position by a. The agent’s position after

moving (as described in the context) is denoted by a′;
– Agents at a distance r or less are nearby. Otherwise, they are far ;
– We term visibility between nearby agents near-visibility, and visibility be-

tween far agents far-visibility;
– Let b be an agent far-visible by agent a. The point on the line segment ab

at a distance r from a is the image of b with regard to a. It is denoted by b̃.
– Denote by F the subset of the agents which have far-visible neighbors. Denote

by CH(F ) the convex hull of the set F .
– For ease of notation we shall use F also to denote the far-visibility graph,

whose nodes are the agents in F , and its edges are all far-visibility edges:
(a, b) ∈ F ⇐⇒ r < ‖a − b‖ ≤ V ;

2.2 Strong Asynchronicity

In Suzuki et al.’s original model, there are no assumptions regarding the activ-
ity schedule of the agents (except that no agent sleeps forever, i.e., each agent
is active an infinite number of times). In our opinion, this proved to be too
weak in the context of formation problems, as they could mostly achieve impos-
sibility results in their works. In [4], they proved that there are no algorithms
guaranteed to form shapes which are not purely symmetrical (e.g., perfect poly-
gons). The reason was that the agents might not be able to break symmetries
given certain schedules (e.g., if they happen to be synchronous). Perncipe et al.
achieved similar impossibility results using similar reasoning under their more
elaborate totally asynchronous model (See [19,20]), in which the agent activity
cycles are neither atomic nor instantaneous. These results are very interesting
in the context of computational swarm-robotic research, yet we feel that, in the
research of real autonomous swarm-robotic systems, this weakness is somewhat
artificial. Therefore, we revise the model by adding an assumption on the agent
scheduling, striving as we can to make it as minimal and generic as possible, and
reflect the natural asynchrony between autonomous robots. It is as follows:

Definition 2.1 (Strong Asynchronicity assumption). There exists a con-
stant ε > 0, such that for any subset S of the agents and in each time step t, the
probability that S will be the set of active agents is at least ε.

This assumption guarantees that any synchrony between robots will break in
finite expected time, since there is always a probability of at least ε that it will
break. More generally, the strong asynchronicity assumption makes us immune
to adversarial schedules and allows us to prove the termination of our algorithms
by construction, that is, if we show that there always exists a schedule that brings
us to a goal configuration, then it is guaranteed that the algorithm will terminate
in finite time. Let us formalize and generalize this idea in the following theorem.



Gathering Multiple Robotic Agents 75

Denote the state (or configuration) space by C, and the subset of goal configu-
rations by G ⊂ C. The system is defined by C, an initial configuration c0 ∈ C, and
a Markovian transition function τ : C × C → [0, 1], which defines the transition
probabilities between the states. Define a reachable configuration as one that it
is possible to reach (directly or indirectly) from c0. Denote the set of reachable
configurations by C′ ⊆ C.

Theorem 2.2. A system will reach a goal configuration in finite expected time,
if there exist constants M and ε > 0, such that for each reachable configuration
c ∈ C′, there exists a path in τ from c to some configuration in G, with at most
M transitions, each having a probability of at least ε.

Armed with this theorem, we can use a constructive approach in our proofs —
we need to show that one can always construct a path from any configuration
to the goal. The strong asynchronicity assumption provides the required lower
bound ε on all transition probabilities.

3 The Algorithm

3.1 Definition

We mentioned above that the proposed algorithm is a variant of an algorithm
presented in [16]. Let us begin with the original algorithm in Algorithm 1, which
assumes no distance sensing ability. It is presented in first person, being per-
formed by each agent from its own point of view.

Algorithm 1. Gathering with no distance sensing
1: if all of the visible agents lie within a wedge which spans less than half of my

visibility disc then
2: move a step of length min(V cos(ψ/2), V/2, σ) along the wedge’s bisector, where

ψ is the angle of the wedge.
3: else
4: do not move.

Beside the physical limitation σ, the step length is set so that visibility be-
tween the agents is maintained after they move, no matter what their mutual dis-
tances are. consequently, the algorithm is somewhat inefficient, as agents which
are very close move (or do not move at all) much more conservatively than
needed to maintain visibility. A central motivation in this work is to examine
whether some crude knowledge of distance can improve the performance of the
algorithm, hence the added capability to sense whether a visible agent is near
or far. The new algorithm, Algorithm 2, is identical to the original, except that
the agent ignores nearby agents, and the step length is different. For simplicity,
we fix σ = r in the remainder of this paper.



76 N. Gordon, Y. Elor, and A.M. Bruckstein

Algorithm 2. Gathering with crude near/far distance sensing
Let N be the set of all my neighbors at a distance between r and V .

1: if N 	= ∅ and all of the agents in N lie within a wedge which spans less than half
of my visibility disc then

2: move a step of length r cos(ψ/2) along the wedge’s bisector, where ψ is the angle
of the wedge.

3: else
4: do not move.

In what follows, we call the agents that reside on the edges of the said wedge
the pulling agents, as the agent seems to be “pulled” by these agents. We make
the following simple yet important geometrical observations:

Remark 3.1. A moving agent’s destination is the midpoint between the images
of its pulling agents (See Fig. 1(a)).

Remark 3.2. Given the locations of agent a and the image of one of its pulling
agents p̃, the set of all possible locations of its destination a′ is a circle whose
diameter is the line segment ap̃. This is due to Thales’s classic theorem and the
fact that a, a′, and p̃ always form a right angle (See Fig. 1(b)). Take note of the
two extreme cases: The case a′ = p̃ corresponds to ψ = 0, where a is pulled only
by p̃. The case a′ = a corresponds to ψ = π, where a doesn’t move at all.

p

a

ψ r

q̃

q

a′

p̃

(a) a′ is the midpoint between p̃
and q̃ and it’s always inside the
triangle apq.

a

r

p̃ q̃

q
p

a′

(b) a′ is always on the circle whose
diameter is ap̃

Fig. 1. Geometric properties of agent movement

3.2 Proof

We now prove that Algorithm 2 indeed gathers all agents within an area of
diameter r, in finite expected time. We use the constructive strategy suggested
in Sect. 2.2, by showing that there always exists a bounded-time schedule that
will either make the perimeter of CH(F ) shrink or new visibility links will be
created. Chaining enough such sequences will generate a bounded-time schedule
that shrinks CH(F ) into nothing. Then we apply this to Theorem 3.8.



Gathering Multiple Robotic Agents 77

Lemma 3.3. The algorithm maintains visibility.

Lemma 3.4. Consider the following scenario:

1. An agent a moves (Others are not active);
2. Consequently, one or more nearby agents bi /∈ F become far from a (i =

1, . . . , k, k > 0);
3. Next, these agents become active and move.

For each i,

a. b′i must be near a′;
b. b′i must see at least one of the pulling agents of agent a;
c. For each j, b′i must be near b′j;
d. If, as a consequence of bi’s movement, some agent c near bi becomes far from

it, then c must be in F .

Lemma 3.5. A moving agent cannot move outside CH(F ).

Let a0 be the agent at a corner of the boundary of CH(F ), and let ϕ be the angle
at that corner. Denote by A the isosceles triangle formed by the two boundary
edges touching a0 and a third line, such that the length of each of the triangle’s
edges touching a is r cos ϕ

2 .

Lemma 3.6. For any agent in triangle A, if it becomes active and moves, it
will move outside A.

Lemmas 3.4, 3.5, and 3.6 are used to prove the following lemma, by constructing
a schedule that empties the triangular corner A of F -agents, making CH(F )
shrink.

Lemma 3.7. There exist constants s∗ > 0 and t∗ ∈ N, such that, as long as
F 	= ∅, there always exists an activity schedule that will decrease the perimeter
of CH(F ) by at least s∗ in at most t∗ time steps, assuming that no new visibility
links are created during that time.

Theorem 3.8. Given an initial configuration with a connected visibility graph,
when performing Algorithm 2, the system will reach a static configuration of
diameter r or less, in finite expected time.

Proof. The initial visibility graph is globally connected and always remains so,
due to Lemma 3.3, so the perimeter of CH(F ) is bounded. Lemma 3.7 always
holds. Thus, we can always chain schedules constructed in Lemma 3.7 enough
times so that the perimeter of CH(F ) becomes so small that it implies that
its diameter is less than r. This, in turn, implies that F = ∅ by definition.
The required number of these cycles is bounded, since each cycle decreases the
perimeter by at least a minimal amount s∗, except possibly a bounded number of
cycles during which new visibility links are created (since visibility is maintained,
and there are n(n − 1)/2 possible links in total). Each cycle’s time is bounded



78 N. Gordon, Y. Elor, and A.M. Bruckstein

by t∗, so the resulting chained schedule is of bounded length (Let’s denote the
bound by M). We can construct such a schedule for any given configuration.
The strong asynchronicity assumption gives a minimum probability ε for each
transition. Therefore, Theorem 2.2 holds, and the system will reach a state where
F = ∅ in finite expected time. It is straightforward to show that, together with
the fact that the visibility graph is globally connected, this implies that all agents
are mutually nearby, and so the diameter of the configuration is at most r. By
definition of the algorithm, this configuration is static. ��

4 A Variant — Gathering and Collapsing

When considering real robots, it is plausible to assume that in very close range
r � V the robots are able to sense each other better and perhaps communicate.
Some works on formation (e.g., [21]) suggest that flocks of robots can move
together as a whole, using some control hierarchy, where, for instance, a slave
robot follows the movements of a master robot in the flock. In self-assembly
and aggregation contexts, it is assumed that close robots can join in some rigid
physical link, and effectively function and move as a single unit. In this section,
we present a slightly modified model that abstracts these ideas, and a modified
gathering algorithm for it.

4.1 Definitions

We use the same model and definitions as in Sect. 3.1, with the following modi-
fications.

– We do not assume strong asynchronicity.
– An agent can move to the exact location of another nearby agent. Once it

does so, it is permanently assimilated or collapsed into the other agent. From
our point of view, the agent effectively disappears from the system.

– We regard the unification of nearby agents as a “low-level” action. Thus, we
assume that in each time step, all collapses take place before movements.
The order of collapses is arbitrary.

Algorithm 3 is quite similar to Algorithm 2, with the differences being a shorter
step length (needed for our proof), and the collapsing into a nearby agent instead
of just standing, when no far neighbors are visible.

4.2 Proof

The proof idea is somewhat similar to that of Algorithm 2, in the sense that we
show that the convex hull (of all agents here, not just those in F ) must shrink
in finite time. Specifically, we show that the convex hull cannot expand and that
some triangular corner of it must become empty once all agents wake up. We
use the following definitions and notations:



Gathering Multiple Robotic Agents 79

Algorithm 3. Gathering with crude distance sensing and collapsing
Let N be the set of all my neighbors at a distance between r and V .

1: if N 	= ∅ and all of the agents in N lie within a wedge which spans less than half
of my visibility disc then

2: move a step of length 1
2
r cos(ψ/2) along the wedge’s bisector, where ψ is the

angle of the wedge.
3: else
4: Collapse into my closest neighbor.

– Denote the convex hull of all agent locations by C;
– Let b be an agent visible by agent a. The point on the line segment ab at

a distance r/2 from a is the close image of b with regard to a (Note the
difference from the definition of the image of b in Sect. 2.1!).

Analogously to Remark 3.1 on Algorithm 2, we have the following remark:

Remark 4.1. A moving agent’s destination is the midpoint between the close
images of its pulling agents. This follows directly from the algorithm definition.

Remark 4.2. If an agent crosses a line as it moves, then at least one of its pulling
agents must be across that line. This follows straightforwardly from the previous
remark.

Lemma 4.3. The algorithm maintains visibility.

Lemma 4.4. A moving agent cannot move outside C

Let a0 be the agent at a corner of the boundary of C, and let ϕ be the angle
at that corner.Denote byA the isosceles triangle formedby the twoboundary edges
touching a0 and a third line, such that the length of each of the triangle’s edges
touching a is r

2 cos ϕ
2 . Note the differences from the definition of A in Sect. 3.2 — It

is the corner of C (not CH(F )) and its dimensions are halved.

Lemma 4.5. For any agent in triangle A, if it becomes active, it will either
move outside A or collapse into another agent.

Lemma 4.6. An agent outside triangle A cannot enter it.

Theorem 4.7. Given an initial configuration with a connected visibility graph,
when performing Algorithm 3, the system will converge to a point, in finite time.

Proof. According to Lemmas 4.4, 4.5, and 4.6, active agents in C \ A remain
there (or otherwise collapse), while agents in A must necessarily move to C \ A
as well (or otherwise collapse). Thus, once all agents become active, C will shrink
into an area within C \A. This will happen in finite time according to the model,
and it is true for any of the convex hull’s corners. In particular, this is true for
the most acute corner. Thus, it can be easily shown that the perimeter of C will
decrease by at least a minimum amount s∗ = r cos ϕ∗

2

(
1 − sin ϕ∗

2

)
> 0, where



80 N. Gordon, Y. Elor, and A.M. Bruckstein

ϕ∗ = π
(
1 − 2

n

)
< π. Since the initial perimeter is bounded (because the initial

configuration is globally connected), it will take a finite number of these finite-
time cycles until the perimeter becomes small enough that it will imply that all
agents are mutually nearby. At that point, by definition of the algorithm, all
agents will collapse into each other once they become active. ��

5 Experiments

The formal proofs above guarantee that our algorithms indeed work, yet they do
not provide practical bounds on their performance. To gain more insight on their
behavior and compare their performance, we performed extensive simulations of
the three algorithms. We tried various combinations of values of n, r, and V .
We fixed σ = r for simplicity as well as fairness, in the sense that the maximum
step length became equal in both Algorithms 1 and 2. In all simulations, the
initial positions were randomly selected uniformly in a large square area, while
ensuring that the visibility graph is connected. During the simulation runs, each
agent became active independently with probability 1/2.

The most obvious difference between the three algorithms is in their final
or steady state. In Algorithm 1, the agents never stop moving. They contract
into a small cluster whose diameter is around the order of r, and keep leaping
one over the other ad infinitum. This is a direct result of the agents’ inability
to measure distances — they have no idea that they all became so close. The
cluster is not tied in place and it slowly drifts in the plane. In Algorithm 2, as
expected, the agents stop once they are all within an area of diameter r. Finally,
in Algorithm 3, the agents collapse into a point.

Another interesting aspect is the behavior of the swarm during the conver-
gence process. In all of our simulations of Algorithm 3, agent collapses were quite
rare during the process, with most of them occurring in the very end of the run,
once all agents became nearby. This is not surprising given the way we initially
positioned the agents. In order for a collapse to occur before the end, there must
exist an agent with no far-visible neighbors adjacent to another agent which
does see a far agent, which is a somewhat special configuration (Even with the
largest setting r = V/3, more than 96% of the collapses occurred in the end).
As a result, the behavior of Algorithms 2 and 3 was very similar, aside from the
slower convergence rate of Algorithm 3 due to its halved step size.

Figure 2 shows a typical run of Algorithm 2. It can be seen that the most sig-
nificant movement is, as expected, in the outskirts of the swarm, where there are
the most agents which are not surrounded by far neighbors (i.e., their wedge an-
gle ψ is less than π). Initially, the swarm assumes a shape with several “tentacles”
or “lobes”. These tentacles are formed in areas where there was initially a some-
what denser “mass” of agents, which pull more agents from the sparser areas.
Thus, we observe what we believe is a reinforcing process of the denser areas, due
to the larger number of inactive agents there (in absolute terms). All the while,
the agents keep converging in a steady pace until all tentacles contract into an
oval body which ultimately contracts into the final configuration. Interestingly,



Gathering Multiple Robotic Agents 81

−50 0 50

−50

0

50

time= 0

−50 0 50

−40

−20

0

20

time= 100

−20 0 20

−40

−20

0

time= 300

0 10 20

−30

−20

−10

0

time= 500

4 6 8 10 12 14

−25

−20

−15

time= 650

5 10 15
−25

−20

−15
time= 700

Fig. 2. A typical run of Algorithm 2. Here n = 100, V = 20 and r = 1. Notice that
the scale is different between frames.

the swarm typically assumes a different shape with Algorithm 1 (See [16]). Here,
the denser areas along the swarm perimeter soon become dense clusters which
contract inwards very slowly. Viewed at large scale, the swarm perimeter as-
sumes an almost polygonal form with sharp dense corners and straight sparse
edges. The reason that these dense clusters move more slowly is that most of
the agents inside are surrounded by their mates and are therefore immobile.

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

Number Of agents

C
on

ve
rg

en
ce

 ti
m

e

 

 
no distance (Alg 3.1)
crude distance (Alg 3.2)
with collapsing (Alg 4.1)

(a) Convergence time statistics for the
three algorithms. 12 simulation runs
were performed for each value of n.

0 500 1000 1500
0

50

100

150

200

Time [cycles]

D
ia

m
et

er

 

 
no distance (Alg 3.1)
crude distance (Alg 3.2)
with collapsing (Alg 4.1)

(b) Diameter vs. time in typical runs of
the algorithms. Here n = 100, V = 20
and σ = r = 1.

Fig. 3.



82 N. Gordon, Y. Elor, and A.M. Bruckstein

Figure 3(a) shows the statistics of our simultations. Algorithm 3 is the slowest,
as expected, due to the smaller step size. It is clear that Algorithm 2 provides
a significant improvement in convergence time over Algorithm 1, especially for
larger swarms. Interestingly, with smaller swarms, there is no clear advantage.
Figure 3(b) sheds more light on this issue. It shows the contraction of the swarm’s
diameter over time in a typical run of each algorithm. Initially, Algorithm 1 is
somewhat faster. This is due to the larger step size in Algorithm 1 for most wedge
angles ψ (It is σ = r versus r cosψ/2 in Algorithm 2). However, the convergence
rate continuously deteriorates whereas the convergence in Algorithm 2 remains
more or less constant. This is due to the accumulation of “mass” in the corners
of the swarm, which has a more adverse effect on their mobility, as explained
above.

6 Conclusion

In this paper we continued to explore the gathering problem under severe dis-
tance sensing limitations. Previously, we showed how a swarm of robotic agents
can gather without sensing distances at all, but only into a drifting cluster and
with suboptimal performance. Now, we have shown that even the crudest form
of near/far distance sensing can improve the situation a lot. With the new ca-
pability, the swarm was able to contract more swiftly and steadily into a small
cluster and stop in place. Finally, introducing the capability of collapsing into
nearby agents, the swarm was able to contract into a point.

Future work includes investigation of robustness to noise, failures, and per-
agent variations to parameters such as r and V , and development of other algo-
rithms under the crude distance sensing model, such as formation and flocking.

An important part of our work is the contribution to what we feel is an
improved model of swarms, through the addition of the strong asynchronicity
assumption to the classical semi-synchronous model. Not only does it dismiss the
somewhat artificial problem of symmetry breaking (in the context of practical
robotics), but it also enables a simple yet powerful approach of proving the
termination of an algorithm by showing (by construction) the existence of paths
to goal configurations. Strong asynchronicity can be applied to other models,
such as the totally-asynchronous model of [19], and possibly to other types of
distributed multi-agent systems as well.

References

1. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Proc. of ICALP 2003 (2003)

2. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Discrete bee dance algorithms for
pattern formation on a grid. In: Proc. of IEEE Intl. Conf. on Intelligent Agent
Technology (IAT 2003), pp. 545–549 (2003)

3. Schlude, K.: From robotics to facility location: Contraction functions, weber point,
convex core. Technical Report 403, CS, ETHZ (2003)



Gathering Multiple Robotic Agents 83

4. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous
mobile robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS
2001. LNCS, vol. 2010. Springer, Heidelberg (2001)

6. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots
with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006)

7. Bruckstein, A.M., Cohen, N., Efrat, A.: Ants, crickets and frogs in cyclic pursuit.
Technical Report CIS-9105, Technion – IIT (1991)

8. Bruckstein, A.M., Mallows, C.L., Wagner, I.A.: Probabilistic pursuits on the grid.
American Mathematical Monthly 104(4), 323–343 (1997)

9. Marshall, J.A., Broucke, M.E., Francis, B.A.: A pursuit strategy for wheeled-vehicle
formations. In: Proc. of CDC 2003, pp. 2555–2560 (2003)

10. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5), 818–828 (1999)

11. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In:
Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79–88.
Springer, Heidelberg (2004)

12. Lin, Z., Broucke, M.E., Francis, B.A.: Local control strategies for groups of mobile
autonomous agents. IEEE Trans. on Automatic Control 49(4), 622–629 (2004)

13. Melhuish, C.R., Holland, O., Hoddell, S.: Convoying: using chorusing to form trav-
elling groups of minimal agents. Robotics and Autonomous Systems 28, 207–216
(1999)

14. Cortes, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous
agents via proximity graphs in arbitrary dimensions. IEEE Trans. on Automatic
Control 51(8), 1289–1298 (2006)

15. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

16. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts
with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gam-
bardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp.
142–153. Springer, Heidelberg (2004)

17. Gordon, N., Wagner, I.A., Bruckstein, A.M.: A randomized gathering algorithm for
multiple robots with limited sensing capabilities. In: Proc. of MARS 2005 workshop
at ICINCO 2005, INSTICC (2005)

18. The Center of Intelligent Systems, Technion IIT web site,
http://www.cs.technion.ac.il/Labs/Isl/index.html

19. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer,
Heidelberg (2005)

20. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

21. Fredslund, J., Mataric, M.J.: Robot formations using only local sensing and control.
In: Proc. of the Intl. Symposium on Computational Intelligence in Robotics and
Automation (IEEE CIRA 2001), Banff, Alberta, Canada, pp. 308–313 (2001)


