
4798 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

Optimized Pre-Compensating Compression
Yehuda Dar , Michael Elad , Fellow, IEEE, and Alfred M. Bruckstein

Abstract— In imaging systems, following acquisition,
an image/video is transmitted or stored and eventually presented
to human observers using different and often imperfect display
devices. While the resulting quality of the output image may
severely be affected by the display, this degradation is usually
ignored in the preceding compression. In this paper, we model
the sub-optimality of the display device as a known degradation
operator applied on the decompressed image/video. We assume
the use of a standard compression path, and augment it with
a suitable pre-processing procedure, providing a compressed
signal intended to compensate the degradation without any
post-filtering. Our approach originates from an intricate
rate-distortion problem, optimizing the modifications to the
input image/video for reaching best end-to-end performance.
We address this seemingly computationally intractable problem
using the alternating direction method of multipliers approach,
leading to a procedure in which a standard compression
technique is iteratively applied. We demonstrate the proposed
method for adjusting HEVC image/video compression to
compensate post-decompression visual effects due to a common
type of displays. Particularly, we use our method to reduce
motion-blur perceived while viewing video on LCD devices. The
experiments establish our method as a leading approach for
preprocessing high bit-rate compression to counterbalance a
post-decompression degradation.

Index Terms— Rate-distortion optimization, signal degrada-
tion, motion blur reduction, alternating direction method of
multipliers (ADMM).

I. INTRODUCTION

IMAGE and video signals have a significant, constantly
growing, role in many contemporary applications. A fun-

damental need of image/video applications is to store and/or
transmit a digital version of the signal, obeying a bit-budget
constraint stemming from the available storage space or the
communication channel bandwidth. This bit-budget limitation
is managed by lossy compression that produces a compressed
representation satisfying the bit-cost constraint at the expense
of some distortion in the decompressed signal. This systematic
flow (see Fig. 1) usually ends with a human user watching the
image/video on a display device. Accordingly, the quality of
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the viewed signal is determined by the compression, the imper-
fections of the display device, and the human visual system.

Lossy image and video compression methods trade-
off the compressed-form bit-rate with distortion of the
decompressed signal. Popular compression techniques (e.g.,
JPEG [1], JPEG2000 [2], HEVC [3]) substantially differ in
their rate-distortion optimization strategies and the employed
image/video models. However, these standard designs ignore
other procedures possibly accompanying the compression,
thus, may result in sub-optimal rate-distortion performance
when considering the complete system.

In this work, we study an intriguing extension of the
regular compression problem, where the decompressed signal
is degraded by a known linear operator (see Fig. 2). Our goal
is to compress by considering the squared error between the
degraded decompression and the input image. The correspond-
ing rate-distortion optimization has a challenging structure due
to the degradation operator involved in the distortion term.
We tackle the intricate optimization using the alternating direc-
tion method of multipliers (ADMM) approach [4], mapping
the task to a sequence of easier problems including regular
rate-distortion optimizations that are replaced with repeated
applications of a standard compression technique. Remarkably,
our iterative procedure generically adapts a regular compres-
sion method to consider the extended settings involving a post-
decompression degradation.

Our approach presented here is a paradigm for man-
aging complicated rate-distortion optimizations associated
with sophisticated compression frameworks. Specifically,
we recently studied the topic of complexity-regularized
restoration of an image from its deteriorated version [5], [6],
where the task is an intricate rate-distortion optimization that
highly resembles the optimization structure exhibited in this
paper for compression purposes. Indeed, we address both
problems via iterative optimization procedures, emerging from
variable splitting, promoting usage of standard compression
techniques. In addition, one may assess the vast potential of
the proposed compression paradigm for various applications
by contemplating the wide use of ADMM [7]–[12] and the
similar Half Quadratic Splitting method [5], [13], [14] for a
diversity of challenging signal restoration tasks.

The first part of our experiments considers the adjustment
of HEVC image compression to a blur operator degrad-
ing the decompressed image. Our results demonstrate the
effectiveness of the proposed approach, having superior rate-
distortion performance compared to a regular HEVC compres-
sion. Another alternative to accommodate post-decompression
degradation is by preceding the compression with a regu-
lar deblurring of the input, using the EPLL method [14].
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Fig. 1. The considered flow of an image/video that is first compressed and finally perceived by a human observer.

Fig. 2. Demonstration of the conceptual problem settings for compression that is oriented to post-decompression degradation.

Our method outperforms the EPLL-based approach at high
bit-rate compression, reaching impressive average-PSNR
(i.e., BD-PSNR [15]) gains of 2-3 dB.

As an important application of these ideas, we present
a methodology for pre-compression treatment of motion-
blur occurring while viewing videos on Liquid Crystal Dis-
plays (LCD). The prevalent technology of LCD devices relies
on a hold-type mechanism, where each frame is constantly
displayed until its replacement, resulting in delicate disconti-
nuities of motions. The human eye tracks an object based on
its smooth motion, trying to fix its location on the retina for
a vivid perception. The smooth eye tracking of discontinuous
motion displayed on LCD yields an unsteady positioning on
the retina, causing a blurred perception of the moving object.
This blur artifact is amplified for more rapid motions and/or
when the video or the display frame-rates are inadequately
low, implying too long constant-frame display duration. Impor-
tantly, motion blur due to the hold-type nature is still an
issue of great interest in contemporary evaluations of LCD
screens (for examples, see the technical reviews in [16] and the
excellent experimental demonstrations therein) and considered
as a crucial drawback of ultra high-definition displays [17].

Straightforward amendments for LCD motion-blur
reduce the constant-frame display duration by black-frame
insertion [18] that causes unwanted eye strains, or by
interpolation-based frame-rate up conversion [19]–[21] that
is computationally intensive and unsuited for complicated
motion types. More sophisticated techniques [22]–[24]
counteract the LCD motion blur by a pre-display frame
filtering, designed based on blur models of the LCD hold-
type behavior and the eye-tracking capability of the human
visual system. These works achieved high PSNR gains using
inverse filtering, [22], and the Lucy-Richardson deconvolution
method [23], however, introduced subjectively annoying noise
artifacts that were attenuated in [24] using spatio-temporal
smoothness regularization.

While our application for LCD motion-blur reduction
relates to the line of works [22]–[24], we are the first
to address the problem via a pre-compression procedure
suggesting computational and accuracy benefits. First, many
video content types (e.g., entertainment) are compressed
in offline settings rich in computation and time resources,

contrasting the regular processing [22]–[24] intended for the
display device. Accordingly, one can utilize our method in a
video-on-demand system designed such that the display types
are known and the suitable videos can be delivered to the
users. Second, the blur-compensating filters make use of the
current video-motion imperfectly estimated on the available
data. While “on-device” methods should practically operate on
decompressed frames leading to increased motion-estimation
errors (especially at medium/low qualities), our approach
uses the pre-compression frames for better motion estimation
providing more accurate blur characterization and filtering.
Nicely, our display-blur compensation is, in fact, constrained
by the associated video coding procedure acting as a spatio-
temporal complexity regularizer preferring smoother or other
model-conforming signals costing less bits (see, e.g., in [5]
and [6]). Consequently, our motion-blur reduction technique
provides impressive PSNR gains (with respect to the
compression bit-rates) and a pleasing subjective quality.

This paper is organized as follows. In Section II we
present our method in its general form. In Section III the
proposed approach is experimentally studied for adjusting
HEVC image compression to balance a post-decompression
blur. In Section IV we employ our method for adapting HEVC
video coding to reduce motion blur occurring later on the LCD
display. Section V concludes this paper.

II. THE PROPOSED METHOD

A. The Basic Rate-Distortion Optimization

We develop our method based on the system structure illus-
trated in Fig. 2 and explained next. First, an N-dimensional
input signal, x ∈ R

N , goes through a lossy compression proce-
dure resulting in a compressed binary description associated
with an approximation of x, denoted as v ∈ R

N , obtained
after the decompression stage. However, the reconstruction v is
further deteriorated, for instance, due to a sub-optimal display
device. We consider here a linear deterioration operator, repre-
sented by the N × N real-valued matrix H. Then, the degraded
decompressed signal is defined as

ṽ � Hv, (1)

the outcome of the entire process.
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Our goal here is to optimize the compression procedure with
respect to the squared error between the input signal x and the
degraded decompression ṽ, that using (1) can be expressed as

DH (x, v) � ‖x − Hv‖2
2 . (2)

Without loss of generality (as will be explained later),
we develop our method with respect to a block-based compres-
sion design individually operating on blocks of Nb samples
defined by a non-overlapping segmentation of the signal. We
refer to members belonging to the grid of non-overlapping
blocks via the set of indices B. The block-level compression
procedure is modeled as a vector quantizer having a codebook
C, being a finite set of block-reconstruction candidates and
their respective variable-length binary codewords. Specifically,
the block-reconstruction c ∈ C has a corresponding binary
codeword of length r (c) defining the respective block bit-
cost. Accordingly, the total bit-cost can be evaluated from
the decompressed blocks {vi }i∈B as the sum

∑

i∈B
r (vi ). We

define the matrix Pi as a linear operator extracting the i th

block from the complete signal by the standard multiplication
Pi v = vi . Then, the bit-cost of the entire signal can be
expressed as

R (v) =
∑

i∈B
r (Pi v). (3)

We use the quantities defined in (2)-(3) to formulate the
rate-distortion optimization in the unconstrained Lagrangian
form:

v̂ = argmin
v∈CB

‖x − Hv‖2
2 + λ

∑

i∈B
r (Pi v) (4)

where λ ≥ 0 is the Lagrange multiplier associated with some
total bit-cost constraint, and v̂ is the optimal decompressed
signal among the candidates available in the effective full-
signal codebook:

CB =
{

c
∣
∣
∣ c =

∑

i∈B
PT

i ci , {ci }i∈B ∈ C
}

(5)

where the linear operator PT
i places a block in the i th block

location in a full-signal layout. One should note that, for
an arbitrarily structured H, the optimization (4) is difficult
to solve since it does not allow the commonly used block-
based treatment (for examples, see its various forms in the
fundamental studies on operational rate-distortion optimiza-
tion [25]–[27] and also in recent works [28], [29]).

B. Practical Iterative Procedure

The structural complication of the rate-distortion opti-
mization (4) is facilitated using the ADMM strategy [4]
as explained next. Initially, we define the auxiliary variable
z ∈ R

N letting us to reformulate the problem (4) into
(
v̂, ẑ

) = argmin
v∈CB, z∈RN

‖x − Hz‖2
2 + λ

∑

i∈B
r(Pi v) (6)

s.t. z = v. (7)

Then, considering (6) via its augmented Lagrangian (in its
scaled version [4, Ch. 2]) leads to an iterative procedure, where
the t th iteration is

(
v̂(t), ẑ(t)

)
= argmin

v∈CB,z∈RN
‖x−Hz‖2

2

+ λ
∑

i∈B
r(Pi v)+ β

2

∥
∥
∥v−z+u(t)

∥
∥
∥

2

2
(8)

u(t+1) = u(t) +
(

v̂(t) − ẑ(t)
)
, (9)

where u(t) ∈ R
N is the scaled dual variable and β is an

auxiliary parameter originating at the Lagrangian.
Since each of the optimization variables in (8) participates

only in two of the three terms in the cost function and,
therefore, one iteration of alternating minimization provides us
the ADMM form that iterates over the following manageable
optimizations:

v̂(t) = argmin
v∈CB

β

2

∥
∥
∥z̃(t) − v

∥
∥
∥

2

2
+ λ

∑

i∈B
r(Pi v) (10)

ẑ(t) = argmin
z∈RN

‖x − Hz‖2
2 + β

2

∥
∥
∥z − ṽ(t)

∥
∥
∥

2

2
(11)

u(t+1) = u(t) +
(

v̂(t) − ẑ(t)
)

. (12)

where z̃(t) = ẑ(t−1) − u(t) and ṽ(t) = v̂(t) + u(t). The analytic
solution of the second-stage problem in (11) is

ẑ(t) =
(

HT H + β

2
I
)−1 (

HT x + β

2
ṽ(t)

)

, (13)

thus, exhibiting optimization (11) as a weighted averaging
operation.

Importantly, the first stage (10) is a rate-distortion opti-
mization compatible with a block-based treatment and con-
sidering the regular squared-error metric for the compression
of z̃(t), obtained in the second stage of the former itera-
tion. Moreover, this full-image rate-distortion optimization
is done for a Lagrange multiplier of value λ̃ = 2λ

β . We
denote the compression-decompression procedure associated
with (10) as

v̂(t) = Compress Decompressλ

(
z̃(t)

)
. (14)

We further suggest using a standard compression method as
the compression-decompression operator (14). While many
compression methods do not follow the exact rate-distortion
optimization we got in our mathematical development (10),
we still suggest using such techniques as replacements
for (10). Additionally, since various compression methods do
not rely on Lagrangian optimization, their operating parame-
ters may differ (for example, quality parameters, compres-
sion ratios, or output bit-rates). Accordingly, we present the
suggested algorithm with respect to a general compression
procedure that its output bit-cost is directly or indirectly
affected by a parameter denoted as θ . This generalization is
used in Algorithm 1.

The replacement of the rate-distortion optimization formu-
lation in (10) with a standard compression-decompression
process (14) is motivated by a similar development step used



DAR et al.: OPTIMIZED PRE-COMPENSATING COMPRESSION 4801

Algorithm 1 Proposed Method: Compression Adjusted to
Post-Decompression Degradation

in the Plug-and-Play Priors method [8] for image restoration,
where an optimization stage corresponding to a Maximum
A-Posteriori (MAP) Gaussian denoising problem is replaced
with the application of an existing denoiser (such as
BM3D [30]). In both cases (ours and in [8]), the appli-
cation of an arbitrary compression/denoising method means
that the convexity of the optimization problem cannot be
guaranteed and, therefore, in some cases the optimization may
not converge. Accordingly, the implementations we present in
Sections III-IV include a divergence detection mechanism as
part of the stopping criterion, this feature is explained later in
this paper. Studying the convergence/divergence properties of
our framework (in the spirit of the analysis in [31]) is left to
a future work.

We can further interpret the proposed iterative compression
approach as a preprocessing stage coupled with a single stan-
dard compression, being the one applied in the last iteration
as the determining stage outputing the compressed binary
data (see Fig. 3). Remarkably, our compression output is
compatible with a standard decompression process. The over-
all quality improvement suggested by our method obviously
entails an increased computational cost that, nevertheless,
is distributed between the encoder and the decoder stages
in the following attractive structure: the decoder complexity
remains as in the standard form, while the encoder has the
increased computational load of repeatedly applying stan-
dard compressions (14) and the �2-constrained deconvolu-
tions (13). This system layout is beneficial for applications
where the compression can be carried out offline in envi-
ronments rich in computational and time resources, whereas
the decompression on the display devices should be of a low
computational cost due to run-time and energy-consumption
limitations.

III. ADJUSTING HEVC IMAGE COMPRESSION

TO BLURRY DECOMPRESSION

In this section we demonstrate our approach for adapting
HEVC’s still-image compression (in its version implemented
in the BPG image format [32]) to a blur deteriorating the

Fig. 3. Interpretation of the proposed compression method as a preprocessing
stage followed by a single standard compression. The demonstration here
assumes that our procedure runs T iterations.

decompressed image. The experiment goal here is to study
our method with respect to alternative processing strategies.
Our ideal settings here, considering a known Gaussian blur
kernel, serve as a preliminary stage to the intricate application
presented in Section IV. The degradation operator H is associ-
ated with a Gaussian blur kernel of standard deviation 0.6 and
15 × 15 pixels size. We consider a shift-invariant degradation,
thus, efficiently degrade an image using a two-dimensional
convolution with the blur kernel.

The Peak Signal-to-Noise Ratio (PSNR) is defined here
based on the squared-error distortion (2) and can be
written as

PSN R = 10 log10

(
P2

1
N ‖x − ṽ‖2

2

)

(15)

where x and ṽ are the input and the degraded decompressed
signals, respectively, and N is the signal dimension. The
maximal value attainable by the examined signals is denoted
as P that, e.g., equals to 255 for grayscale images with pixel
values in the range [0, 255]. In the PSNR computation we
ignore margins of 35 pixels along the borders of the image
to exclude effects of specific boundary conditions used in the
applied convolutions.

A. Competing Methods

We compare our approach to three competing strategies
also considering HEVC image compression. In Figure 4 we
compare the rate-distortion curves of the various methods
corresponding to operating their HEVC component using
quantization parameter (QP) values between 1 to 49 in jumps
of 3. The examined compression procedures are:

1) Regular Compression Without Any Pre/Post Processing:
This is the baseline approach where a regular compression-
decompression application is followed by deterioration. Obvi-
ously, since this procedure ignores the degradation, it is the
cheapest in computations and provides an inferior performance
(see the solid-line black curves in Fig. 4).

2) Pre-Compression Pseudoinverse Filtering of the Input
Image: We consider here an ideal pseudoinverse filter,
matched to the known degradation operator H, employed
as a pre-compression filter. The numerical crudity of the
pseudoinverse filter yields a very large dynamic range of
pixel values, hence, requiring shifting and scaling before the
compression and the inverse adaptations after decompression
(before degradation). Since the pseudoinverse filtered image is
far from obeying natural-image characteristics (e.g., smooth-
ness), it is inefficiently compressed by a standard compression
technique. This drawback results in performance inferior even
to regular compression without any processing (see Fig. 4).
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Fig. 4. PSNR-bitrate curves comparing our approach to competing methods for three grayscale images (see also Table I). The post-decompression deterioration
is a 15 × 15 Gaussian blur kernel (standard deviation 0.6). (a) Cards. (b) Tree. (c) Bears.

Fig. 5. The images used in the experiments. (a) TESTIMAGES. (b) UCID. (c) Berkeley.

Moreover, the unusual signals provided by the pseudoinverse
filter can be compressed using HEVC to a limited range of
bit-rates, for examples, observe the rightmost working-points
of the magenta curves obtained using HEVC compression at
the very high quality corresponding to Q P = 1. This exem-
plary approach exhibits the challenges in pre-compression
processing.

3) Pre-Compression Filtering via the Expected Patch Log
Likelihood (EPLL) Method: We define the main competing
method to employ a pre-compression filtering in the form of
the EPLL deblurring method relying on a Gaussian Mixture
Model (GMM) prior learned for natural images (see [14]).
Indeed, the processed image conforms with natural-image
attributes, thus, efficiently compressed by HEVC leading to
a good rate-distortion performance considering the degraded
decompressed image (see the solid-line green curves in Fig. 4).
In the EPLL experiments we used the implementation pub-
lished by Zoran and Weiss [14] with parameters we found to
improve the rate-distortion performance considered here.

B. Our Method: Experiment Settings

We now turn to evaluate our method with respect to the
above three reference techniques. In the implementation of
Algorithm 1 we set β to a value depending on the specific
quantization parameter (QP) given to the HEVC compression:

β =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.03, for 0 ≤ Q P ≤ 20

0.05, for 20 < Q P ≤ 30

0.10, for 30 < Q P ≤ 40

0.35, for 40 < Q P ≤ 45

0.45, for 45 < Q P ≤ 51

(16)

Recall that HEVC QP values are integers between 0 to 51,
where a lower value yields a higher quality. The stopping

criterion was defined to a maximal number of 40 itera-
tions or to end earlier when v̂(t) and ẑ(t) are detected to
converge or diverge. The convergence/divergence detection
relies on the total absolute difference between v̂(t) and ẑ(t)

in each iteration, namely, w(t) �
∥
∥v̂(t) − ẑ(t)

∥
∥

1. Accordingly,
we determine convergence when |w(t) − w(t−1)| < 0.2 for
three consecutive iterations. Divergence is identified when
w(t) − w(t−1) > 50 and, in that case, the algorithm output
is taken from the preceding iteration. Note that the threshold
values given here for convergence/divergence detection depend
on the signal dimension and the typical value-range (the
thresholds specified here are for signal with values in the
range [0,1]).

The rate-distortion curves of our method, presented in Fig. 4
as the blue solid-lines, outperform the other pre-compression
techniques at the high bit-rate range. The PSNR gains at
high bit-rates are significant (note the wide PSNR range of
the graphs that may visually mislead), reaching improvements
of several dBs. These impressive PSNR gains at high bit-
rates were further established by examining 18 images (see
Fig. 5 and Table I) collected from three different datasets
(TESTIMAGES [33], UCID [34], and Berkeley [35]). The
comparison in Table I considers the average PSNR difference
between performance curves (e.g., see Fig. 4) of the pro-
posed, the EPLL-based, and the regular methods. The average
PSNR differences between curves were calculated using the
BD-PSNR metric [15], [36], for the entire bit-rate range (i.e.,
the complete curves generated for QP values between 1 to 49
in jumps of 3) and for curve segments corresponding to high
bit-rates (defined by QP values 1, 7, 13 and 19).

In Figure 6 we present visual results for the ‘Starfish’ image.
First, we examine the regular compression procedure where
the input image (Fig. 6a) is compressed using HEVC at a bit-
rate of 5.061 bits per pixel (bpp), leading to the decompressed
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TABLE I

IMAGE COMPRESSION CONSIDERING POST-DECOMPRESSION DETERIORATION OF A GAUSSIAN BLUR
AVERAGE PSNR GAINS (MEASURED USING BD-PSNR)

Fig. 6. Demonstrating the intermediate and resultant images of the regular and the proposed compression methods for a post-decompression deterioration
of a Gaussian blur kernel. The image is ‘Starfish’ (a segment of 256 × 256 pixels is shown). (a) Input. (b) Regular Decompression (5.061 bpp).
(c) Regular Degraded Decompression (34.33 dB). (d) Our: Input to Last Iteration Compression. (e) Our: Decompression (4.296 bpp). (f) Our: Degraded
Decompression (49.58 dB).

image in Fig. 6b (note that this is the pre-degradation image).
Then, obviously, the post-degradation decompressed image
(Fig. 6c) suffers from tremendous blur affecting also the
PSNR (measured with respect to the precompression image).

In contrast, our approach processes the input image such that
the compression in the last iteration gets a sharpened version
(see Fig. 6d) adjusted to the specifically known blur operator,
then, the compressed image at bit-rate 4.296 bpp leads to a
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degraded decompression with moderate blur effects (Fig. 6f)
and PSNR improvement of 15.25 dB with respect to the
regular compression at a higher bit-rate.

The experiments show that the current implementation
of our approach is significantly better than the considered
alternatives for compression at the high bit-rate range. We con-
sider this behavior to emerge from the following two facts.
First, the details of the pre-compression processing are pre-
served better when high bit-rate compression is applied. Sec-
ond, at high bit-rate compression the employed quantization
is finer, thus, the discrete optimization problem imitates more
closely an optimization over a continuous domain which is
more suitable for the ADMM optimization technique.

IV. APPLICATION TO LCD MOTION-BLUR REDUCTION

A. The LCD Motion Blur and Its Modeling

A prominent type of post-decompression degradations is
defined as the inevitable artifacts arising due to various dis-
play device technologies. For instance, the formerly prevalent
Cathode Ray Tube (CRT) displays employ an impulse-type
mechanism where video frames are instantaneously presented,
producing a good perceptual motion-continuity and unpleasing
flickering artifacts. Here we focus on the current Liquid
Crystal Display (LCD) technology, the ultimate successor of
CRT, being a hold-type display where each frame is constantly
presented for a duration of ( f rame rate)−1 seconds, referred
to as the hold time (e.g., for a rate of 60 frames per second
the hold time is 16.6 milliseconds). While this hold-type
architecture is flickering free, it suffers from a non-smooth
presentation of motions that cause blur in the image perceived
by the viewer. Specifically, the human eye pursues constant
motion of an object to fix its image location on the retina
for a detailed perception. While motion presented on an LCD
device has delicate discontinuities, the eye still tracks it as if it
was continuous and, thus, suffers from corresponding spatial
displacements on the retina that blur the perceived image.

Additional LCD blur stems from the response time, which is
the duration taking a pixel to change its intensity, that despite
its reduction along the years still introducing some amount
of blur (see, e.g., [16]). As in [22]–[24], we consider motion
blur arising only from the hold-type method of the LCD. The
reader is referred to [17], [22]–[24], and [37] for additional
discussions on the above described CRT and LCD motion
artifacts. In this section we will rely on existing models and
problem settings addressing the LCD motion blur, and utilize
our method from Section II for adjusting HEVC video coding
to pre-compensate the perceived motion blur.

The two prominent signal-processing models of LCD
motion blur were developed in the frequency [22] and sig-
nal [37] domains, considering the display impulse response
and the human visual system (HVS) mechanisms of motion
tracking and spatio-temporal low-pass filtering. A later
model [24] interpreted the former analyses to the case of
discrete video signals, and approximated the temporal blur
operator as an intra-frame spatial degradation determined
by the current motion. This spatio-temporal equivalence of
motion-blur degradation due to the hold-type nature of the

Algorithm 2 Proposed Method: Video Coding Adjusted to
Compensate LCD Motion Blur

LCD was used in various forms in [38]–[41]. We here follow
the model for LCD motion-blur given in [24] to be aligned
with the problem settings defined therein.

The kth frame of the displayed video is a W × H two-
dimensional discrete signal, comprised of N f = W · H pixels
that their column-stack form is denoted here as vk ∈ R

N f .
The perceived image corresponding to the kth frame is

ṽk = Hkvk (17)

where Hk is a N f × N f matrix representing the motion-
blur as a spatial operator. The r th row of Hk specifies the
blur operation producing the r th pixel of the degraded frame.
The local blur operation is determined by the associated
motion vector that may vary for different pixels. For example,
assume the r th pixel corresponds to the motion vector (0,−3)
describing a vertical motion upwards in 3 pixels with respect
to the previous frame, accordingly, (assuming r corresponds
to a coordinate sufficiently distant from the frame boundaries
in its 2D arrangement) the r th row of Hk should be formed
from the following entries

Hk [r, c] =
⎧
⎨

⎩

1

3
, for c = r, r − 1, r − 2

0, otherwise.
(18)

A detailed numerical method for defining the blur kernel given
a motion vector was described in [24]. An important particular
case occurs when the frame motion is global, leading to a
block-circulant matrix Hk .

B. The Proposed Method for Motion-Blur Reduction

We now turn to translate our general method given in
Section II to the specific degradation of LCD motion blur.
The considered video signal is a sequence of T frames, each of
W × H pixels. The column-stack form of the video is denoted
as x ∈ R

N where N = T · W · H is the total amount of
pixels. The signal x is comprised from a concatenation of the
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Fig. 7. LCD motion blur experiment for the ‘Shields’ sequence. The performance of our method in its PSNR-oriented (solid blue line) and smoothness-oriented
(dashed blue line) modes is compared to preprocessing using total-variation deblurring [45] in its PSNR-oriented (solid red line) and smoothness-oriented
(dashed red line) parameter settings, and to a regular compression-decompression procedure without any additional processing (solid black line). The average
frame-PSNR and average frame-SSIM are evaluated in (a) and (b), respectively.

Fig. 8. LCD motion blur experiment for the ‘Stockholm’ sequence. The performance of our method in its PSNR-oriented (solid blue line) and smoothness-
oriented (dashed blue line) modes is compared to preprocessing using total-variation deblurring [45] in its PSNR-oriented (solid red line) and smoothness-
oriented (dashed red line) parameter settings, and to a regular compression-decompression procedure without any additional processing (solid black line). The
average frame-PSNR and average frame-SSIM are evaluated in (a) and (b), respectively.

T frames, i.e.,

x =
⎡

⎢
⎣

x1
...

xT

⎤

⎥
⎦ (19)

where xi ∈ R
N f is the column-stack form of the i th frame,

and N f = W · H is the number of pixels in a frame.
The degradation considered here is modeled as independent

spatial operations on each of the frames. Accordingly, the full
signal degradation operator is the following block-diagonal
matrix:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1 0 · · · 0

0 H2 0
...

... 0
. . . 0

0 · · · 0 HT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

where the N f × N f matrix Hi is the spatial blur operator of
the i th frame.

Then, the block-diagonal structure (20) lets us to decompose
the optimization (11), which is an intermediate stage in the
ADMM iteration, into the following frame-level optimizations:

ẑ(t)
i = argmin

zi∈R
N f

‖xi − Hi zi‖2
2 + β

2

∥
∥
∥zi − ṽ(t)

i

∥
∥
∥

2

2
, i = 1, . . . , T

(21)

where ẑ(t)
i and ṽ(t)

i are the column-vector forms of the i th

frames of the video signals ẑ(t) and ṽ(t), respectively. The
analytic solution of the i th frame optimization from (21) is

ẑ(t)
i =

(

HT
i Hi + β

2
I
)−1 (

HT
i xi + β

2
ṽ(t)

i

)

. (22)

This computationally important update of Algorithm 1 is
employed in Algorithm 2 describing the video compression
method compensating a post-decompression LCD motion blur.
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Fig. 9. LCD motion blur experiment for the sequence ‘Shields’ (grayscale, 120 frames at 60fps, 480 × 480 pixels) where a global horizontal motion of
−3 pixels/frame causes the blur. An exemplary frame segment is presented. (a) the original frame segment. (b)-(f) are the displayed frame segments using
each of the five examined methods. (g)-(k) are the simulated perceived frame segments corresponding to each of the displayed frames. The presented PSNR
and SSIM evaluations are for the complete perceived frame, and the bit-rates are those measured for the compression of the complete sequence of 120 frames.

C. Experimental Results

We evaluated our method by adjusting the HEVC video cod-
ing standard to compensate the perceptual motion-blur caused

by LCD devices. As in previous works for LCD motion-
blur reduction [23], [24] we considered the ‘Shields’ and
‘Stockholm’ sequences (60 frames per second) [42], having
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Fig. 10. LCD motion blur experiment for the sequence ‘Shields’. Here we present the difference images between the perceived and the original frame
segments, for each of the methods presented in Fig. 9: (a) regular, (b) TV smoothness-oriented, (c) TV PSNR-oriented, (d) proposed smoothness-oriented,
and (e) proposed PSNR-oriented. The difference images are presented in grayscale by scaling the value range of [−50, 50] for the regular approach, and the
value range of [−15, 15] for the other methods.

global horizontal camera motions of −3 pixels/frame and
2 pixels/frame, respectively. The considered video segments
were defined as 120 frames of 480×480 pixels taken from the
720p sequences mentioned above.

In the experiments of this section we use the HEVC
implementation given in the reference software HM 15.0 [43]
set to the ‘random access’ profile, where powerful
motion-compensation procedures together with P and B frame
types are employed. The presented comparison (Figs. 7-8)
consider HEVC compression operated for QP values between
1 and 19 in jumps of 3. The performance evaluations
in Figs. 7a, 8a rely on the average PSNR of the frames. The
comparisons in Figs. 7b, 8b consider the value of the SSIM
metric [44] averaged over all the frames considered. The basic
reference performance is the regular compression where no
pre or post processing is done and, consequently, the respective
performance is inferior to the other processing-aided methods
(see black curves in Figs. 7-8).

The main competing approach is to precede the compres-
sion with a video deblurring method addressing the motion
blur using spatio-temporal total-variation (TV) regulariza-
tion [45] (note that the deblurring technique in [45] extends
and improves upon the LCD motion-blur reduction method
in [24]). Importantly, the methods in [24] and [25] consider the
video motion deblurring without any aspect of compression,
thus, we employ them in the problem settings considered
here as a pre-compression stage. Accordingly, we optimized
the parameters of [45] to provide a high average frame-
PSNR in our settings (see red solid-line performance curves
in Figs. 7-8). In addition, high PSNR is not necessarily coupled
with high visual quality, as the perceived video may look
noisy and/or flickery (see, e.g., [24]). Therefore, we also
define an additional parameter setting of [45] to provide more
visually pleasing results at the expense of the PSNR (the
performance curves of this smoothness-oriented setting appear
as red dashed-line curves in Figs. 7-8. Moreover, we noticed

that the total-variation deblurring method produces artifacts
along the vertical borders of the frames (the horizontal borders
are artifact free because the global motion is horizontal).
Accordingly, we gave the total-variation deblurring method
a larger portion of the frame with margins of 100 pixels in
each side, then, these margins are removed before given to
the compression. This procedure was carried out only for the
total-variation deblurring approach.

We evaluated our method in two modes: the first aims to
a high PSNR by the setting β = 10β̃ where β̃ is defined
by the QP-dependent rules in (16). The second version,
referred to as smoothness-oriented, is determined by setting
β = 50β̃ that leads to an increased spatio-temporal smooth-
ness (a visually pleasing property) at the expense of the PSNR.
Both of these settings employed a maximal number of 10 iter-
ations, or stopped earlier if convergence or divergence are
detected. The rules defining convergence/divergence are as in
the image experiment presented in Section III-B, but with the
different threshold values of 0.5 ·T and 50/T for convergence
and divergence, respectively (also note the dependency on the
number of frames T ). The performance curves of the PSNR-
oriented and the smoothness-oriented modes of our method
appear in Figs. 7-8 as blue solid-lines and blue dashed-lines,
respectively.

Figures 7-8 show that our method greatly outperforms the
regular compression procedure: a BD-PSNR gain of 13.90 dB
was achieved for the ‘Shields’ sequence (Fig. 7a), and a
gain of 13.28 dB was obtained for the ‘Stockholm’ sequence
(Fig. 8a). Figures 7b, 8b present also significant gains in SSIM
terms.

Let us examine the performance of our approach with
respect to the total-variation deblurring technique, both in their
PSNR-oriented settings (the blue and red solid-line curves
in Figs. 7-8). Considering the ‘Shields’ (Fig. 7a) and ‘Stock-
holm’ (Fig. 8a) sequences, our method achieved respective
BD-PSNR gains of 1.06 dB and 2.16 dB over the total-
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variation deblurring technique. Figures 7b, 8b exhibit that
our PSNR-oriented method is better than the TV deblurring
approach also with respect to the SSIM quality metric.

The third comparison considers our method with respect
to the total-variation deblurring approach, both in their
smoothness-oriented settings (the blue and red dashed-line
curves in Figs. 7-8). Considering the ‘Shields’ (Fig. 7a)
and ‘Stockholm’ (Fig. 8a) sequences, our method differs
from the TV-deblurring technique in BD-PSNR values of
−0.62 dB and 0.98 dB. One should recall that this is the
smoothness-oriented settings, thus, visual quality is preferred
over optimizing the PSNR. Indeed, examining the SSIM-
bitrate curves of the ‘Shields’ (Fig. 7b) and ‘Stockholm’
(Fig. 8b) sequences, exhibit that our smoothness-oriented
method obtains the respective average SSIM gains of 3.4 ×
10−3 and 5.8×10−3 over the smoothness-oriented TV deblur-
ring technique. These results point on the good visual quality
offered by the smoothness-oriented settings of our method.

In Figure 9 we provide a visual demonstration of the
results obtained for a frame segment from the sequence
‘Shields’ (Fig. 9a). As the various methods do not produce
equal bit-rates, the comparison is for relatively close bit-
rates – specifically, the results presented for our method
obtained using lower bit-rates than the other techniques.
Figures 9b-9f show the frames given to the display using the
various methods and their settings. Our method (Fig. 9e-9f)
as well as the other deblurring-based approach (Fig. 9c-9d)
provide sharpened images to display. Figures 9g-9k exhibit
the simulated perceived image (i.e., the displayed frame after
the blur degradation modeled above). Evidently, the perceived
images corresponding to the pre-compensating techniques
highly resemble the original frame. Moreover, Fig. 10 shows
for each of the methods the difference between the simulated-
perceived and the original images, suggesting that our PSNR-
oriented method avoids noticeable image-detail loss, at the
expense of some textural-noise that can be attenuated using the
smoothness-oriented settings. Importantly, the PSNR-oriented
settings of our method achieve the highest PSNR and SSIM
values for the presented frame, while using a lower bit-rate
than the regular and the total-variation approaches.

V. CONCLUSION

In this paper we studied an image/video compression prob-
lem where a linear degradation affects the decompressed
signal. We handled the difficult rate-distortion optimization
using the ADMM approach, resulting in an iterative pro-
cedure relying on a standard compression technique. Our
method was shown to be effective in experiments of adjusting
HEVC’s image and video compression to post-decompression
blur degradations. We consider the proposed method as a
promising paradigm for addressing complicated rate-distortion
optimizations arising in intricate systems and applications.
Future work may extend our approach for optimizing systems
where several display types are possible. Another interesting
process to examine includes a degradation that precedes the
compression (e.g., an acquisition stage) in addition to the post-
decompression degradation (e.g., rendering). Other intriguing
research directions may explore the utilization of our idea

for optimizing compression with respect to various perceptual
distortion metrics or to nonlinear systems.

REFERENCES

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Trans. Consum. Electron., vol. 38, no. 1, pp. 18–34, Feb. 1992.

[2] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still
image coding system: An overview,” IEEE Trans. Consum. Electron.,
vol. 46, no. 4, pp. 1103–1127, Nov. 2000.

[3] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[5] Y. Dar, A. M. Bruckstein, and M. Elad, “Image restoration via successive
compression,” in Proc. Picture Coding Symp. (PCS), Dec. 2016, pp. 1–5.

[6] Y. Dar, M. Elad, and A. M. Bruckstein. (2017). “Restoration by
compression.” [Online]. Available: https://arxiv.org/abs/1711.05147

[7] M. V. Afonso, J.-M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image
recovery using variable splitting and constrained optimization,” IEEE
Trans. Image Process., vol. 19, no. 9, pp. 2345–2356, Sep. 2010.

[8] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-
play priors for model based reconstruction,” in Proc. IEEE GlobalSIP,
Dec. 2013, pp. 945–948.

[9] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising (RED),” SIAM J. Imag. Sci., vol. 10, no. 4,
pp. 1804–1844, 2017.

[10] Y. Dar, A. M. Bruckstein, M. Elad, and R. Giryes, “Postprocessing
of compressed images via sequential denoising,” IEEE Trans. Image
Process., vol. 25, no. 7, pp. 3044–3058, Jul. 2016.

[11] Y. Dar, A. M. Bruckstein, M. Elad, and R. Giryes, “Reducing artifacts
of intra-frame video coding via sequential denoising,” in Proc. IEEE
Int. Conf. Sci. Elect. Eng. (ICSEE), Nov. 2016, pp. 1–5.

[12] A. Rond, R. Giryes, and M. Elad, “Poisson inverse problems by the
plug-and-play scheme,” J. Vis. Commun. Image Represent., vol. 41,
pp. 96–108, Nov. 2016.

[13] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Trans. Signal Process., vol. 4, no. 7, pp. 932–946,
Jul. 1995.

[14] D. Zoran and Y. Weiss, “From learning models of natural image
patches to whole image restoration,” in Proc. IEEE ICCV, Nov. 2011,
pp. 479–486.

[15] G. Bjontegaard, Calculation of Average PSNR Differences Between RD-
Curves, document ITU-T Q. 6/SG16 VCEG, 15th Meeting, Austin, TX,
USA, Apr. 2001.

[16] RTINGS.com. Motion Blur of TVs. Accessed: Oct. 20, 2017.
[Online]. Available: http://www.rtings.com/tv/tests/motion/
motion-blur-and-response-time

[17] B. Masia, G. Wetzstein, P. Didyk, and D. Gutierrez, “A survey on
computational displays: Pushing the boundaries of optics, computation,
and perception,” Comput. Graph., vol. 37, no. 8, pp. 1012–1038, 2013.

[18] S. Hong, B. Berkeley, and S. S. Kim, “Motion image enhancement
of LCDs,” in Proc. IEEE Int. Conf. Image Process. (ICIP), vol. 2,
Sep. 2005, p. II-17-20.

[19] N. Mishima and G. Itoh, “Novel frame interpolation method for hold-
type displays,” in Proc. Int. Conf. Image Process. (ICIP), vol. 3,
Oct. 2004, pp. 1473–1476.

[20] H. Chen, S.-S. Kim, S.-H. Lee, O.-J. Kwon, and J.-H. Sung, “Non-
linearity compensated smooth frame insertion for motion-blur reduc-
tion in LCD,” in Proc. IEEE Workshop Multimedia Signal Process.,
Oct./Nov. 2005, pp. 1–4.

[21] Y. Dar and A. M. Bruckstein, “Motion-compensated coding and frame
rate up-conversion: Models and analysis,” IEEE Trans. Image Process.,
vol. 24, no. 7, pp. 2051–2066, Jul. 2015.

[22] M. A. Klompenhouwer and L. J. Velthoven, “Motion blur reduction
for liquid crystal displays: Motion-compensated inverse filtering,” Proc.
SPIE, vol. 5308, pp. 690–699, Jan. 2004.

[23] S. Har-Noy and T. Q. Nguyen, “LCD motion blur reduction: A signal
processing approach,” IEEE Trans. Image Process., vol. 17, no. 2,
pp. 117–125, Feb. 2008.

[24] S. H. Chan and T. Q. Nguyen, “LCD motion blur: Modeling, analy-
sis, and algorithm,” IEEE Trans. Image Process., vol. 20, no. 8,
pp. 2352–2365, Aug. 2011.



DAR et al.: OPTIMIZED PRE-COMPENSATING COMPRESSION 4809

[25] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary
set of quantizers,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-36, no. 9, pp. 1445–1453, Sep. 1988.

[26] A. Ortega and K. Ramchandran, “Rate-distortion methods for image
and video compression,” IEEE Signal Process. Mag., vol. 15, no. 6,
pp. 23–50, Nov. 1998.

[27] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90,
Nov. 1998.

[28] B. Li, H. Li, L. Li, and J. Zhang, “λ domain rate control algorithm
for high efficiency video coding,” IEEE Trans. Image Process., vol. 23,
no. 9, pp. 3841–3854, Sep. 2014.

[29] S. Li, M. Xu, Z. Wang, and X. Sun, “Optimal bit allocation for CTU
level rate control in HEVC,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 27, no. 11, pp. 2409–2424, Nov. 2016.

[30] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[31] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play admm for
image restoration: Fixed-point convergence and applications,” IEEE
Trans. Comput. Imag., vol. 3, no. 1, pp. 84–98, Jan. 2017.

[32] F. Bellard. BPG 0.9.6. Accessed: Oct. 15, 2017. [Online]. Available:
http://bellard.org/bpg/

[33] N. Asuni and A. Giachetti, “TESTIMAGES: A large-scale archive for
testing visual devices and basic image processing algorithms,” in Proc.
Eurograph. Italian Chapter Conf., 2014, pp. 63–70.

[34] G. Schaefer and M. Stich, “UCID: An uncompressed color image
database,” Proc. SPIE, vol. 5307, pp. 472–481, Dec. 2003.

[35] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2, Jul. 2001, pp. 416–423.

[36] G. Valenzise. Bjontegaard Metric (MATLAB Function). [Online].
Available: http://www.mathworks.com/matlabcentral/fileexchange/
27798-bjontegaard-metric

[37] H. Pan, X.-F. Feng, and S. Daly, “LCD motion blur modeling and
analysis,” in Proc. IEEE Int. Conf. Image Process. (ICIP), vol. 2,
Sep. 2005, p. II-21-4.

[38] T. Kurita, “Moving picture quality improvement for hold-type
AM-LCDs,” in SID Symp. Dig. Tech. Papers, vol. 32, no. 1, 2001,
pp. 986–989.

[39] M. A. Klompenhouwer, “Temporal impulse response and bandwidth of
displays in relation to motion blur,” in SID Symp. Dig. Tech. Papers,
vol. 36, no. 1, 2005, pp. 1578–1581.

[40] M. A. Klompenhouwer, “Comparison of LCD motion blur reduction
methods using temporal impulse response and MPRT,” in SID Symp.
Dig. Tech. Papers, vol. 37, no. 1, 2006, pp. 1700–1703.

[41] S. Tourancheau, K. Brunnström, B. Andrén, and P. Le Callet, “LCD
motion-blur estimation using different measurement methods,” J. Soc.
Inf. Display, vol. 17, no. 3, pp. 239–249, 2009.

[42] Xiph.Org Video Test Media. Accessed: Oct. 22, 2017. [Online].
Available: http://media.xiph.org/video/derf/

[43] HEVC Reference Software HM 15.0, document, Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11. Accessed: Oct. 22, 2017. [Online]. Available:
http://hevc.hhi.fraunhofer.de/

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[45] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen,
“An augmented Lagrangian method for total variation video restoration,”
IEEE Trans. Image Process., vol. 20, no. 11, pp. 3097–3111, Nov. 2011.

Yehuda Dar received the B.Sc. degree in com-
puter engineering and the M.Sc. degree in electrical
engineering from the Technion–Israel Institute of
Technology in 2008 and 2014, respectively, where
he is currently pursuing the Ph.D. degree with the
Computer Science Department. His research inter-
ests are mainly in signal and image/video processing
and their information-theoretic aspects, in particular,
in signal compression and restoration. He received
the 2017 Jacobs Fellowship for Excellence.

Michael Elad (F’12) received the B.Sc., M.Sc., and
D.Sc. degrees from the Department of Electrical
Engineering, Technion–Israel Institute of Technol-
ogy, Israel, in 1986, 1988, and 1997, respectively.
Since 2003, he has been a Faculty Member with
the Computer Science Department, Technion–Israel
Institute of Technology, and since 2010, he has
been a Full Professor. He works in the field of
signal and image processing, specializing in inverse
problems, and sparse representations. He received
numerous teaching awards, the 2008 and 2015 Henri

Taub Prizes for Academic Excellence, and the 2010 Hershel-Rich prize for
innovation. He is a SIAM Fellow (2018). He has been serving as the Editor-
in-Chief for the SIAM Journal on Imaging Sciences since 2016.

Alfred M. Bruckstein received the B.Sc. and M.Sc.
degrees from Technion–Israel Institute of Technol-
ogy, Haifa, in 1976 and 1980, respectively, and the
Ph.D. degree in electrical engineering from Stanford
University, California, in 1984. In 1984, he was with
the Technion–Israel Institute of Technology, where
he holds the Ollendorff Chair in science. His present
research interests are in swarm/ant robotics, image
and signal processing, analysis and synthesis, pattern
recognition, and various aspects of applied geometry.
He has authored and co-authored over one hundred

and fifty journal papers in the fields of interest mentioned. He is a SIAM
Fellow for contributions to signal processing, image analysis, and ant robotics,
and received the 2014 SIAG/Imaging Science Prize (for the From Sparse
Solutions of Systems of Equations to Sparse Modeling of Signals and Images
with D. Donoho and M. Elad).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




