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Abstract-An over-parametrization model based total varia- The constant a is the relative weight of the regularization.
tion signal and image denoising method is proposed and analyzed For a - 0 we obtain the trivial solution of f (x) = fNoiy.
in this paper. In cases where some structural information is For a - oc we obtain the solution f"(x) = 0 from the
provided on the signals or images of interest, this method may Euler-Lagrange equation, which results in a linear solution
lead to substantial improvements in denoising performance.

for f(x). However, Equation (1) shows that only the constant
I. INTRODUCTION solution produces a finite penalty of the functional. Therefore,

The Total Variation (TV) approach for image denoising was in this case the resulting solution is constant and by observing
first proposed by Osher-Rudin-Fatemi [1]. In the TV approach the data term, the value of this constant is the average of

we seek for a.minimizer ofa functionalbyavariational fN0i,y over the integration interval. The solution of the EL
approach, where, the regularization term in the functional mea- equations can be numerically sought after via a gradient
sures the smoothness of the solution via an L1 norm. The TV descent algorithm which initializes f (x) = fNoiy (x) and then
regularization approach is relevant not only to images but also performs gradient descent iterations of the form fk±1(r)=
to general (one or higher dimensional) function regularization, fkt(X) -/t(fk()-fNoisy()-af()). Letusnowreplace
or in other problems, such as optical flow computation. For
example, Papenberg-Bruhn-Brox-Didas-Weickert [2] proposed

E

to estimate the optical flow using L1 regularization in both the E(f) ] (f(x)-fNoi5y(x))2dx (3)
data and smoothness terms in their variational formulation.
The advantages of an L1 regularizer resulted in many state +a ff'(x))2 + E2dx.
of the art variational methods. Such a regularizer is defined
on the border between convex and non-convex functions, it is The resulting Euler-Lagrange equation
able to preserve sharp discontinuities, and it is less sensitive
to outliers than its L2 alternative. In [3] we demonstrate the 2(f(x) -fNjsy(x)) ( f ' ) =0. (4)
advantages of representing the optical flow field using over- dx \\ fJ(X)2 +c2J
parameterized models. We here discuss a novel approach to
regularization which relies on over-parameterizing the space After a few algebraic manipulations we obtain
of functions over which we seek a variational solution. 2f//(X)

11. PROBLEM FORMULATION 2(f(x) -fNoy(X)) (Xa)2 + .2)15

Let us start, for pedagogical reasons, with functions in one One could also replace the L2 norm in the data term with an
dimension. Suppose we have an ideal continuous function L1 norm of equation (3). In this case, we obtain the functional
fldeal (X) that we wish to estimate from its noisy samples:
fNoisy (X) = fldeal (X) + n(x) where, nm(x) is zero mean white E(f) Sy (x))2 + £2dx (6)
Gaussian noise. Let us define the following functional E

E(f) J (f (X) fNois0 (x))2dx (1) +a J f'(x)2 + c2dx,

+a J (f (x))2 dx. that yields the Euler-Lagrange equation,

The first tern (data/fidelity tern) requires that the solution f(x) -fNoisy(X) _ ad ( f (x) '= 0
would be close to the measurement and the second term AI(f(X) -Noiy(x))2+ 2 dx A\ _f(x)2+ E2}
(regularization or smoothness term) is a data independent
reuaizto ter whc enore a smot souinrh Figure 1 shows a pi3ecewise constant function with one dis-
reutn* ue-agag qaini continuity and the reconstruction result using the L1 norm TV

regularizer of Equation (3), and observe that the discontinuity
f(i)- fNoisy(X) - af"(x) 0. (2) is well preserved.
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coefficients Ai(x), i.e.

fldeal(X) ZAi(x)>7i(x), (8)

For most choices of basis functions, we do not impose here any
restrictions on the representation possibilities of any fldeal (X)-
For more than one basis function, the representation is not
unique and there may be infinite ways to represent the same
f1deal (X) function. Suppose for example that bo (x) = 1.
In this case, Ao(x) = f1deal(x) and Ai(x) = 0 for all
i > 0 is one possibility to represent any ideal function. If

Figure 1. Example 1 with L2 data term and L1 regularization. basis function number k, Ok (X) is non-zero everywhere, then
Ak (X) = fldeal (X)Ak (X) with all the other coefficients equal
to zero, is another possible exact representation of fldeal(X).
If the coefficient functions are piecewise constant, we can

FUNCTIONS still try the approach of parameter estimation, but now one
Let us analyze the case of a clean signal with fNoisy (x) also has to solve a segmentation problem of deciding on

f1deal (x), and ask ourselves: what types of functions can the locations of segments that have constant coefficients. In
the TV denoising functional recover faithfully, i.e. recover the noise free case simultaneous segmentation and parameter
without an error? In order for any function to be represented estimation may produce excellent results. In the noisy case
without an error, disregarding the noise, all we have to on the other hand, the problem is much more difficult. The
do is to substitute f (x) = fldeal(X) in the corresponding solution we propose is to incorporate the model of Equation
Euler-Lagrange equation and check if it is satisfied. In this (9) into the functional optimization, so that we now solve for
substitution, the data term vanishes and all we have to do f(x) which is represented by
is check the term corresponding to the regularizer. Looking n

at equations (2) and (5), we observe that for both the L1 f(x) Ai(x)i(x). (9)
and L2 regularization methods, the Euler-Lagrange equation i=1
is satisfied for f (x) =f1deal (X) = fNoisy(X) if and only if Now, the regularization is expressed in terms ofthe coefficients
flzdeal (x) = 0 everywhere. The solution of this simple differ- Ai(x) instead of f (x). Also, the Euler-Lagrange equations are
ential equation leads to a linear function. We conclude that written in terms of the coefficients instead of f (x). For an L2
the previously presented denoising functionals can faithfully functional we would use
reproduce linear functions. From a practical point of view, n 2
even if the ideal function can not be exactly represented, this E(Ai) f ( Ai(x)i(x) - fNoisy(x)8 dx (10)
does not necessarily mean that the functional is inadequate. J J
We have to keep in mind that due to noise, the restored
function would generally be only an approximation to the ideal +a] i3Ai(x)2dx
function, and therefore, practically we would settle for errors
in the noise free case that are an order of magnitude less than For an L1 regularizer and an L2 data term we get
the errors resulting from the contribution of the noise. In the n1 2
next section we will see how knowledge of the nature of the E(Ai) = Xx3 Ai( i (x) - fNoisy(x) dx ( 1)
ideal function can be incorporated into the TV functional in _ _ _ )
order to increase the accuracy of the restoration. n

IV. AN OVER-PARAMETERIZED MODEL FOR THE ID TOTAL +1 2-EA()+
VARIATION FUNCTIONAL

This is the over-parameterized generalization of the classical
Suppose next that we know that our ideal function sc total variation functional in ID. Note that for piecewise

posedof) a iercobntono nwn"ai fntos constant coefficients of an ideal function in Equation (8),Xi~(x) the solution f(x) can model the ideal solution with no
n regularization penalty except at the points of discontinuity in

fldeal (X) = E (z) (7) the model coefficients. For the sake of simplicity we avoided
i=1 writing explicit weights for the derivatives of the different

In this case, the problem reduces to parameter estimation, and coefficients in the above functional since we may choose
the use of functional minimization is unnecessary. Suppose (equivalently) to scale the basis functions. Since we now
however that we know that the ideal function may be rep- minimize the functional with respect to the coefficients, there
resented with the help of basis functions Xi~(z) with varying are now n Euler-Lagrange equations which can be written for



the most general choice of basis functions. The Euler-Lagrange
equation for coefficient number q is 7 Ideal (

+ Noisy (noise STID=0.05)

2 (,Ai(x)$i(x) - fNOi,y(x))x q - aA" (x) 0 (12)

for the functional of Equation (10), and

2 Ai-(x)¢i(x) fNoisy(x)) Oq (13)

dx ( n A(x)2 + 2)

for the functional of Equation (11). There are n coupled Euler-
Lagrange equations for q = 1.. n. Note that for the choice of
one basis function ¢1 (x) = 1, the coefficient of this basis
function becomes the function itself f(x) = A1 (x) and the -10 50 100 150 200 250 300 350 400
Euler-Lagrange Equation (13) reduces to Equation (4). This
shows that our method may be viewed as a generalization
of the classical total variation framework when the over-
parametrization is used with the constant basis function model. Figure 2. Piecewise quadratic function of example 2.
Without noise, a perfect reconstruction is achieved for the
case of an ideal function with linearly varying coefficients
as can be seen by substitution of the ideal function into the Regular TV

Linear over-parameterized TVJEuler-Lagrange Equations (12) and (13). The new regulariza- 04
tion strategy obtained by the over-parameterization functional
penalizes for changes in the underlying model coefficients 0.2
instead of penalizing for any change in the function itself. 2

In Example 2, consider the denoising of a piecewise quadratic °
function with two regions of different quadratic coefficients,
shown in Figure 2. Since according to our previous discus-
sion, if the model coefficients are allowed to change linearly 04
and the basis functions are also linear, the overall space of
exact representation of noise free ideal functions would be -06 _
quadratic. The classical and over-parameterized regularization
reconstruction errors are shown in Figure 3. 0 50 100 150 200 250 300 350 400

In the examples of this section, we used central first and
second derivatives and reflecting boundary conditions. The
parameters are set to a = 80 and E = 0.1. We used gradient Figure 3. Example 2: reconstruction errors for the regular (dotted) versus linear
descent with 8000 iterations. The linear basis functions for over-parameterized total variation.
the over-parameterized method where: b1 = 1 and '2 =

0.4(x - 200.5), where, a scaling factor of 0.4 was empirically
chosen, and 200.5 is the midpoint of the span of the x values The resulting Euler-Lagrange equation is
which range from 1 to 400.

2(f(x, y) - fNoisy(x y))" (15)
V. OVER-PARAMETERIZED IMAGE REPRESENTATIONS FOR (

TOTAL VARIATION IMAGE DENOISING a div( Vf(X, y) - 0
The derivation of the results from denoising of 1D func- / Vf(x,y) 2+82/

tions to 2D functions is straightforward. The classical total The over-parameterized representation of the 2D function
variation for 2D functions (images) as presented in [1] has f(x, y) is
an L2 measure for the data term and an L1 measure for the
regularizer

E(f) JJ/(fQv,y)- fNois y(x,y))2dxdy (14) i=1
~~~~~~ ~~~~where now, both the coefficients and basis functions are

+a] ]ftX (x, y)2 + f8(x, y)2 + c2dxdy 2D functions. The over-parameterized generalization of the



functional of Equation (14) is

E(f) JJ A(iA(x, y)>7i(x, y) - fNoisy(x, y))
n

+al, E VAi(x,y)l2+2dxdy (17)
i-i Figure 4. Prisoner's room. Left - Ideal image. Right - Dark photo with noise

STD=5.
The n Euler-Lagrange equations corresponding to the func-
tional of Equation (17) are obtained for q I .. n

E(f) (:iA(x, y>$i(x, y) -fNoisy(x, y) Oq(X,Y

VAq(X,Y)
-a .div(; A(,~28/ (18)

Figure 5. Prisoner's room. Left - Stretched image. Middle - Image after total
Here too, as can be observed from Equation (18), the terms variation denoising. Right - Image after total variation denoising with the
resulting from the regularization are all multiplied by a second over-parameterized model.
derivative (&xx, &yy or &xy) of some coefficient (as can be seen
after expansion of the div operator), therefore, as in the ID VI. CONCLUSION
case, the Euler-Lagrange equations are satisfied for any noise
free ideal function which can be described by linearly varying In this paper, we have seen how the total variation approach
coefficients (of the form: Ai = C1 + C2x + C3y) multiplying can be generalized to incorporate an overparameterized model
the set of basis functions of our choice. of choice. The model is used by assigning each sample/pixel its

1) Prisoner 's room example. Let us now examine an own independent set of coefficients. The regularization applied
illustrative synthetic image denoising example: suppose a to the derivatives of the coefficients penalizes for deviations

prisoner in ajail is secretly taking p graso.
from the model parameters. Conditions for having zero rep-prisoner~~.in a alisscetytkigpotgahso iscl. resentation errors for the noise free case where derived. We

If the pictures were taken with a flashlight, they would have
looked something like the left image in Figure 4, however believe that this idea can be fruitfully exploited whenever
since the room was quite dark (right image of Figure 4) we have some further prior information on the signals to
and using the flash would be too dangerous, the photo came be recovered and a prime example of this is the optic flow
out dark. When the prisoner finished serving his sentence of estimation problem. Indeed as reported in [3] we obtain the
imprisonment, he went to see a friend who studied computer best optic flow estimation results using such an idea.
vision who wanted to help him get a better image of his cell.
First he stretched the gray level values by uniform scaling.
Unfortunately, the noise became also more visible (inherent
signal to noise problem) as shown in Figure 5 left, so he
tried the total variation denoising approach with the results
shown on the middle image of Figure 5, where the bars are
blurred. He then tried the over-parameterized total variation
approach using the information the prisoner (who happened
to be a smart engineer) gave him: the light changed linearly Figure 6. Error image (the same linear scaling from errors to gray-levels was

on every plane of the room and the light falling on the bars used for both images. Left - Errors for the regular total variation. Right -Errors for the over-parameterized total variation.
on the window formed a harmonic pattern in the x direction
of the image with frequency of f = 0.25[1/pixel]. Using this
information his friend constructed 3 basis functions: (1 = 1, REFERENCES
¢'2 = sin(27fx) and 03 = cos(27fx). The image and error [1] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based
using this method are shown in Figure 6. As can be seen the noise removal algorithms," in Proceedings of the eleventh annual inter-

national conference of the Centerfor Nonlinear Studies on Experimentalpattern of the bar iS much better reconstructed using the proper mathematics: computational issues in nonlinear science, 1992, pp. 259-
basis functions. In terms of signal to noise ratio, the noisy 268.
image has a PSNR =33.96dB, the regular total variation has [2] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert, "Highly

' ~~~~~~~~~~~accurateoptic flow computation with theoretically justified warping," Int.PSNR =28.05dB (due mainly to errors in the region of the A Comput. Vision, vol. 67, no. 2, pp. 141-158, 2006.
bars), the over-parameterized model has PSNR =35.79dB, [3] T. Nir, R. Kimmel, and A. M. Bruckstein, "Over-parameterized variational
all compared to the noise free image. optical flow," International Journal of Computer Vision, to appear.


