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ABSTRACT 
 
Spatial de-interlacing is an essential part of motion 
adaptive de-interlacing used for reconstructing missing 
lines in cases of fast motion detection. Common spatial 
de-interlacing algorithms often produce artifacts in the 
output image, especially along edges with flat horizontal 
angels. In this paper we introduce a new method for 
spatial de-interlacing based on the Dynamic Time 
Warping (DTW) procedure. The DTW algorithm finds an 
alignment between two original consecutive lines, and 
then, the missing line between them is reconstructed based 
on this alignment. This method preserves the smoothness 
of the original image edges and produces a high quality 
progressive image. 
 

1. INTRODUCTION 
 
Interlaced video is used by all analogue TV broadcast 
systems in current use (mainly NTSC, PAL and SECAM). 
It is a tradeoff between the video signal’s bandwidth 
requirements and an optimal frame rate that would not be 
noticeably slow for the human eye.  
De-interlacing is the process of converting the interlaced 
video signal to a non-interlaced form in order to display it 
on a progressive display. Many de-interlacing techniques 
have been proposed (see an overview at:  [1]). The most 
common de-interlacing algorithms are motion adaptive, 
i.e. inter-field interpolation is used in static scenes and 
intra-field interpolation is used when motion is detected. 
The spatial interpolation method introduced in this paper, 
may be used as the intra filed interpolation component of 
every motion adaptive de-interlacing algorithm. 
Spatial de-interlacing algorithms are intra-field algorithms 
that interpolate the missing lines in the odd or the even 
fields. The missing line information is interpolated only 
from the available lines in the current field. These 
algorithms exploit the spatial correlation between the 
samples in the available lines and the missing lines. Naïve 
algorithms such as line doubling, bi-linear and bi-cubic 
interpolations can be easily implemented in hardware but 
produce poor results that can be noticed especially near 

diagonal edges. More elaborate algorithms use edge 
directed techniques ([2],[3],[4]) to produce sharper images 
without creating additional artifacts.  
The new approach to the spatial de-interlacing problem 
presented in this paper is based on the Dynamic Time 
Warping (DTW) procedure. DTW ([5], [6]) is a method 
for finding the similarity between two sequences by 
warping the time axis of the two series in a way that 
achieves an optimal alignment. DTW has been 
successfully used for data mining, pattern recognition and 
speech processing. We found that DTW can be used for 
finding the correct alignment between two consecutive 
available lines. The correct alignment is determined by the 
image edges and therefore performing the DTW 
procedure yields the edge directions in those lines. Thus, 
the missing line can be interpolated from its two adjacent 
original lines according to these edge directions. 
 

2. DYNAMIC TIME WARPING 
 
Dynamic Time Warping is used to compute an alignment 
with minimal “distance” between two time series – in our 
case lines of pixels from a given field. The distance 
function is application specific. It is often the case that the 
two series have approximately the same overall shape, but 
do not line up along the time-axis. In order to find the 
similarity and to create the mapping between the two 
series, we must “warp” the time axis of one or both series 
so that corresponding samples appear at the same location 
on a common time axis. DTW is a technique for 
efficiently computing the optimal alignment between the 
two series. The alignment is optimal in the sense that it 
minimizes a cumulative distance measure between the 
series ([5] , [6]). DTW algorithms are used in many fields 
such as speech processing [7] and medicine [8]. In these 
applications it is used mainly as a method for comparing 
and matching two sets of information. We could not find 
any reference for using DTW algorithm for data 
interpolation. Laborelli at [9] proposed the use of the 
DTW procedure for removing video line jittering, which 
is basically a data alignment problem. However, this 
application does not include data interpolation. 
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3. PROBLEM FORMALIZATION 
 
Let A,B be two successive lines in a given interlaced 
field, containing N pixels each: 
 { ( ) | 1 }  ; { ( ) | 1 }A a i i N B b j j N= ∈ ÷ = ∈ ÷  
Let L be the missing line that resides between A and B in 
the corresponding frame. 

{ ( ) | 1 }L l t t N= ∈ ÷  
We assume that the pixels in the image take values in a 
finite alphabet (i.e. 0 to 255). 
We define a distance function d(i,j) between location i in 
line A and location j in line B, that may depend on the 
pixels values in a certain neighborhoods of the pixels a(i) 
and b(j). 
The elements d(i,j) constitute a N-by-N matrix in which 
the column indices relate to the pixels in line A, and the 
row indices relate to line B (see Figure 1). 
A warping path W, is a contiguous set of ordered pairs of 
indices ( , )k k kw i j= that defines a mapping between A 
and B: 

1 2, ,....,    ;  2 1KW w w w N K N= ≤ < −     
The warping path W is subjected to the following 
constraints: 
1. Boundary conditions: 1 (1,1)w =  , ( , )Kw N N= .  
i.e. the first and last pixels in lines A and B are aligned. 
2. Continuity condition: 
 If ( , )tw i j= then 1 ( , )tw q p+ =  where 1q i− ≤  and 

1p j− ≤ . This condition ensures smooth time warping by 
restricting the allowed steps in the path to adjacent 
elements. 
3. Monotony condition: 
  If ( , )tw i j= then 1 ( , )tw q p+ =  where 0q i− ≥  and 

0p j− ≥ . This condition ensures the monotonic progress 
of the path w, along the time axes. 
The optimal monotonic and continuous warp between A 
and B is the path W that minimizes the warping cost: 
 

1

( ) ( )
K

k
k

D W d w
=

=∑  

The optimal distance can be efficiently found by using a 
dynamic programming algorithm: 

1 1 1( ,..., ) ( ,..., )
min{ ( , 1), ( 1, ), ( 1, 1)}

l lD w w D w w
d p q d p q d p q

−= +

+ + + +
 

where 1 ( , )lw p q− = . 
The use of d(p,q+1), d(p+1,q) and d(p+1,q+1) as the 
only possible previous positions realizes the continuity 
and monotonic conditions. 
Backtracking along the minimal cost pairs starting from 

( , )Kw N N=  to 1 (1,1)w =  yields the warping path. 

In order to reduce computational burden, we use a 
windowing or band constraint to the warping path: 

( , )d i j = ∞  for i j R− >  
Once the DTW path is determined, the missing line L can 
now be calculated by interpolating its pixels from the 
pixels of lines A and B, according to the following rules:  
1. If for the missing pixel l(t) there exists an element 

( , )nw i j=  in the DTW path W such that (i+j) is even  and 

2
i jt +

=  , then ( ) ( )( )
2

a i b jl t +
=   

2. If for the missing pixel l(t) there exist two elements 
( , )nw i j=  and 1 ( 1, 1)nw i j+ = + +  in the DTW path 

W such that (i+j) is odd and 1
2

i jt + +
=  , then 

( ) ( 1) ( ) ( 1)( )
4

a i a i b j b jl t + + + + +
= . 

It can be shown that every pixel l(t) falls in to one of these 
rules. Figure 2 demonstrates both cases. For example: 
pixel c in the missing line L, is interpolated using the 
element 

4 (2, 4)w = and pixel j, is interpolated using the 
elements 14 (10,9)w = and 

15 (11,10)w = . 
 

4. THE COST FUNCTION 
 
The cost function d(l,m) represents the “perceptual” 
distance between a pair of elements (pixels) in the given 
lines A and B. The standard cost function in DTW 
algorithm is the absolute difference between the pixel 
values: ( , ) l md l m a b= − . However, we found that in 
order to achieve better results, the cost function should be 
based on a more sophisticated correspondence measure 
between two subsets of pixels. 
Let 1... ka a a=  and 1... kb b b= be subsets of 
neighboring pixels of the pixels a(i) and b(j) respectively. 
We will use a Markovian model for the distribution of 
pixel values in each subset: 

1 1 2 1 3 2 1( ) ( ... ) ( ) ( | ) ( | ).... ( | )k k kP P P P P Pα α α α α α α α α α −= = ⋅ ⋅   

, where the symbol α  represents a or b . 
For simplicity, we assume that ( )iP α  is uniformly 
distributed in the corresponding alphabet, and that the 
conditional probability 1( | )i iP α α −

 is a function of the 
difference between iα  and 1iα −  only, i.e.: 

1 1( | ) (| |)i i C i iP Pα α α α− −= −   
Therefore: 

(1.1) 1 1
2

( ) ( ) (| |)
k

C i i
i

P P Pα α α α −
=

= ⋅ −∏   

In order to construct a correspondence measure (or, 
equivalently, a distance function) between the two subsets 



 

we will use the Newman-Pearson score that discriminates 
between the following two hypotheses: 
1. The subsets a  and b  are both distortions of a 

common pixel set denoted γ . 
2. The subsets a  and b  were sampled independently 

from the Markovian model.   

 (1.2) { ( ) ( , ) ( , )}
( , )

( ) ( )
D DMax P P a P b

NP a b
P a P b

γ γ γ γ⋅ ⋅
=

⋅
 

where ( , )DP γ α  is the probability of obtaining subset a  as 
a distortion of γ . 

We assume that this probability is symmetric in a  and 
γ . Computing expression(1.2) involves an enumeration 
over all possible values of the subset γ and hence its 
computational complexity is unacceptable. A reasonable 
approximation for this expression assumes that the 
maximum is attained at one of the two options aγ =  or 

bγ = . Under this assumption,(1.2) can be written as: 

(1.3) { ( ), ( )} ( , ) ( , )( , )
( ) ( ) { ( ), ( )}

D DMax P a P b P b a P b aNP a b
P a P b Min P a P b

⋅
= =

⋅
 

We now use a common assumption, consistent with (1.1), 
that ( ), ( )P a P b  are exponentially distributed: 

1(| |)
1( ) ( )   i ia aP a Q P a e µ −− −∑= ⋅ ⋅  

1(| |)
1( ) ( ) i ib bP b Q P b e µ −− −∑= ⋅ ⋅  

, where Q is a normalization factor. 
The distortion probability 

DP is modeled by: 

' '| |

1

( , ) i ii i

k
a ba b

D
i

P b a C e e λδ − −− −

=

∑ ∑= ⋅ ⋅∏  

where: 
1'i i iα α α −= −  denotes the numerical derivative. 

This model assumes that the distortion is a function of the 
difference between the horizontal derivatives of a  and b , 
and the difference between the luminance levels of the 
two subsets.  
Using the exponential expressions for ( ), ( )P a P b and 

( , )DP bα , we can further simplify (1.3) by considering the 

log of ( , )NP a b . In conclusion, in order to define the 
cost function d(l,m) that represents the distance between 
two pixel neighborhood, we will use log of the correlation 
score (1.3) in a negative sign. Therefore, based on this 
model:      

' '
1, 2

( , ) | | { | |}
k

i i i i i iq a b i

d l m a b a b Min q qδ λ µ −= =

   
= ⋅ − + ⋅ − − ⋅ −   

   
∑ ∑ ∑  

This function serves as the cost function in the DTW 
process, as described in section 3. 
 

5. EXPERIMENTAL RESULTS 
 
We have conducted a number of experiments to test the 
DTW method and to compare it to other spatial de-
interlacing methods. We focused on the effect of the 
interpolation method on the overall quality of the 
produced image, with emphasis on the quality of the 
edges. 
The tests were conducted for five different image samples 
(figure 3). Each image was first downsampled by 
eliminating its odd or even lines. The image was then 
upscaled back to its original size by three scaling 
methods:  bi-cubic interpolation, edge-directed 
interpolation and DTW. The resulted images were finally 
compared to the original image. We used a weighted MSE 
measure to calculate the difference between each upscaled 
image and its original. The weights were determined in 
such a way that gives higher weights to pixels around 
edges. 
The next table summarizes the results: 

 Bi-Cubic Edge-
directed 

DTW 

Flower 8.4763 7.9728 7.9071 
House 4.3283 3.4143 3.4382 
Fabric 4.1459 1.5543 1.0226 

Lighthouse 11.0966 8.7751 8.7939 
Flag 2.9424 2.6742 2.6565 

The quantitative results of the MSE criterion, although not 
sufficiently expressing the overall perceptual quality of 
the image, can discriminate between the edge-directed 
based algorithms and the linear method. The artifacts in 
the images that were interpolated by the bi-cubic method 
are easily noticeable – the edges in the interpolated 
pictures are blurred and seem incomplete. The resulted 
images of both edge-directed methods are superior in their 
quality to the quality of the other method – edges are 
smooth and complete and there are no artifacts in other 
parts of the images (figure 3).  
The edge-directed method that was used resembles the 
method described in [10]. We limited both the DTW and 
the edge directed methods to a maximal edge distance of 6 
pixels, i.e. the DTW band window was set to 6 and in the 
edge-directed method, the correlation was calculated 
between pixels that are up to a distant of 6 pixels. 
Although the MSE results are similar to both edge-
directed methods, a closer look at the resulted images 
shows the advantage of the DTW method. Fine edges 
appear to be more complete and artifacts near corners or 
crossing edges are eliminated. 

6. SUMMARY AND CONCLUSIONS 
 
In this paper, we presented a new approach to the spatial 
de-interlacing problem based on the DTW paradigm. We 



 

formularized a cost function that measures the similarity 
between two consecutive input lines, used DTW 
procedure to find the optimal alignment between them and 
interpolated the missing line’s pixels, based on this 
alignment. The advantages of the proposed method were 
demonstrated in the experimental results section, where 
we compared its performance to the performance of 
existing methods such as bi-cubic and edge directed 
methods. To our best knowledge, the introduction of 
image spatial up-scaling technique based on the DTW 
procedure is novel. Since this method essentially performs 
edge detection and edge integration, it can be utilized in 
other image processing tasks such as segmentation, edge 
directed filtering and more. 
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Figure 1: An example-warping path. Each element in the 
matrix represents the distance d(i,j) between pixel a(i) and 

b(j). 
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Figure 2: Missing Line Interpolation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Resulted images- from left: bi-cubic, edge-
directed and DTW. Notice the flower’s stem, the house’s 

top roof and the lighthouse’s railing. 


