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Abstract. We consider a swarm of simple ant-robots (or a(ge)nts) on
the plane, which are anonymous, homogeneous, memoryless and lack
communication capabilities. Their sensors are range-limited and they are
unable to measure distances. Rather, they can only acquire the directions
to their neighbors. We propose a simple algorithm, which makes them
gather in a small region or a point. We discuss three variants of the
problem: A continuous-space discrete-time problem, a continuous-time
limit of that problem, and a discrete-space discrete-time analog. Using
both analysis and simulations, we show that, interestingly, the system’s
global behavior in the continuous-time limit is fundamentally different
from that of the discrete-time case, due to hidden “Zenoness” in it.

1 Introduction

The problem of gathering a swarm of robots in a small region or a point on the
plane is a fundamental one. From a practical standpoint, it may be useful for
collecting multiple ant robots after they have performed a task in the field, for en-
abling them to start a mission, after being initially dispersed (e.g., parachuted),
or even for aggregating many nano-robots in a self-assembly task. From a theo-
retical standpoint, the gathering problem is linked to agreement problems (as it
may imply or be implied by agreement on a reference location) and is the most
basic instance of the formation problem, i.e., the problem of arranging multiple
robots in a certain spatial configuration. The problem is most challenging when
the robots are ant-like – having very limited abilities, e.g. myopic, disoriented
and lacking explicit communication capabilities.

Several theoretical works on this subject exist. Suzuki and Yamashita sug-
gested an agreement procedure, where the agents communicate data through
their movements, in order to agree on a meeting point [16]. Schlude suggested
the use of a contraction point, which is invariant to their moves toward it [14].
Ando et al. suggested an algorithm for myopic robots, which move according to
the exact locations of nearby robots [1]. Lin et al. also provided an algorithm for
mypoic robots and related to the case of a limited field of view [11]. Prencipe
et al. suggested an algorithm for myopic robots, which relies on a common com-
pass [7], as well as an algorithm which creates a unique point of multiplicity
(i.e., which contains several agents) to which all agents move [6]. Gordon et al.
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suggested a simple gathering algorithm on the grid [8]. Others explored cyclic
pursuit behaviors (where robots are cyclicly ordered and pursue each other ac-
cordingly), which, in some cases, lead to gathering [2, 3, 12]. Sugihara et al. sug-
gested a simple behavior which makes robots fill any convex shape and evenly
distribute inside it [15]. Also related is the work of Melhuish et al. [13], who
considered aggregation of robots around a beacon in a noisy environment, and
demonstrated a way to control the swarm size using minimal communication.

These works rely on some strong assumption about the robots (or agents
as we shall call them henceforth): Some rely on labelling (e.g., pursuit), some
on common orientation, and many on infinite range visibility. Furthermore, all
works rely on the agents’ ability to measure their mutual distances (except for
a few pursuit strategies).

In this work, we suggest a simple gathering algorithm, which relies on very few
capabilities: Our agents are both anonymous, homogenous, memoryless, asyn-
chronous, myopic and are incapable of measuring mutual distances. It is similar
in idea to the polygon-filling algorithm of Sugihara et al. [15]. However, they did
not consider visibility limitations at all, so their algorithm could not be used as
is, under our imposed limitations.

The inspiration and motivation for this work comes from experiments with
real robots in our lab [5], made from LEGO parts and very simple sensors, which
are range-limited and do not provide usable distance measurements.

We consider three flavors of the problem, differing mostly in the way time and
space are modelled (continuous vs. discrete). Using simulations and analysis, we
discuss some interesting implications of these differences on the resulting swarm
behaviors. Due to limited space considerations, we have omitted or abridged
most of our proofs. These will appear in a forthcoming extended paper.

2 An Asynchronous Gathering Algorithm on the Plane

In this section we present the continuous-space discrete-time case. We begin with
the model of the world and its inhabitants.

The world consists of the infinite plane IR2 and n point agents living in
it. We adapt Suzuki and Yamashita’s convenient way of modelling a system of
asynchronous agents [16]: Time is a discrete series of time steps t = 0, 1, . . ..
At each time step, each agent may be either awake or asleep, having no control
over the scheduling of its waking times. A sleeping agent does nothing and sees
nothing, i.e., it is unaware of the world’s state. When an agent wakes up, it is
able to move instantly to a point on the plane within a distance σ (the maximum
step length) according to its algorithm. The agent is able to see only the agents
within distance V (the visibility radius or range). However, it cannot measure its
distance from them. It only knows the directions in which the nearby agents are
found, i.e., the input is a cyclic list of angles θ1, . . . θm (relative to some arbitrary
direction, e.g., the agent’s heading). There are no collisions. Several agents may
occupy the same point1. All agents are memoryless, anonymous (they cannot be

1 In this case, they have undefined relative directions and are simply mutually ignored.



144 Noam Gordon, Israel A. Wagner, and Alfred M. Bruckstein

distinguished by their appearance) and homogenous (they lack any individuality,
such as a name or ID, and perform the same algorithm).

Regarding the waking times of the agents, we make the following assumption.
We say that the agents are strongly asynchronous: For any subsetG of the agents
and in each time step, the probability that G will be the set of waking agents is
bounded from below by some constant ε > 0. This implies that each agent will
always wake up again in finite expected time.

Define the mutual visibility graph of the world as an undirected graph with
n vertices, representing the agents, and an edge between each pair of agents, if
and only if they can see each other, i.e., the distance between them is at most
V . Unless noted otherwise, we assume that this graph is initially connected.

2.1 Maintaining Visibility

We now present a sufficient condition on any movement algorithm for maintain-
ing mutual visibility between agents. In what follows, denote a disc of radius r
and center a (where a may signify the location of agent a) by Br(a).

Let a and b be two agents at some distance d ≤ V apart. If their next
movement is confined to BV/2

(
a+b
2

)
, they will remain visible, by definition.

However, since the agents cannot measure d, they must consider all possible
values of d ∈ [0, V ]. Therefore, each agent’s next move must rely within the
intersection of all discs of diameter V , centered at all possible midpoints between
a and b. It is easy to show that, for agent a, this is equivalent to BV/2(a)∩BV/2(r),
where r is a point at a distance V/2 from a, in b’s direction (cf. Fig. 1(a)). More
generally, when a sees several other agents b1, . . . bm, it is allowed to move to
any point within the intersection of m+ 1 discs of diameter V , one is BV/2(a),
and the other m discs centered at a distance V/2 from a, in the directions of
b1, . . . bm (cf. Fig. 1).

Denote by ξ the largest angle between consecutive agents in agent a’s (cyclic)
list of input angles θ1, . . . θm. It is straightforward to show that the allowable
movement region is empty if and only if ξ < π, i.e., when the agent is “sur-

sra V/2

(a)
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Fig. 1. Maintaining visibility. (a) a must remain within the shaded area to maintain
visibility with b, which is somewhere on the line segment as, as far as a knows. (b) a
is surrounded and cannot move. (c) a can move only within the shaded area.
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rounded” by other agents (cf. Fig. 1(b)). Otherwise, the allowable region is not
empty, and is calculated as follows: Let θk and θk+1 be the directions which
form the angle ξ = θk+1 − θk. Then the allowable region is the intersection of
three discs of diameter V , centered around a and around the two points at a
distance V/2 in directions θk and θk+1 from a, respectively (cf. Fig. 1(c), 2). The
following lemma follows from the above geometric arguments.

Lemma 1. If each agent confines its movements to the allowable region defined
above, then existing visibility will be maintained.

A direct corollary to Lemma 1 is that a connected visibility graph will remain
connected forever.

2.2 The Gathering Algorithm

Denote by ψ the complementary angle of ξ defined above (i.e., ψ is the angle
of the smallest wedge containing all visible agents). The algorithm works as
follows: Agents which are surrounded by other agents do not move, while other
agents move as far as they can on the bisector of ψ. The idea is that outermost
agents generally move inside the region containing the agents, gradually making
it shrink.

ψV a

(a)

V ψ
a

(b)

Fig. 2. Agent a’s movement (assuming σ > V/2). (a) ψ < 2π/3. Travelling distance is
V/2. (b) ψ > 2π/3. Travelling distance is V cos(ψ/2).

The exact movement rule is as follows: If ψ ≥ π, then do not move. Otherwise,
move along the bisector of ψ, a distance

μψ = min (V/2, V cos (ψ/2) , σ) . (1)

σ is the physical constraint, while the first two constraints express the maximum
possible travelling distance, easily derived from the definition of the allowed
movement region stated above (See Fig. 2). For convenience, we denote the
maximum possible step length by μ = min (V/2, σ).

It is worth noting that the allowable region is symmetrical about the bisector
of ψ, and that the farthest point on this region is on the bisector. In other
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words, the bisector can be seen as the “natural” direction to move along, just
for the sake of maintaining visibility. Interestingly, this movement direction was
originally chosen by Sugihara et al., even though they were not at all concerned
with range-limited visibility or step size.

We defer the discussion of the system’s behavior to Sect. 5, after the other
variants of the model are presented.

3 The Continuous-Time Limit

In this section we discuss the continuous-time limit behavior of the system de-
scribed above, as follows. Assume that the agents are synchronous, i.e., active
at all times. Denote the physical duration of each time step by !t and let
σ = v!t for some constant v. It follows from (1) that, for σ < V/2, μψ = σ for
0 ≤ ψ < 2 cos−1 (σ/V ). Thus, in the limit !t→ 0, we get μψ = σ = v!t for all
0 ≤ ψ < π, and the movement rule becomes: If ψ < π, move along the bisector
of ψ at a (constant) speed v. Otherwise, do not move.

Lemma 1 still holds. In fact, it is not hard to see that an even stronger result
holds here: For any two mutually visible agents, their distance is non-increasing.

3.1 Collinearity, Varying Speeds and Zenoness

This simple movement rule (either move at a constant speed v or stand), exhibits
a seemingly paradoxical behavior: Agents will sometimes move at varying speeds!
To see this, consider the following scenario. Let a, b and c be three collinear
agents and denote their wedge angles by ψa, ψb and ψc, respectively. b is the
middle one, and ψb = π is determined by the locations of a and c. Assume that
ψa, ψc < π (so that a and c move) at time t = 0. After an arbitrarily short
time, as a result of their displacement, ψb slightly decreases and, therefore, b
starts moving as well, in a normal direction to the segment ac. Collinearity is
now seemingly broken. However, within an arbitrarily small time, b necessarily
moves farther enough so that it is “ahead” of ac, and the bisector of ψb now flips
and points backwards. As a result, b returns backwards until it crosses ac again.
This process repeats itself over time, while a and c keep moving. Now, since the
deviations of b from ac are also arbitrarily small, b effectively remains collinear
with a and c. In summary, the following claim holds:

Proposition 1. Let a, b and c be three collinear agents, where b is the middle
one. They will remain collinear as long as in ψb is determined by a and c.

When integrated over time, this “chattering” movement back and forth (at a
constant speed v) becomes a smooth movement of b, always on ac, at a speed
generally not equal to v. Take, for instance, the symmetric case, where both a
and c move at an angle π/4 relative to ac. Then b will move in a straight line,
normal to ac, at a speed of v/

√
2.

This seemingly paradoxical behavior stems from the fact that agent b per-
forms an infinite number of discrete direction switches over a finite period of



Gathering Multiple Robotic A(ge)nts with Limited Sensing Capabilities 147

time. This phenomenon is known as Zenoness in hybrid systems theory (See,
e.g., [9]), and it shows that, in the continuous-time limit, our system is ill-posed
and physically unrealizable. However, had we introduced a slight delay in the
agents’ responses, we would get a consistent behavior where agent b “oscillates”
around ac at a finite rate. Indeed, we observed such a behavior in simulations of
the discrete-time system of Sect. 2 (For a related discussion, cf. [4]).

3.2 Correctness and Termination

We now present a formal proof of correctness and termination in finite time of
the algorithm. Denote the convex hull of the configuration (i.e., of the positions
of all agents) at time t by CH(t), and the number of its (strictly convex) corners
by m. Denote the corner agents by ai (i = 1, . . . ,m), and the inner angle at each
corner ai by φi. Denote the angle formed between ai’s movement direction and
one of the adjacent edges of CH(t) by αi (Clearly, 0 ≤ αi ≤ φi). Denote the
length of the edge adjacent to ai by Pi, and the total perimeter of CH(t) by
P =

∑m
i=1 Pi.

Proposition 2. Ṗ is negative and bounded away (by a constant) from zero, as
long as P > 0.

Proof. (abridged) Since the corner agents do not necessarily see each other, a
corner agent may not necessarily move along the bisector of φi. However, since
there are no agents outside CH(t), and according to Lemma 1 the visibility
graph is connected, it is guaranteed that each corner agent observes at least one
other agent and therefore moves inside CH(t).

Observe a single edge of CH(t), connecting ai and ai+1. During an arbitrarily
short period of time dt, these agents move into CH(t) a distance v dt, at angles
αi and φi+1 − αi+1 relative to the edge, respectively. Any other agents on the
edge, or arriving at the edge, will remain on it, according to Prop. 1. Therefore,
they have no effect on it. It can be shown that, as a result, the edge will be
shortened by the following amount:

Pi(t+ dt)− Pi(t) = −v dt (cosαi + cos (φi+1 − αi+1)) + o (dt) . (2)

Summing over all m corners, dividing by dt and letting dt→ 0, we get:

Ṗ = −v
m∑

i=1

[cosαi + cos (φi − αi)]

≤ −v
m∑

i=1

[1 + cos (φi)]

≤ −v [1 + cos (π (1− 2/n))] .

(3)

The first inequality holds because, for any fixed φi < π, the expression cosαi +
cos (φi − αi) is minimal when αi = 0. The second inequality is straightforward,
and the resulting expression on the right side is a negative constant, dependent
only on n, which is finite. � 
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Theorem 1. Beginning with any initial configuration, whose visibility graph is
connected, all agents will gather in a single point, in finite time.

Proof. This is a direct corollary of Prop. 2. � 

Another obvious property from the above analysis is that for any two time
instants t1, t2, if t1 < t2 then CH(t1) ⊃ CH(t2). A corollary of this is that if the
visibility graph is initially not connected, none of its connected components will
ever merge (or split, of course), and therefore each group of agents, corresponding
to a connected component, will gather in exactly one separate point.

4 A Discrete Analog

This section presents a discrete-space discrete-time analog of the problem pre-
sented in Sect. 2. The asynchronous operation of the agents is retained, with the
world now being the infinite rectangular grid (ZZ2).

On the grid, we measure distances with infinity norms. Formally, the distance
between two points p1 = (x1, y1) and p2 = (x2, y2) on the grid is

‖p1 − p2‖∞ = max (x1 − x2, y1 − y2) .

Accordingly, let V ≥ 1 be the visibility range of the agents. Then the visible
area of an agent is a (2V + 1) × (2V + 1) square, centered at the agent. An
agent cannot measure the exact distance from a visible agent. Rather, it can
only measure the signs (positive, negative or zero) of x1− x2 and y1− y2. In the
grid world, an agent may move only to one of the four neighboring cells.

Define a move as allowable if and only if there are no visible agents “behind”
the agent and there exists a visible agent “before” it, as it looks in that direction
(e.g., the agent is allowed to move in the positive x direction if and only if there
is no visible agent with a smaller x coordinate and there exists a visible agent
with a larger x coordinate. See Fig. 3).

The movement rule is as follows: The agent randomly picks an allowable
move, if there is any, and performs it (There can be 0 to 2 allowable moves.
In case of two allowable moves, the agent tosses a coin). Intuitively, this rule
makes agents get closer to, but not move away from, each other. Thus, visibility
is maintained, and we expect the area occupied by all agents to shrink. We now
present a proof for this.

Define the bounding box BB(t) of the agents as the smallest enclosing rect-
angle (oriented with the grid’s axes) which contains all of the agents.

Proposition 3. When following the movement rule defined above, mutually vis-
ible agents remain visible.

Proposition 4. The bounding box of the agents is monotonically non-inflating,
i.e., BB(t+ 1) ⊆ BB(t) for all t.

Proposition 5. At least one of the bounding box’s sides eventually move in-
wards (as long as BB is not a single cell).
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(a) (b)

Fig. 3. The proposed gathering algorithm on the grid (V = 3). (a) The center agent is
surrounded and cannot move. (b) The center agent can move only to the right.

Proof. (abridged) Observe w.l.o.g. all agents which reside on the upper side of the
bounding box (i.e., all agents with the maximum y coordinate), and denote their
number by X(t). If the bounding box’s height is 1 (i.e., X = n), then clearly
the leftmost and rightmost agents move inwards (when they eventually wake
up), narrowing the bounding box. Otherwise, due to the connectedness of the
visibility graph (Prop. 3), at least one agent on the upper side observes another
agent, which resides below the upper side. Therefore, that agent is allowed to
move downwards and, from the strong asynchronicity assumption, there is a
probability of at least ε/2 that it indeed wakes up and chooses to move in that
direction (and no other agent wakes up and moves up), lowering the number of
agents on the upper side. Thus, all states X = k, 0 < k < n are transitional
and connected to either one of the states X = 0 and X = n, which are obviously
trapping (due to Prop. 4). Therefore, eventually either X = 0 or X = n will
occur, meaning that either the upper side has moved down or the lower side has
moved up all the way to merge with the upper side, respectively. � 

Theorem 2. Beginning with any initial configuration, whose visibility graph is
connected, all agents will eventually gather in a single cell.

Proof. The proof follows immediately by applying Proposition 5 repeatedly. � 

5 Discussion

We performed extensive simulations of the problem described in Sect. 2. Not
only did the simulations validate the correctness of the algorithm, but they
also revealed some interesting global behaviors of the swarm. We discuss them
qualitatively, and compare them to the continuous-time limit behavior (which
apparently cannot be simulated, due to its Zenoness). We argue that, in the
limit, the system’s behavior is fundamentally different.

The system’s evolution is clearly divided into two phases (1) A contraction
phase, where the area occupied by the agents contracts until all agents become
a small, dense cluster, whose diameter is in the order of μ (the maximum step
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Fig. 4. A typical run of the continuous-space discrete-time algorithm. Here n =
200, σ = 1, V = 10, and each agent wakes up in each time step with probability
p = 0.6. Note that the scale changes between frames.

size); (2) A wandering phase, where the cluster stops contracting and begins to
wander indefinitely in the plane.

5.1 The Contraction Phase

Observe Fig. 4, which shows several snapshots of one particular run of the sys-
tem, beginning with a random configuration with a connected visibility graph.
Consider the area occupied or “guarded” by the agents (informally speaking, the
area enclosed by laying a “fence” between each pair of mutually visible agents).
It is intuitively expected that the agents on the convex segments of its boundary
would move inside, those on the concave segments would either move outside or
stand, while the interior agents would generally stay inside2. What intrigues us is
the evolution of that boundary over time. Evidently, the occupied region shrinks
and its boundary contracts. As expected, the moving boundary “sweeps” more
and more agents, and becomes a “belt” which accumulates most of the “mass”
in the system. Moreover, a peculiar and less obvious phenomenon is evident
from the simulations: The build-up of mass on the boundary belt is not uni-
form. Segments with high curvature (i.e., where the boundary’s course bends
sharply) tend to absorb more agents than (and from) segments with lower cur-
vature. In addition, the former segments’ curvature becomes even higher, while
the latter segments tend to straighten slightly. This interaction between mass
and curvature along the belt creates a positive feedback process: The large-scale
2 We say “generally”, since it is indeed possible that agents move a short distance

outside the occupied region, if they are close enough to the boundary.
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shape of the occupied region becomes an approximate polygon, where the curved
segments turn into large clusters which form the corners, while the less curved
segments become nearly straight edges between the corners. As the polygon con-
tracts, edges gradually merge, until a triangle or a two-cluster “dipole” remains,
ultimately collapsing into one dense cluster.

What causes this positive feedback process? An informal explanation for one
direction can be illustrated if we consider the following approximated behavior:
Replace the boundary with a smooth contour with equally spaced agents on it,
and let each agent move a short distance μ along its normal. Clearly, the higher
the curvature, the closer adjacent agents will become.

The other direction’s possible explanation is easier to observe in one dimen-
sion first. Consider the following “leaping frogs” game: Imagine m frogs on the
real axis IR. Their movement rule is that, at each time step, only the leftmost
frogs leap a distance σ to the right. What is the average speed of the pack?
Assuming that no frog lands exactly on another frog, then it is clearly σ/m, as
only one of the m frogs move at each time step. Back in two dimensions, we
notice that the boundary belt is especially thick in the denser segments, and
the “cross sections” of these segments typically contain more agents. However,
only the outermost agents (analogous to the leftmost frogs) move in each step,
lowering the average contraction speeds of these segments, which, as a result,
“lag behind” and become more corner-like.

If we set σ = v!t, where !t is the physical duration of each time step,
the average speed of the frog pack should be v/m, regardless of the size of !t.
However, when we take !t → 0, a strange thing happens. The frogs’ behavior
changes from “leaping over” to “sweeping” – The leftmost frog simply moves at a
constant speed v, eventually joined by all frogs. Analogously, in the continuous-
time system of Sect. 3, due to Prop. 1, when a moving segment of the boundary
meets an internal agent, it sweeps it along, without slowing at all. Thus, in this
model, the “mass” of the boundary (which has no thickness in this case) does
not affect its contraction speed, and the mass–curvature feedback link is bro-
ken. Therefore, we conjecture that the shape evolution of the occupied region’s
boundary is fundamentally different than that of the discrete-time case – No
sharp corners and straight edges will be formed. Rather, convex segments will
quickly contract, and the region will have a much rounder and smoother shape.

5.2 The Wandering Phase

Since the agents do not measure distances, their steps’ sizes are invariant to the
configuration’s scale. The smaller the region they occupy, the relatively longer
their steps become. Once the diameter of the occupied region is in the order
of μ, the moving agents tend to “leap” over the region, rather than enter it.
As a result, the region drifts rather than contracts3. Due to the random nature
of the agents’ activity schedules, the drift direction is also random. Thus, the

3 Formally, we may choose to define the cluster’s location as its center of mass, the
center of the smallest enclosing circle, etc.
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movement of the cluster is a random walk. We call it a composite random walk,
as it is composed of the deterministic (yet randomly scheduled) movements of
many agents. Just as with the boundary evolution case above, here more mass
means slower wandering.

Random walks in two dimensions are known to be recurrent, which implies
that two random walkers are bound to meet eventually (See, e.g., [10]). This has
an important implication on our problem: If the visibility graph is initially not
connected, then each connected component becomes an independent composite
random walker. However, due to their recurrent nature, these clusters will even-
tually meet and merge. Thus, the proposed algorithm may eventually gather
all agents, even though the visibility graph is not connected initially. Of course,
we do not mean that it will work for any initial condition. The composite ran-
dom walkers must be able to meet. This may be false for clusters of one agent
(which doesn’t move at all) or two agents (which always remain on one line). We
conjecture that for clusters of three or more non-collinear agents, this is guaran-
teed, and a sufficient condition for the eventual success of the algorithm would
be the existence of such a cluster. It should be noted that, as our simulations
show, the merging process is generally agonizingly slow. Still, from a theoretical
standpoint, merging should occur eventually.

Yet again, we see a significant difference between this behavior and the
continuous-time limit behavior, where, as we showed in Sect. 3, gathering in
a single point occurs, rather than wandering, and there is no hope of ever merg-
ing two connected components of the visibility graph.

6 Conclusion

The algorithm proposed in this paper is an example of how very simple individual
behaviors can yield complex global behaviors of the swarm. In each of the three
variants we presented, we showed how different global processes lead to the
ultimate goal of gathering. In the continuous-space discrete-time model, the
global shape of the swarm becomes an approximate polygon and converges to
a wandering cluster. In the continuous-time limit, the swarm shape is much
smoother, and the agents converge to a static point. Our main contribution is
that we consider the gathering problem with such severe limits on the sensory
abilities of the agents (being both myopic and unable to measure distances), in
addition to being anonymous and memoryless.

In forthcoming papers, we shall provide an analytic proof for the convergence
of the first variant of the algorithm, and a more rigorous analysis of the swarm’s
shape evolution. We will also explore the application of the proposed algorithm
to row-straightening and formation of other convex shapes. Further work should
relate to the effect of noise and error, both in sensing and movement, on the
resulting global behavior. Clearly, the proposed algorithm is sensitive to such
errors, as the connectivity of the visibility graph may be broken. It would be
interesting to analyze the effects, and devise methods to overcome them.
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