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Abstract

This paper presents a solution to the problem of pattern
formation on a grid, for a group of identical autonomous
robotic agents, that have very limited communication ca-
pabilities. The chief method of communication between
the agents is by moving and observing their positions on
the grid. The proposed algorithm is a sequence of sev-
eral coordinated “bee dances” on the grid, through which
the agents broadcast information and cooperate in order to
reach agreements and resolve problems due to their indis-
tinguishability.

1. Introduction

In recent years, the interest in distributed mobile robotic
systems is growing rapidly. Recognizing the benefits of dis-
tributed computing with regard to robustness, performance
and cost as well as the amazingly complex feats success-
fully performed by colonies of social insects, researchers
are trying to design and analyze distributed systems of mul-
tiple mobile robots, hoping to gain similar advantages [2, 8].

A fundamental problem in the field of distributed
robotics is the Formation Problem, i.e., the problem of coor-
dinating a group of mobile agents (robots) to form a desired
spatial pattern. This is important, e.g., when deploying a
group of mobile robots or a self-arranging array of sensors.
Also, by forming a pattern, tasks can be allocated, groups
created, leaders elected etc. This problem was considered
by many, including [1, 5, 6, 10]. Most of these works ad-
dress engineering aspects and design behaviors that seem to
work well in simulation or in real robot teams.

Suzuki et al [9] took a more theoretical approach, and
analyzed fundamental algorithmic questions regarding for-
mation: Given a group of autonomous, anonymous and ho-
mogenous mobile agents, with no explicit communication,
what kinds of spatial patterns can they be programmed to
create? One of their main results is that a pattern is achiev-

able if and only if it is purely symmetrical, i.e., a perfect
regular polygon (or a point), or several concentric ones.
The basic impossibility argument is that the agents may
happen to be distributed in a symmetrical pattern, and also
may happen to be perfectly synchronous forever. Since they
all perform the same algorithm, they always have the same
view and make the same movements, so the symmetry never
breaks. Several other researchers took a similar approach.
Notably, Flocchini et al discussed similar questions, using a
model which differs mainly w.r.t. the asynchronicity of the
agents’ actions, and concentrates on oblivious agents [4].
They showed analogous impossibility results for asymmet-
ric patterns. Defago et al [3] discussed the formation of a
circle by oblivious agents.

The idea of implicit communication through movement
is not new. In fact, it is common in nature. A fine example
is that of scouting bees that communicate their findings —
the location of nectar — through dance-like motions.

In this work, we deal with similar questions, but assume
that the world is a (discrete) grid, instead of the contin-
uous plane. We believe that, in real robots, it is reason-
able to assume that asynchronous autonomous robots are
unlikely to remain synchronous for a long time. By adding
this assumption to our model, we are able to give a rather
strong possibility result — a simple “generic” algorithm
which solves the formation problem for any arbitrary pat-
tern, within a finite expected time. It consists of several
“bee dances”, through which the agents communicate and
reach agreement prior to moving into formation.

Due to limited space, we omitted the formal proofs from
most of our claims. Detailed proofs as well as time analysis
can be found in [7].

2. Preliminaries

We first present a formal definition of the world model
and the problem we are discussing.
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2.1. Model definition

The world consists of an infinite rectangular grid (Z2)
and n point agents living in it. We assume that, initially,
the agents occupy distinct positions and they do not have
a common coordinate system. Each agent sees the world
(the locations of all agents) with respect to its own private
coordinate system. Time is discrete (t = 0, 1, . . .). At each
time step, each agent may be either awake or asleep (It has
no control over this). A sleeping agent does nothing and
sees nothing. When an agent wakes up, it sees the locations
of all agents, and may move to an adjacent point on the
grid (i.e., a 4-neighbor), according to its algorithm. The
algorithm’s input is the agent’s current view of the world
and possibly some private internal memory. There are no
occlusions and no collisions. Several agents may occupy
the same point. All agents are anonymous: they cannot be
distinguished by their appearance, and homogenous: they
don’t have any individuality (such as a name or id) and they
all perform the same algorithm.

Regarding the waking times of the agents, we make two
important assumptions. First, no agent sleeps forever, i.e., it
will always wake up again. Second, we say that the agents
are strongly asynchronous: For any subset G of the agents
and in each time step, there is a non-zero probability that G
will be the set of waking agents. This implies that the ex-
pected time for any group of agents to remain synchronous
(i.e., always wake up together) is finite.

The agents’ only means of tele-communication is
through movement and observation. In addition, they do
have a minimal form of local (zero-range) communication:
each agent has a binary flag, whose state can be observed
only by agents in the same point. We assume this additional
ability of the agents, in order to enable them to gather in a
single point and then to be able to move out of it. Without
such an ability, an agent has no way of knowing if the oth-
ers have already witnessed the gathering (since the sleeping
time of an agent is unbounded).

2.2. Problem definition

Given a pattern (a collection of coordinates) F =
(q1, . . . , qn) on the grid, the Formation Problem is the prob-
lem of finding a distributed algorithm, such that from any
initial distribution of the agents, they will eventually arrange
themselves in the desired pattern F . Note that in [9], “even-
tually” would mean “in strictly finite time”. In our context,
it is “in finite expected time”, which is a weaker condition.
This interpretation is equivalent to Suzuki et al’s definition
of the Convergence Problem.

Since there is no absolute coordinate system, the desired
pattern may be formed at any location and in any orientation
in the world. Also, a “mirror image” of the desired pattern

may be formed, since there is no initial agreement on the
handedness (or “chirality”) of the coordinate system.

3. Point formation

In order to make all agents gather in a single point on
the grid, we use the most intuitive idea: each agent moves
toward the location of the center of mass (or COM) of all
agents (The center of mass of n points p1, . . . , pn is defined
as p̄ = 1

n

∑n
i=1 pi).

We begin with the simplest case, where the world is a
one-dimensional grid (Z). Denote the agent’s current po-
sition (in its own coordinate system) by xt, the position of
COM by x̄, and the position of COM, relative to the agent,
by �x = x̄−xt. Algorithm 3.1, executed by each agent ev-
ery time it wakes up, solves the one-dimensional case. The
agent moves toward COM, unless it’s already within less
than 1/2 unit from the agent (In the discrete world, this is
equivalent to “being in the same cell” as the agent, where a
cell is a unit square centered at a point on the grid).

Algorithm 3.1 Point formation in one dimension
1: if |�x| < 1/2 then
2: Do not move. //Already close to COM.
3: else
4: Move one step toward COM.

Lemma 3.1. Algorithm 3.1 solves the point formation prob-
lem in one dimension.

The lemma is proven by showing that, in any case, the sup-
port of the agents’ positions must eventually shrink. The
strong asynchronicity assumption is used to deal with the
case where all agents reside in two adjacent cells, with n/2
agents in each cell. This symmetry breaks as soon as an
unequal number of agents wake up in each cell. As there
is some probability ε > 0 for this, the expected time until
symmetry is broken is 1/ε.

In spite of its simplicity, Algorithm 3.1 is quite power-
ful, in the sense that it is oblivious and thus self-stabilizing
(recovers from any finite number of errors, including even
“Byzantine”, i.e. arbitrary, movements). Furthermore, as
the following lemma states, the algorithm survives crash
failures: If some agents “die” (i.e., never moves again), all
the live agents will still eventually gather in a single point.

Lemma 3.2. In case of crash failures, Algorithm 3.1 still
solves the point formation problem in one dimension for the
live agents.

In two or more dimensions, the idea is the same, as
shown in Algorithm 3.2 and Figure 1. First, an agent
chooses along which dimension (axis) to move, and then
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moves toward COM along that dimension. Notice that in
line 4 an agent may possibly need to choose between two
options. This choice may be arbitrary, since the correctness
of the algorithm does not rely on it.

Algorithm 3.2 Point formation in two dimensions
1: if |�x| < 1/2 and |�y| < 1/2 then
2: Do not move. //Already close to COM.
3: else
4: Choose a dimension d ∈ {x, y} for which |�d| ≥ 1/2
5: Move one step toward COM along d.

Figure 1. A step in Algorithm 3.2. The tiny cir-
cle is COM. The arrows signify possible move-
ment choices for each waking agent (dot).

The situation is separable. If we view the projection of
the world on the x axis, it will look exactly as if the agents
are performing the one-dimensional algorithm along that
axis. Agents which choose to move along the y axis look as
if they are asleep. The only catch is that we must rule out the
possibility that an agent never chooses to move along a spe-
cific axis. This is proven as follows. Assume that from some
point in time there exists an agent which never chooses to
move along the x axis, even though |�x| ≥ 1/2. Then, the
agent must always (hence infinitely often) choose to move
along the y axis. However, according to Lemma 3.2, the
agent (along with all other agents, except for, maybe, some
agents which never choose to move along the y axis) eventu-
ally reaches ȳ and stays there. From that point, the agent’s
only choice would be to move along the x axis. This is a
contradiction. We have thus proven the following lemma.

Lemma 3.3. Algorithm 3.2 solves the point formation prob-
lem in two dimensions.

4. Agreement on a coordinate system

In order to form an arbitrary pattern, the first step in our
strategy is to make the agents agree on a common coordi-
nate system. Beginning with an arbitrary initial configura-
tion, the agents gather at a single point (as described above)

and make it their common origin. Then, they perform a se-
ries of little “dances”, to vote and agree on the direction and
orientation of each axis.

4.1. Agreement on an origin

Algorithm 4.1 makes the agents agree on a common ori-
gin, as follows. First, the agents gather in a single point, by
performing Algorithm 3.2. Second, upon waking up, each
agent makes this point its new origin, raises its flag, and
waits until all other agents raise their flags as well or leave
the origin. Third, once all agents have raised flags, each
agent lowers its flag and leaves to its next destination.

Algorithm 4.1 Agreement on an origin
1: //Phase 1

Perform Algorithm 3.2 until all agents are in the same point.
2: //Phase 2

Set current position as my origin.
3: Raise flag.
4: Wait until each agent has either raised its flag or left the origin.
5: //Phase 3

Lower flag.
6: continue to the next algorithm (Leave origin).

Lemma 4.1. Algorithm 4.1 will make the agents eventually
agree on a common origin, and move out of it.

The same procedure as in Algorithm 4.1 can be used as
a generic “glue” that properly chains any two algorithms
A and B in a sequence (e.g., as in Algorithm 6.1), if the
following conditions hold: (1) The agents already have a
common origin; (2) in the last phase of the first algorithm A,
the agents gather in the origin; and (3) in the first phase of
the second algorithm B, the agents move out of the origin.

4.2. Agreement on the axes

After agreeing on an origin, the agents vote on the direc-
tion of the x axis (i.e., horizontal or vertical). The voting
procedure is presented in Algorithm 4.2 and Figure 2.

First, each agent leaves the origin one step in its own pos-
itive x direction (i.e., to (1, 0)), and waits until the origin is
eventually empty. Then, it compares how many agents re-
side on the x axis with how many reside on the y axis. If the
quantities are equal, the agent “defects” by returning to the
origin, going to (0, 1) and flipping the axes of its own coor-
dinate system. This symmetry sustains as long as an equal
number of agents defect from each “camp”. However, since
the agents are strongly asynchronous, the expected time un-
til symmetry is broken is finite. Second, when finally the
origin is empty and those quantities are unequal, each agent
moves one step further from the origin (i.e., to (2, 0)) to
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Algorithm 4.2 Agreement on the x axis direction
1: //Phase 1

Move to (1, 0).
2: Wait until (0, 0) is empty.
3: if there are exactly n/2 agents on each axis then
4: Move to (0, 0).
5: Flip the axes in my local coordinate system.
6: Goto 1.
7: //Phase 2

Move to (2, 0).
8: if there are less than n/2 agents on the x axis then
9: Flip the axes in my local coordinate system.

10: Wait until all 4 points adjacent to (0, 0) are empty.
11: //Phase 3

Return to (0, 0)
12: Continue to Algorithm 4.1.

“acknowledge” the choice, and sets its local x axis to coin-
cide with the axis that contains the majority of the agents.
The agent waits there until all agents acknowledged as well.
Finally, each agent simply returns to the origin and Algo-
rithm 4.1 is performed to coordinate the next algorithm.

Lemma 4.2. Let all agents have a common origin and re-
side in it. Then Algorithm 4.2 will make them agree on the
directions of their axes.

At this stage, all agents’ local axes coincide, but they
still need to agree on their orientations (polarities). They
do so by performing additional dances, quite similar to Al-
gorithm 4.2, once for each axis.

5. Agreement on a total ordering

After agreeing on a common coordinate system, the
agents perform another “dance” (Algorithm 5.1) to agree
on a total ordering. By this we mean that after the algo-
rithm is performed, each agent will have a unique identity
(or id, a natural number between 1 and n). The agents will
still be anonymous (i.e., indistinguishable by their looks),
but each agent will know its own id. The idea is that the
agents “broadcast” to each other what their initial position
was, in terms of the newly agreed coordinate system. Since
we assume that initially they occupied distinct points, we
can use their initial distribution to define a lexicographic to-
tal ordering of the agents.

In the algorithm’s pseudo-code, denote an agent’s initial
position by (x0, y0). Also, define for any integer k

k̂ =
{

k k < 0
k + 1 else .

Note that k̂ cannot be equal to 0.
First, each agent leaves the origin to a unique position

(3x0 + 1, ŷ0) (from which (x0, y0) can be easily calculated

(a) Phase 1: The agents
still move out of the ori-
gin.

(b) All agents left the ori-
gin, and the majority lies
on the vertical axis.

(c) Phase 2: All agents
eventually set the vertical
axis as x axis, and move
another step away from
the origin.

(d) Phase 3: All agents
eventually return to the
origin.

Figure 2. An illustration of Algorithm 4.2

by others), and waits until all other agents do so as well.
Note the carefully chosen path to this destination (line 1),
along which only the destination (3x0 +1, ŷ0) satisfies both
conditions stated in line 2. Thus, the second phase begins
only when all agents reach their destinations. Then, each
agent calculates its own unique id (as described in line 3),
makes a single “acknowledgement” step (to (3x0 + 2, ŷ0)),
and waits for acknowledgement by all other agents (This
step does not interfere with the id calculation to be done by
other agents). Finally, all agents return to the origin, along
paths chosen so that each point along the path satisfies both
conditions in line 5 (so that each waking agent will be able
to advance to this phase and return to the origin).

Lemma 5.1. Let all agents have a common coordinate sys-
tem and reside in the origin. Then Algorithm 5.1 will make
them agree on a total ordering of the agents.

6. Formation of an arbitrary pattern

Assuming that the agents have a coordinate system and
a total ordering, any given pattern F = (q1, . . . , qn) can be
formed, by simply making each agent with id i go to qi and
stay there. So, we solve the formation problem, given an
arbitrary initial configuration, by chaining all of the algo-
rithms presented above to make the agents first agree on a
coordinate system, then agree on a total ordering and finally
form the pattern F . Algorithm 6.1 summarizes the steps.
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Algorithm 5.1 Agreement on a total ordering
1: //Phase 1

Move along the piecewise linear route (0, 0) → (3x0, 0) →
(3x0, ŷ0) → (3x0 + 1, ŷ0).

2: Wait until for each agent’s position (x, y): x ≡ 1 mod 3 and
y �= 0.

3: //Phase 2
Calculate my id as follows: For each agent’s position (x, y)
define x′ = �x/3�. Sort the list of transformed coordinates
(x′, y) lexicographically. Set my id as the location of my own
transformed coordinates in the sorted list.

4: Move to (3x0 + 2, ŷ0).
5: Wait until for each agent’s position (x, y): x ≡ 2 mod 3 or

y = 0.
6: //Phase 3

Move along the piecewise linear route (3x0 + 2, ŷ0) →
(3x0 + 2, 0) → (0, 0).

7: Continue to Algorithm 4.1.

Algorithm 6.1 Formation of an arbitrary pattern

Given a desired pattern F = (q1, . . . , qn), perform the fol-
lowing chain of algorithms:

1: Agreement on origin (3.2, 4.1);
2: Agreement on x direction (4.2);
3: Coordination in the origin (4.1);
4: Agreement on x orientation (4.2 variant);
5: Coordination in the origin (4.1);
6: Agreement on y orientation (4.2 variant);
7: Coordination in the origin (4.1);
8: Agreement on a total ordering — Each agent attains a unique

id i ∈ (1, . . . n) (5.1);
9: Coordination in the origin (4.1);

10: Formation of the pattern (Each agent i goes to qi).

Theorem 6.1. Algorithm 6.1 solves the formation problem
for any arbitrary pattern.

Note that all stages of the algorithm end in strictly finite
time, except for possible meta-stability (due to symmetry)
in the point formation (Algorithm 3.2) and the voting (Al-
gorithm 4.2) stages. However, by our assumptions, the ex-
pected duration of this meta-stability is finite. Furthermore,
if n is odd, no such symmetry can occur and, therefore, the
algorithm will always terminate in strictly finite time.

7. Conclusions

We have presented a distributed algorithm for the for-
mation of any arbitrary pattern by anonymous homogenous
mobile agents on a grid, with no initial agreement on a co-
ordinate system, using only movements for tele-interaction,
and minimal zero-range communication ability. We showed
that the intuitive idea of moving the agents towards COM
indeed makes them gather in a single point. We presented

simple “bee dances” which make the agents agree on a com-
mon coordinate system and a total ordering, and finally
form the desired pattern.

In our opinion, the assumption that the agents cannot
remain synchronous for a long time is very realistic when
dealing with real autonomous robots. This enables us to re-
solve the symmetry-breaking problem encountered by other
researchers, and present a simple and generic solution to
the formation problem. In a forthcoming paper, we will use
similar ideas to solve the formation problem in the continu-
ous plane, even with range-limited visibility of the agents.

Open questions for further research include solving the
problem without any use of zero-range communication abil-
ity; with range-limited visibility or in the presence of sen-
sory and/or control errors; considering other realistic as-
pects of robotics, such as occlusions, collisions and so on.
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