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ABSTRACT 

Redheffer scattering theory provides a natural setting for 
the solution of various state-space estimation and control 
problems. In this short note we discuss the algorithms for 
filtering "in reverse" a process for which a forward model is 
given and the information form filter that is used when no 
priors ar e given on the model state. In the language of 
scat.tering t.heory the updates for both the bac kwards algo
rithm and the informat.ion form filter are shown to 
corre spond to cascading rסtated ge nerator layers associ
ated with a Hamiltonian two-poin t boundary value problem 
(TPBVP) .  

1 .  Introduction 

In fixed interval smססt.hing prסblems we h ave the possi
bility to p rסcess  the given observat.ions in any order we 
wish. this d egree סf freedom being e xploite d for computa
t.iסnal e fficiency and in theסret. icat derivations. A well-known 
and appeal ing solution for t.he srn oothed estimale has t.he 
form of a suitably weig ht.ed cסmbination of purely causal 
and an t.icausal estimales[ l ], [2] .  These are obtained by run
ning t"'o fillers. with forwards and a backwards re cursion s 
ovc r the data interval. The problem of gi\-ing a proper 
inlerpretation to the backwards running recursiסns led to 
the introduction and study of backViי ards Markovian models 
and their corresponding Kalman filters . These concepts 
provided a natural interpretation t.o the M ayne-Frazer two 
tilter solution [3]-[6]. In this c  ntexl, scattering theoryס
proved to be a powerful lool in the deri  ... ·ation of the result.s 
and here we revi.ew the se issues rather briefiy, referring to 
the orig inal works of Kailath, Friedlan der.Ljung and Ver
ghese for details. 

The usual forwards Kalman filter recursions incorporate 
t.he initial cסndit.ions inform ation to yield the best Baye sian 
st.ate estimales. If nס a-priסri informat ion is supplied prob
lems arise however ·,,ith the starl-up of t.he Riccati recur
sions. In order to obt.ain the Fisher estim ates it is formally 
required to set the in it.ial cסndit.ion of t.he Riccati 
differential equat.ion lo infinity. This issue is  practically 
dealt. with either starting the recursiסns with a very " large" 
diag onal matrix, or passing the equations to the sס-called 
informat.ion forms [ד]-[9) .  

The derivation of information forms is not difficult, p ar
ticul arly in the c ontinuous time case and by looking at t.he 
resulting recursions one immediately recognizes a striki.ng 
resemblance to the backwards equations, providing the anti
causal Fisher estimates in two filter smoothing algorithms 
( 10]-[ 1 1 ]. Using the scattering framework for a theoretical 
derivation of the in.formation !סrms clearly displays wby tbe 
backwards equat.ions are fסrmally so similar to them. 

2. Ham.ilt.onians .םad Redhetl'er scattering theory 
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 יי
Suppose rוe have a state-space model of a continuous ort:" 

discrete time s ig n al z (· ) • ,

¾z (t )  = A, :r (t )  + B1 w (t )

z (t )  = C, :r (t )  

and we are g iven its noisy observations 

y (t )  = z ( t )  + v ( t )

: ·1· 

(!) 

(2) 

The drivi ng and observation noises will be assumed, as usual., 
uncorrelated wbite processes v.i th covariances given by Q1 
and Ri , however all the results are easily extended to the
corre lated c ase.  

Given the obse rvations over an interval נ! = [ T, ,Tן
] it  is 

a well known result th at lh e smoothcd state es timates % 
(t l .6) are provided by t.he solution of a linear Hamiltonian 
TPEVP as follows (s ee [ 1 2] )  

d ix (t ! 6) 1 _ 1  A,  B, Q, s,· l ז x (t : 6) 1 f o 1
dflג( t ' 6) 1 - 1  c(R,- ' c,  -A,' j 1 t 1)ג  �) J + 1 - c,'R,-'y (t ) 1
wוlh boundary conditioחs 

Tr)ג. i (tב. = O  and X (Ti: 1' (lב = xן + Pi. i,)ג :  t) (3)ב.

In the above boundary c onditions Xi: and Pז summarize 
the p rior knov.'l edge on t.he state at the moment. 'iי i י .e. the 
mean aחd varia.חce of the initial state es t. imate with no 
observalioחs. 

Assume that. t.he above linear J--:amiltonian system is 
solved by simple forward propag ation of the extended state 
fr om some arbi lrary initial condition . It is im medi.ale that 
the corresponding extended ftnal state will be g iven by the 
fo!Jowing formula 

<ext state >-r, = M7 <ext state >ד� + r;  (4) ז

wh ere M 7 is a transition matrix and the vector E 7 summ ar
izes the eזtect of nonzero input ( both b eing obviously 
independent of the assumed initial extended state) lt is 
clear further that if we have the pair [M ז ,r; T] the values of 
the solution of the Ham iltoniarנ TPBVP at the boundaries are 
easily obtained, by simply solving for the unknסwn s in (4). 
Thu s  in order to  solve the Hamiltonian TPBVP 's  over arbi
trarily varying intervals 6� we have to obtain recursively in
time the pairs [M T(,1.i ) ,r; liב)  ) ]  or, as we shall see, some 
related quantities that are obtained by a Mason exch ange 
rule from them. 

Scattering theסry deals wit.h t.he recursive computation 
of such [M ,L] pairs, g iven t.he so called generator sequence, 
wbich corresponds to the st.ate-space model and noise 
parameters [ 10] , [ 1 3]. Associat.ed to t.he solution of the 
linear Hamiltonian which is charact.erized by the pair 
[M r .L r] we bave a pair [Ms .Ls ] relating the final state and 
the initial adjoint vectסr to the initial state and the final 
(and always zero) adjoint vector. This pair is given by the 
"Mason e xchange rule" X as follows 

X f a fi I ס,; ) = f a -{ia-'b fia-• 1 ס,;-{ia-'ס[ ] (S)l b a I זc[ j t -a-1b a-1 1 -a-1  נ 'I,ס
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ln order to obtain recursions for the resulting scatter
ing representation (where the estimates appear as sources) 
we onl.y have to realize that it is necessary to determine the 
generators for a suitably modified backwards trajectory. 
Thus the initial conditions, the given statistics of the state 
at the סrigin, when propagated with no observations provide 
the parameterized family of la)'ers that left-modify the 
[ • .W ,E] trajectory of interest. (Indeed, it is obvious that the
initial conditions together with the given system dynamics 
and driving-noise statistics provide a-priori information on 
the entire state-trajectory.) 

Although the above discussion solves the problem of 
determining recursions for :i' ( T-t ! 6t) we sill have to per
form a �·cosmetic" step to give an interpretation of the 
result as a backward Kalman filter. As is clear from the pre
vious diagram the estimate of interest appears as a lower 
source of the scattering representation and the medium 
extends to the left, whereas in the usual setting the Kalman 
filter estimates appear as upper sources with the medium 
extending to the right. If we wish to "correct" for this we 
only have to rotate the whole picture 1B0° and by the nature 
of the scattering representation ever)·thiחg falls in the right 
place, as follows 

i\ 

-f--י '; (T--t..j.בf:;) 

0 

�1 16;t-ז I1 ת ,t -ם� � il 

0 

Scattering theory, we recall, also provides direct recursiסns, 
involving Riccati equations, for these, so called sca.tteri.ng 
representations. The scattering generator sequence 
corresponding to the Hamiltonian system (3) is 

[ s s
()] rl A, B,Q, B ,' 0 

)
1 () g (t),ד t = -c,'R,-1c, A,' C,'R,-1

y(t) 
B 

3. Time reversal and backwards generators

Suppose we are given a Markovian signal model, with 
initial condition information and observations over an inter
val .נ/ = [0, T] and we wish to process the סbservations 
sequentially, but backwa.rd.s in time. Thus we are 
interested in recursions providing X ( T-t 16.t) for increasing 
t, were the estimates are based חס both the given initial 
conditions and the abservations over the interval 
6, = [T-t,T]. 

The problem as posed is connected with the problem of 
missing observations. since X (t נ. ן/t ) is nothing but the 
smoothed state estimate when the data paints over [0,t) are 
for some reason unavailable. If for some period of time no 
observations are given, we can account for this in the 
scattering picture by a simple modification of the medium 
generator. The modirication amounts to setting either R.-1 
to zero (i.e. assuזrוing infinite observation noise variance 
rendering the observations useless) סr סr taking C

11 
= 0 for 

that period סf time (i.e. assuming the observatiחסs are סf 
noise alone). The so-moditi.ed S-domain generators are 

r • 1 1י B, �.B, �) (7) 

'T'-'t \:im";I' 

Mathematically, a 180° rotation in the scattering domain is 
the following operation 

(B) r o r 1 
J = 1 [ 0 J Rot[M 8 ,E8 ] = [JM 8 J,;:בJ8] where 

and we also note the fact that 

and these provide the Lyapunov recursions for the evolution 
of the second-order statistics of tbe state. 

With the above discussion the problem we pסsed is com
pletely solved, since all we have to do is loסk at the Hamil
tonian medium ovcr [0, T] and assume nס סbservatiסns dur
ing the interval [0,t). A graphical description of this is 

»3'nj = RotZn » · · »Rat'E.2»RatZ 1 (9) Rot!Z1 »22» 

where >> denotes the layer cascading operation, and thus 
cסntains all the update equations. 

The b.נrckwards filtering gener.נrtסrs 

The prסcessing real-time t will be the index of the gen
erator, and as t goes from zero t.o T the data will be prס
cessed in t.he reverse direction. We shall have (for 
infinitesimal 6) 

, 
t.1 .בt t.i -ד(.rו 

0 

1.\it,,1ו:z.c,·,,� """•[•.,,! md,om 
'oיי��-· 

"' 
 "ה

( 10) [r+g,S(t)o. דl(t)o] = 

"n'( T-t )»[[ +Jg 8 (T-t )J6,Jy8  oJ»:;:n( T-t +6)( t-ז)

and in the above we used the rotation symmetry of the ini
tial condition layers, i.e. RסtZn(·) = :Sn(·). 

We thus see how a simple exercise in "time-travel" pro
vides nice interpretat.ions to the recursions appearing in the 
Mayne-Frazer two-filter smoothing result. Although in the 
cont.inuous case the backwards generators automatically 
display the parameters of a reversed time Markovian model, 
in the discrete case some more algebra is required. The 
problem is that in discrete-time the estimate we obtain is X 
(T-t l ,.נt) , which is not a predicted but a flltered estimate. 
In order to make an identification with a forward case one 
thus has to either obtain the forwards Katman recursions for 
the filtered estimat.es or to obtain backwards recursions for 
:i'(T-t-116i)- We have to point out, however, that numeri
cally the above calculations are quite straightforward, in 
fact all one needs is a good computer subroutine to perform 

the cascade operat.ion. 

.,. -c -ד �imc.,O 

and from it we can simply read out all the required esti
mates. Therefore we know how to obtain the Bayesian esti
mate X (T-t j6t), however, if we wish to develop recursions 
for it (i. e. to obtain the backwards Kalman filter) the fסllow
ing equivalent. description is perhaps more relevant 

0 

]j'ד-,>ד.\ i ,דן t, -,:זו .\ \רז� 

0 

�(T-t\ 
,. ti ...... ד-t. 

Here the "no observations" medium was deleted and its 
�fi'ect replaced by a suitable initial condit.ions layer 
.::.n( T-t ). displayinr the iתitial coiditions propagated to T-t
as follסrוs Zn(s) = 1 Pw Pu 1 .z ... )· 

Pw Pw 1 יz.v i..: 
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4. 0n the derivation of information forms

Assume we used the T-domain re cursions to obtain a 
transfer representation of the Hamiltoniaח medium over s ay 
,ס] t ] Nיס"' using the Mason exchange rule we have that the 
errסr c ovarian ce and the state estimate are g iven by 

P, = {Ja- 1 and % c = a.[-{Ja ) ]aי- 1 1) 

If instead סf [M T , E T ] we consider the same representa
tiob with the rows interchang e d  

[ b a a T ]J[M ' ,1:' ]  = [JM T, JJ.: T ] = 

1 a p aJ 1 
( 1 2) 

th en it is easily seen that we have the following result 
1 p - •  p - • u ך 

X (J[M T ,E T ] )  = 1 :  : - 'x 
1 1 ( 1 3) 

This shows that if we  wish to obtain evolution e quations 
for the information variables we should find g enerators that, 
in the transfer dom ain directly provide [ JM T , ת:;- T ] .  The 
corresponding S-domain genera lors wil! then gi,re the direct 
rec ursions for the information form . 

The geneזat ors of infoזmalion fםrms 
If the scattering dom ain inr1ni tesimal generator 

sequence [g s ( · ) :ys ( · ) ]  is g iven then v.'e ha,,ו·e the forwards 
evolu tion equation iח the T-dom ain 

:
t 

[M',E ' ]  = [9 ' ( t )Jן T ,9 T ( t )E T 
t)'ד + ) ]  ( 1 4 )  

and recall that the relatiorב between scattering and transfer 
g enerators is 

[9 T ( ) Tך', ( ) ]  = [6 �/] [9 5 ( ) , y' ( ) ]  ( 1 5 )

Therefore w e  obtain (using the fact that J is orthogonal) the 
following evolu tion equations for the required modifi ed 
representation 

� J /J ז , -JL T ] = [ Jg T ( / )J (J }J ' ) .Jg T (t ) J(-JJ.;T ) -J7T ( / ) ]  ( 1 6)

The above equation shov.יs that the information form S
generator scqueח c e  can be obtaiחed  as follo\1's 

[gf( ) , 7f( ) ] = [ -J9 5 ( )J,J75 ( ) ]  ( 17) 
where we used repealedly the relation b etוV'e eח traחsfer 
domain and scattering domain g e nerators and some easy 
matrix multiplications. Expli citl)' the information form gen
erator is  therefore also a 180� -rotat ed generator (up to an 
additional sign chaחge) and g iven by 

-,c,'R ';ן,- 1 ' c, C,'R,- ' z ( t  ן (
1 . 1 

( 18) -B1 Q1 B1 - A,  0 

providing equat1ons for דדt = P1 X ( t ltנ : ) and W1 = p1-r  which 
are inde e d  the informat ion form recursioמs obtained by 
direct differentia tion and us iחg the original Kalman filter 
equations. From the fact that the cסrre sponding generator 
sequence is a rotated vers ion of the original generator one 
also expects the formal si mi larity to backwards evolution 
equations.  This fact h owever seems to have no apparent 
deeper interpretation or meaning. 

In the discrete case the corre sponding generators are 
also easily found, however they do not obey the sam e rota
tion type of relation to the original generators. The compu
tation סf the gene rators involves, again, severa! cascadings. 
The result also shows that tס prop agate information forms is 
as easy (or diזticult) as to solve the original recursions. 
Computation סf the new geחerator takes only O(dinוension2)
operations, and in the case of a time-invariant model only 
part סf it has tס be re computed at each step, involving one 
matrix multiplication. 
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5 .  Concluding remarks 

Using Redheזter sc attering results the derivation back
wards filters and m odels, as well as information forms. is a 
rather simple task. In order to obtain the medium g enera
tors , which imm edi ately provide the time update formulas, 
one o nly needs to perform sסme simple alge braic m anip ula
tions . In deriving the reverse ftltering recursions and the 
information forms it becomes clear that the similarities 
betwee n  them are due to the fact  that both recursiסns 
involve rotated generator s equences. The similarity is how
ever formal only and there is nס סbvious de eper meaning tס 
it. 

Since the Redheזter s c attering results prטvide a rather 
"automatic" way to addre ss all state -sp ace problems the 
intuition that c ould be g ained through d iזterent derivations, 
for example the ones based on the innovations principle  and 
the orthogonal proj ection interpretation of est imation. is 
ne cessarily lost. Therefסre sc attering the ory should be 
viewed as an excep tional tool for deriving the algorithms. 
and later one may g ain furthe r  i.nterpretations and insi.ghts 
through alternative approac hes. 
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