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Abstract. Consider a swarm of weak, anonymous and homogeneous robots lack
ing memory, orientation, and communication capabilities, and having myopic
sensors that tell them the directions to nearby robots, but not the didtance
them. We present a simple randomized algorithm which, when perfobyed
members of the swarm, gathers them in a small region. We explore thesitiner
global phenomena that occur during the process, evident fromralysas and
simulations.

1 Introduction

In this paper, we present a very simple algorithm that makesam of very simple
robots perform a seemingly simple task — getting together #mall region. From a
practical standpoint, it can be useful for collecting npliiant-robots after they have
performed a task in the field; for enabling them to start a imissafter being initially
dispersed (e.g., parachuted); or for aggregating many-rabmats in a self-assembly
task. From a theoretical standpoint, it is the most basiante of theformationprob-
lem, i.e., the problem of arranging multiple robots in a aertspatial configuration.
While advanced intelligent robots are certainly capable athgring, the problem is
most challenging when the robots are ant-like or less — lgavary limited abilities,
e.g., myopic, disoriented and lacking explicit commurimatapabilities.

Several theoretical works on this subject exist. Currepr@gches include agree-
ment on a meeting point with some unique geometrical prgpgs4]; using a common
compass [5]; cyclic pursuit [6-8]; and others [9—11]. Sagéhet al. suggested a simple
way to fill a convex shape, which is also useful for gatheritigj [

These methods rely on strong assumptions about the roboggéotsas we shall
call them henceforth): Some rely on labeling (e.g., puysadme on common orienta-
tion, and many on infinite-range visibility. Nearly all warkely on the agents’ ability
to measure their mutual distances.

In this work, we suggest a simple gathering algorithm, whiglies on very few
capabilities: Our agents are anonymous, homogenous, nggesrasynchronous, my-
opic and arancapable of measuring mutual distanc&ge are not aware of previous
works using this limited model. The inspiration and moftivatfor this work came from
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experiments with real robots in our lab [13], made from LEG®tp and very crude
sensors, which are range-limited and do not provide usastartte measurements.

In [14], we presented a simple deterministic gathering ftlgan, which is similar
in idea to the aforementioned polygon-filling algorithm afgthara et al., yet it has
the additional property of maintaining mutual visibilitgtwveen the robots, in order to
cope with their shortsightedness. In this work, we preseandomized variant of the
algorithm. Due to space restrictions, we omitted the praafsabridged the discussion.
More details can be found in [14] and in an upcoming extenageep

2 Model and Algorithm

We begin with a definition of the world model. Then, we disctisconditions which
guarantee that visibility is maintained between our my@gjents, and present the pro-
posed algorithm.

21 Mode

Theworld consists of the infinite planB&* andn point agentsliving in it. We adapt
Suzuki and Yamashita’s convenient way of modeling a systeasynchronous agents
[4]: Timeis a discrete series dfime stepg = 0, 1,.... In each time step, each agent
may be eitherawakeor asleep having no control over the random scheduling of its
waking times. A waking agent senses its environment, andlésta move instantly to
any point within a distance (the maximum step lengthThe agent is able to see other
agents within distanc¥ (thevisibility radiusor range). However, it cannot measure its
distancefrom them. It only knows théirectionsin which the nearby agents are found,
i.e., the input is a cyclic list ongles, ... 0, (relative to some arbitrary direction,
e.g., the agent’s heading). There are no collisions. Skagemts may occupy the same
point! All agents arememorylessanonymougindistinguishable in their appearance)
and homogenougthey lack any individuality or identity, and perform thensa algo-
rithm).

Regarding the agents’ activity schedule, we only assuntéttbagents arstrongly
asynchronous~or any subsefr of the agents and in each time step, the probability that
G will be the set of waking agents is bounded from below by soars@nt > 0.

Define themutual visibility graphas an undirected graph withvertices, represent-
ing the agents, and an edge between each pair of agents,ahinid they can see each
other, i.e., the distance between them is at nast

2.2 Maintaining Visibility
We now present a sufficient condition, on any algorithm, faintaining mutual visi-

bility between agents. In what follows, denote a disc ofuadiand center (wherea
may signify the location of an ageaj by B,.(a). Also, denote

uw=min (V/2,0) .

1 In this case, they have undefined relative directions and simply ignorecther.



Let agentu seem agentsdy, . .. b,,,, and define thallowable regionA R(a) of a:

AR(a) = B, (a) " () Bva (a + % : M) . )
i=1 g

It is easily seen (cf. Fig. 1) that R(«) is not empty if and only if all visible agents are
contained within a sector or “wedge” of less than half the d¥s (o), i.e., its angle is
less than. In this case AR(a) is simply the intersection aB,,(a) and the two discs
corresponding to the agents on the wedge’s bounds pg.andb, in Fig. 1(b)):
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Also, if m = 0, thenAR(a) = B, (a). The following lemma holds.

Lemma 1. If each agent confines its movements to the allowable regifinetl above,
then existing visibility will be maintained.

Fig. 1. Maintaining visibility. (a)a is surrounded and cannot mowR(a) = @). (b) a can move
only within the shaded area.

2.3 TheAlgorithm
The proposed algorithm is as follows:

Move to a uniformly-distributed random point in the alloiglpegion(unless
it is empty, in which case do not move).

Interestingly, the algorithm doesn’t seem to “care” for @nyg but maintaining
visibility, yet its rationale is similar to that of the deteinistic algorithm from [14]
(where the agent moves as far as allowed alondibectorof the wedge): The agents
inside the area occupied by the swarm do not move, while teatagt the outskirts
move inside, making the swarm shrink, until all agents atbeyad densely in a small
cluster.



3 Resultsand Analysis

Despite its extreme simplicity, the algorithm effectiveianages to gather all agents in
a small cluster. Moreover, we observed in our simulatiomseswery interesting global
phenomena, which we discuss in this section.
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Fig. 2. A typical run. Heren = 150,0 = 1,V = 10, and each agent wakes up in each time step
with probabilityp = 0.6. Note that the scale changes between frames.

3.1 Global Behavior

The qualitative behavior of the algorithm is clearly dividiato two phases (similarly
to the deterministic variant). First, in thentraction phasethe area occupied by the
agents contracts into a small dense clifstier a large swarm, the contraction process
exhibits an interesting behavior, where the occupied aheiaks non-uniformly, as-
suming an approximate polygonal shape with a few corners@nghly straight edges
between them (cf. Fig. 2). The corners are actually densterkiof several agents. The
edges are “belts”, containing the agents that were swephdyantracting boundary.
The density of agents along the edges is much lower than indiresrs. More gener-
ally, there is a correlation between high curvature (of tbartalary) and high density

2 We use the term “area occupied by the agents” freely, as a subjectieevation of the agents’
distribution or the shape of the swarm. It can be defined formally as tree emclosed by
laying line segments between all pairs of mutually visible agents. When aitsagee mutually
visible, this area equals the convex hull of the agents’ locations. An apape may also be
considered, however its parametehas no clear meaning in our problem.



of agents. We believe that there is a positive-feedbackioakhip between density and
curvature, which results in the large-scale polygonal shbpving sharp dense corners
and linear edges of lower density.

The occupied area contracts until it becomes a small dens¢eclwith a mean
diamete? of abouty. At this stage, thavandering phasdegins. The dense cluster
stops contracting, and begins wandering in the plane,adsfene reason to this change
is clear: The agents’ step sizes are not affected by the stdle occupied area. As
long as the area is large in comparisonutdhe agents on its boundary generally move
inside it, making it contract. However, once the area becosnaaller, the agents’ steps
become relatively larger, so they leap over it, instead. Assallt of these leaps, the
cluster drifts along the plane indefinitely. Note that sitizere is full visibility between
the agents at this stage, only the agents at the verticesafdivex hull are able to
move.
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Fig. 3. The diameter in a typical run of the algorithm. Here= 60,0 = 1,V = 5, andp = 0.6.
(a) The phase transition is very clear. (b) Zooming in on the transition moriete that the
mean diameter is aboQt8, after the transition.

Whenn < 2, the two algorithm variants act differently. In the detemistic algo-
rithm, a single agent will not move, and a pair will always sgmon one line. In the
randomized variant, the agents will roam the plane in eitse.

3.2 Guaranteed Convergence
The following theorem holds (We omitted the proof for spasesiderations).

Theorem 2. Given an initial configuration with a connected visibilitsegoh, the agents
will gather and forever remain in a cluster whose diametebasinded by, in finite
expected time.

The proof idea is as follows: We show that, in every time stepre exists an agent
(specifically, one located at a vertex of the convex hull)iohthas a strictly positive

% The termmean diametehere refers to the average diameter over time (in a given run), not
probability space.
4i.e., positive and bounded away from zero by some constant.



chance of moving inside the convex hatid closer to the center of mass (average of the
agents’ positions) by a strictly positive amount, if it igtbnly agent which wakes up.
By our strong asynchronicity assumption, the chance tawtitl happen is also strictly
positive (bounded by). This, in turn, will make the variance (sum of squared dists
from the center of mass) decrease by a strictly positive atdthus, with time, the
variance will decrease arbitrarily with probability As the variance gets smaller, the
diameter must too, so at some point, the diameter wilVber less, which implies that
the visibility graph is a cligue. By Lemma 1, it will remain &que, and therefore the
diameter will remain bounded By .

3.3 Evaluation of the Mean Cluster Diameter

Theorem 2 guarantees gathering to diaméteHowever, the simulations clearly show
further contraction to a mean diameter of ab@8j: during the wandering phasédairly
indifferently to the choice ofi. With the deterministic algorithm, the mean diameter
typically settles at about.04.

When the agents are scattered (i.e., the diameter is mudr kan.) the diameter
is much more likely to decrease, and when the agents arergdtimea small cluster, itis
likelier to increase (e.g., consider a limit case of an itdisimally small cluster). Thus,
we infer that there exists a probabilistically stable dquilm point for the diameter.
This point is the expected mean diameter.

An exact calculation of the expected mean diameter seems thifficult, yet the
following rough estimate for large provides a surprisingly good prediction of the
measured results. Given a dense clugtevith diameterD(P) < V, we first approxi-
mate its convex hull shape as a disc of diamééP). The corner agents reside on its
boundary, with their wedge bisectors pointing to its celés assume that < V and
n is large, so that the allowable region of each corner ageappsoximately a narrow
sector (i.e., a “pizza slice”) of a disc of radius Now, we approximate the expected
mean diameter as that for which, for each corner agent, thteapility of moving into
the convex hull equals the probability of leaping over ito@etrically, it means that
the intersection of the narrow sector and the disc shoulthaohalf of the sector’s area.
This holds when the disc’s diameter is abpuit/2, which is quite close to the observed
typical mean diameter of.8.

In the deterministic variant of the algorithm, assuming tha small enough, the
agent simply moves a step of sizen the bisector (i.e., along the disc’s diameter in our
approximation). Thus, the expected mean diameter is simpigain, it agrees well
with the measured typical mean diameted @4 .

3.4 Composite Random Walking

The random wandering of the cluster is composed of the mowtnaé the individual
agents in it (hence we term it@mposite random walkAn interesting question is

® Although we determined the moment of phase transition subjectively, itdertfrom Fig. 3
that this moment is very clear. We calculated the average diameter frout 2(btime steps
ahead of that moment until the end of the simulation (several hundnesl Ister).



whether this random walk is recurrent or not. Based on ouemiasions, we conjecture
that it is indeed. If so, then it has a very important implicat Theorem 2 guarantees
that a configuration with a connected visibility graph wiintract. Thus, in the general
case, each connected component will contract into an imdkgye cluster. Now, if the
cluster’s random walks are recurrent, then they will all treeentually and merge into
one cluster.

In order to be recurrent, a two-dimensional random walk seaedbe unbiased.
Obviously, when observing a single time step, the randomemant is not distributed
uniformly in all directions, as it depends on the exact stadplee convex hull. However,
when integrating over many time steps, one may show thattiséec’s displacement is
distributed uniformly in all directions.

A single isolated agent performs a uniform random walk bynifidin. For two
agents, observe that the probability distribution of thetee of mass’s displacement
is always symmetric along the line passing through the twemtsg and has a constant
shape up to its orientation in the plane. Thus, the changeieftation has a con-
stant and unbiased distribution (i.e., same for clockwigba@unterclockwise changes).
Therefore, over time, the orientation will be distributedfarmly, and, accordingly, the
center of mass’s displacement distribution will approactiasmity as well.

Forn > 2, unfortunately, we don’'t have an easy proof. Even with ohtgé agents,
the state-space becomes complex and hard to analyze. Agaiognjecture that the
composite random walk of three or more agents is indeed r&uThis seems to be
the case from observing long runs of the simulations.

4 Conclusions

The main contribution of our work is that we consider the gatig problem with such
severe limits on the agents’ sensors (being both myopic aadble to measure dis-
tances), in addition to being anonymous and memorylesspidpmosed algorithm is an
example of how deceptively simple individual behaviors gald complex emergent
global behaviors of the swarm — two distinct phases of catita and wandering,
where the swarm first assumes an approximate polygonal simajpen collapses into
a dense cluster wandering in the plane.

If our conjecture regarding the recurrence of the compaaitedom walk proves to
be true, then the algorithm is a very powerful one, gathealhggents together into a
dense cluster, regardless of their initial distributiore ¥Wd it intriguing that it does
that even though it is seemingly unconnected to the gatipgninblem, as the agents
just move randomly while trying to maintain their visibylitOne may view this as an
argument that gathering is the only global task that sucharsvof weak robots can
do, i.e., itis a sort of an “upper bound” on the swarm behawémabilities.

Further work should provide tighter estimates of the cogerce rate, and analyze

the effect of noise and error, both in sensing and movementhe resulting global
behavior.



References

1.

2.

10.

11.

12.

13.

14.

Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solvingahets gathering problem.
In: Proc. of ICALP 2003. (2003)

Gordon, N., Wagner, I.A., Bruckstein, A.M.: Discrete bee @aalgorithms for pattern for-
mation on a grid. In: Proc. of IEEE Intl. Conf. on Intelligent Agent Teclogy (IAT03).
(2003) 545-549

. Schlude, K.: From robotics to facility location: Contraction functionshevgpoint, convex

core. Technical Report 403, CS, ETHZ (2003)

. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robotsmiation of geometric

patterns. SIAM Journal on Computi28 (1999) 1347-1363

. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathefreutonomous mobile

robots with limited visibility. In: Proc. of STACS 2001. (2001)

. Bruckstein, A.M., Cohen, N., Efrat, A.: Ants, crickets and fragsyclic pursuit. Technical

Report CIS-9105, Technion — IIT (1991)

. Bruckstein, A.M., Mallows, C.L., Wagner, |.A.: Probabilistic puits on the grid. American

Mathematical Monthly104 (1997) 323-343

. Marshall, J.A., Broucke, M.E., Francis, B.A.: A pursuit strgtéy wheeled-vehicle forma-

tions. In: Proc. of CDCO03. (2003) 2555-2560

. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed meytess point convergence

algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics anddknation
15 (1999) 818-828

Lin, Z., Broucke, M.E., Francis, B.A.: Local control strategfer groups of mobile au-
tonomous agents. |IEEE Trans. on Automatic Cord8{2004) 622—629

Melhuish, C.R., Holland, O., Hoddell, S.: Convoying: using ckomu to form travelling
groups of minimal agents. Robotics and Autonomous Sysgh($999) 207-216
Sugihara, K., Suzuki, I.: Distributed algorithms for formation obmetric patterns with
many mobile robots. Journal of Robotic Systel3g1996) 127—-139

The Center of Intelligent Systems, Technion IIT web site:
http://www.cs.technion.ac.il/Labs/Isl/index.html

Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiglbatic a(ge)nts with limited
sensing capabilities. Lecture Notes in Computer Sci@i@e (2004) 142—-153



