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ABSTRACT

Redheffer scattering theory provides a natural setting for
the solution of various state-space estimation and control
probiems. In this short note we discuss the algorithms for
filtering "in reverse" a process for which a forward model is
given and the information form filter that is used when no
priors are given on the model state. In the language of
scattering theory the updates for both the backwards algo-
rithm and the information form filter are shown to
correspond to cascading rotated generator layers associ-
ated with a Hamiltonian two-point boundary value problem
(TPBVP).

1. Introduction

In fixed interval smoothing problems we have the possi-
bility to process the given observations in any order we
wish, this degree of freedom being exploited for computa-
tional efficiency and in theoretical derivations. A well-known
and appealing solution for the smoothed estimale has the
form of a suitably weighted combination of purely causal
and anticausal estimates[1].[2]. These are obtained by run-
ning two filters. with forwards and a backwards recursions
over the data interval. The problem of giving a proper
interpretation to the backwards running recursions led to
the introduction and study of backwards Markovian models
and their corresponding Kalman fiiters. These concepts
provided a natural interpretation to the Mayne-Frazer two
filter solution [3]-{6]. In this context, scattering theory
proved to be a powerfu! tool in the derivation of the results
and here we review these issues rather briefly, referring to
the original works of Kailath, Friedlander.Ljung and Ver-
ghese for details.

The usual forwards Kalman filter recursions incorporate
the initial conditions information to yield the best Bayesian
state estimales. If no a-priori information is supplied prob-
lems arise however with the start-up of the Riccati recur-
stons. In order to obtain the Fisher estimates it is formally
required to set the initial condition of the Riccati
differential equation to infinity. This issue is practically
dealt with either starting the recursions with a very "large”
diagonal matrix, or passing the equations to the so-called
information forms [7]-[2].

The derivation of information forms is not difficult, par-
ticularly in the continuous time case and by looking at the
resulting recursions one immediately recognizes a striking
resemblance to the backwards equations, providing the anti-
causal Fisher estimates in two fllter smoothing algorithms
[10]-[11]. Using the scattering framework for a theoretical
derivation of the information forms clearly displays why the
backwards equations are formally so similar to them.

2. Hamiltonians and RedhefTer scattering theory
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Suppose we have a state-space model of a continuous gp#"

discrete time signal z {-)
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Zo(t) = Az(t) + Bow(t) )
z(t) = Gz(t)
and we are given its noisy observations
y(t) = 2(t) +v(t) ?)

The driving and observation noises will be assumed, as usual,
uncorrelated white processes with covariances given by @,
and A;. however all the results are easily extended to the
correlated case.

Given the observations over an interval & = [7;.7, ] itis
a well known result that the smoothed state estimates £

(¢ 14) are provided by the solution of a linear Hamiltonian
TPBVP as follows (see [12])
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with boundary conditions

M7,i8) =0 and £ (1¢;A) = z; + PA(7¢18) (3)

In the above boundary conditions z; and P, summarize
the prior knowledge on the state at the moment 7, i.e. the
mean and variance of the initial state estimate with no
observations.

Assume that the above linear Hamiltonian system is
solved by simple forward propagation of the extended state
from some arbitrary initial condition. It is immediate that
the corresponding extended final state will be given by the
following formula

(4)

<ezt state>, = MT<ezt state >, + LT

where M7 is a transition matrix and the vector £ summar-
izes the effect of nonzero input (both being obviously
independent of the assumed initial extended state) It is
clear further that if we have the pair [M7,27] the values of
the soiution of the Hamiltonian TPBVP at the boundaries are
easily obtained, by simply solving for the unknowns in (4).
Thus in order to solve the Hamiltonian TPBVP's over arbi-
trarily varying intervals A; we have to obtain recursively in
time the pairs [MT(A,),L7(A;)] or, as we shall see, some
related quantities that are obtained by a Mason exchange
rule from them.

Scattering theory deals with the recursive computation
of such [M.L) pairs, given the so called generator sequence,
which corresponds to the state-space model and noise
parameters [10].[13). Associated to the solution of the
linear Hamiltonian which 1is characterized by the pair
(M7.£7] we have a pair [M®.25] relating the final state and
the initial adjoint vector to the initial state and the final
(and always zero) adjoint vector. This pair is given by the
"Mason exchange rule” X as follows
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Scattering theory, we recall, also provides direct recursions.
involving Riccati equations, for these, so called scattering
representations. The scattering generator sequence
corresponding to the Hamiltonian system (3) is
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3. Time reversal and backwards generators

Suppose we are given a Markovian signal model, with
initial condition information and observations over an inter-
val A=[0.T] and we wish to process the observations
sequentially, but backwards in time. Thus we are
interested in recursions providing £ (7 ~t |A;) for increasing
t, were the estimates are based on both the given initial
conditions and the c¢bservations over the interval
4 = [T“t-T]-

The probiem as posed is connected with the problem of
missing observations., since F (t|4A;) is nothing but the
smoothed state estimate when the data points over [0,¢) are
for some reason unavailable. If for some period of time no
observations are given, we can account for this in the
scattering picture by a simple modification of the medium
generator. The modification amounts to setting either &,7!
to zero (i.e. assuming infinite observation noise variance
rendering the observations useless) or or taking C; = 0 for
that period of time (i.e. assuming the observations are of
noise alone). The so-modified S-domain generators are
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and these provide the Lyapunov recursions for the evolution
of the second-order statistics of the state.

With the above discussion the problem we posed is com-
pletely solved., since all we have to do is look at the Harmnil-
tonian medium over [0.T] and assume na observations dur-
ing the interval {0.¢). A graphical description of this is
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and from it we can simply read out all the required esti-
mates. Therefore we know how to obtain the Bayesian esti-
mate £ (T—t|4,), however, if we wish to develop recursions
for it (i.e. to obtain the backwards Kalman filter) the follow-
ing equivalent description is perhaps more relevant
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Here the "no observations” medium was deleted and its
;ﬂect replaced by a suitable initial conditions layer
Zn(T-t), dlsplayinF the initial copditions propagated to T~

as follows Zp(s ) = ﬁ: ﬁ: = i: I
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In order to obtain recursions for the resuiting scatter-
ing representation (where the estimates appear as sources)
we only have to realize that it is necessary to determine the
generators for a suitably modified backwards trajectory.
Thus the initial conditions, the given statistics of the state
at the origin, when propagated with no observations provide
the parameterized family of layers that left-modify the
[. MZ] trajectory of interest. (Indeed, it is obvious that the
initial conditions together with the given system dynamics
and driving-noise statistics provide a-priori information on
the entire state-trajectory.)

Although the above discussion solves the problem of
determining recursions for # (T-t!4A;) we sill have to per-
form a “cosmetic” step to give an interpretation of the
result as a backward Kalman filter. As is clear from the pre-
vious diagram the estimate of interest appears as a lower
source of the scattering representation and the medium
extends to the left, whereas in the usual setting the Kalman
filter estimates appear as upper sources with the medium
extending to the right. If we wish to “correct” for this we
only have to rotate the whole picture 180° and by the nature
of the scattering representation everything falls in the right
place, as follows
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Mathematically, a 180° rotation in the scattering domain is
the following operation

Rot[MS,T5] = (JMSJJES] where J= {(} 6} (8)
and we also note the fact that
ROt§{Z)>®>ZE,>> -« »E;] = RatZ,> - - »>RotZ,5> Rat =, (9)

where > denotes the layer cascading operation., and thus
contains all the update equations.

The backwards filtering generalors

The processing real-time ¢ will be the index of the gen-
erator, and as t goes from zero to T the data will be pro-
cessed in the reverse direction. We shall have (for
infinitesimal §)

[7+g7(t)6 . »3(t)8] = (10)
ERUT~t)>>[1+JgS(T—t)J8, 7y (T -t )§1>>E(T~t +4)

and in the above we used the rotation symmetry of the ini-
tial condition layers, i.e. Rot Zg(-) = En(-).

We thus see how a simple exercise in “time-travel” pro-
vides nice interpretations to the recursions appearing in the
Mayne-Frazer two-filter smoothing result. Although in the
continuous case the backwards generators automatically
display the parameters of a reversed time Markovian model,
in the discrete case some more algebra is reguired. The
problem is that in discrete-time the estimate we obtain is £
(T—t|4;) . which is not a predicted but a flltered estimate.
In order to make an identification with a forward case one
thus has to either obtain the forwards Kalman recursions for
the filtered estimates or to obtain backwards recursions for
£ (T—t-1|4A;). We have to point out, however, that numeri-
cally the above calcuiations are quite straightforward, in
fact all one needs is a good computer subroutine to perform

the cascade operation.



4. On the derivation of information forms

Assume we used the T-domain recursions to obtain a
transfer representation of the Hamiltonian medium over say
[0.t] Now using the Mason exchange rule we have that the
error covariance and the state estimate are given by

P, = fa”! and £, = oJ-fa'of (11)

If instead of {[M7,£7] we consider the same representa-
tion with the rows interchanged

Ib 7'1
TeTy - T eryo b | oad
JMTET) = (JHT.JTT] l“ g oJJ (12)
then it is easily seen that we have the following result
[ p-1 =
Tery - X P =P U
X(J[M7.ET)) = [x ; . J (13)

This shows that if we wish to obtain evolution equations
for the information variables we should find generators that,
in the transfer domain directly provide [JM7.—J/2T]. The
corresponding S-domain generators will then give the direct
recursions for the information form.

The generators of informuaotion forms

If the scattering domain infinitesimal generator
sequence [g5('},7°(")] is given then we have the forwards
evolution equation in the T-domain

d
S MTET = [gT(OMT.gT(OTT +97(8)]  (14)
and recall that the relation between scattering and transfer
generators is
(g7C)rT ()] =

b e (15)

Therefore we obtain (using the fact that J is orthogonal) the
fellowing evolution equations for the required modified
representation

:_t{“,,r__n;q:ugr(ty (JMT).ag T(£)I(=JTT)=sy"(t)] (18)

The above equation shows that the information form S-
generator sequence can be obtained as follows

g7 () r7()]=[-7g%()/.07° ()] (17)
where we used repeatedly the relation between transfer
domain and scattering domain generators and some easy
matrix multiplications. Explicitly the information form gen-
erator is therefore also a 180°-rotated generator (up to an
additional sign change) and given by

[ -4 aroC
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providing equations for 7y = A< (ti4A,y and ¥, = P! which
are indeed the information form recursions obtained by
direct differentiation and using the original Kalman filter
equations. From the fact that the corresponding generator
sequence is a rotated version of the original generator one
also expects the formal similarity to backwards evolution
equations. This fact however seems to have no apparent
deeper interpretation or meaning.

C;R‘—Olz(t) ] (18)

In the discrete case the corresponding generators are
also easily found, however they do not obey the same rota-
tion type of relation to the original generators. The compu-
tation of the generators involves, again, several cascadings.
The result also shows that to propagate information forms is
as easy (or difficult) as to solve the original recursions.
Computation of the new generator takes only O(dimension?)
operations, and in the case of a time-invariant model only
part of it has to be recomputed at each step, involving one
matrix multiplication.
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5. Concluding remarks

Using Redhefler scattering results the derivation back-
wards filters and models, as well as information forms. is a
rather simple task. In order to obtain the medium genera-
tors, which immediately provide the time update formuias,
one only needs to perform some simple algebraic manipula-
tions. In deriving the reverse flltering recursions and the
information forms it becomes clear that the similarities
between them are due to the fact that both recursions
involve rotated generator sequences. The similarity is how-
ever formal only and there is no obvious deeper meaning to
it.

Since the Redheffer scattering resuits provide a rather
“automatic” way to address all state-space problems the
intuition that could be gained through different derivations,
for example the ones based on the innovations principle and
the orthogonal projection interpretation of estimation. is
necessarily lost. Therefore scattering theory should be
viewed as an exceptional tooi for deriving the algorithms,
and later one may gain further interpretations and insights
through alternative approaches.
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