A Puzzle:

Sequence #1:

(0) 4 6 7 8 8 9 10 10
11 11 12 12 12 ...

What comes next?

Sequence #2:

(0) 1 2 3 5 6 8 10 13
15 18 21 25 28 ...

What comes next?

Answers: #1 next is 13, 13, 13, ...

#2 next is 32, 36, 41, ...
Puzzle continued:

How are these sequences connected to the "most perfect" shape: a circular disk?

This is the shape having
1) largest area given a perimeter P
2) shortest perimeter given an area A

Isoperimetric Inequality:

For shape A, the area of the shape $\text{Area}(\text{shape}) \leq \frac{1}{4\pi} \text{Perimeter}(\text{shape})^2$

$P(A) \geq \frac{2}{\pi A} = \text{if } S \text{ disk}$
For shapes defined on the (pixel) grid (\mathbb{Z}^2)

Area = 4 (# of pixels)

Perimeter \triangleq # 4-neighboring pixels (= 8)

Neighborhood of S

$N(S) = \{ p \in \mathbb{Z}^2 \mid d_4(p, S) = 1 \}$

$S \triangleq \{ a 4$-connected set of $q \in \mathbb{Z}^2 \}$

Discrete Isoperimetric inequality:

Define

$m(a) = \min \{ |N(S)| \} \quad |S| \geq a$

Then

$\forall S, \quad |N(S)| \geq m(|S|)$

S "optimal" if $=$ is achieved and $m(|S|+1) > m(|S|)$
et cetera...
Answer to the puzzle:

Sequence #1:

is the sequence \(m(k) \)

\[k = (0), 1, 2, 3, \ldots \]

Sequence #2:

Note that there are \(k \)'s for which \(J \) larger \(k \)'s with the same \(m(k) \).

This means that there is a bigger area with the same minimal perimeter (unlike the continuous case where \(P(A) \) is opt \(2 \pi A \) is strictly increasing). Hence only the \(k \)'s which are prior to "jumps" in \(m(k) \) are areas of shapes being "doubly optimal" i.e. having maximized area for given perimeter and shortest perimeter given the area.
Theorem:

\[k = 0 \quad m(k) = 0 \]
\[k \in \mathbb{N}, \ k > 0 \]

\[m(k) = 4(m+1) + i \]

where \((m, i) \in \mathbb{N} \times \{0, 1, 2, 3\}\)

is the first pair for which one of the following holds:

1. \[k \leq 2m^2 + 2m + 1, \ i = 0 \]
2. \[k \leq 2m^2 + 3m + 1, \ i = 1 \]
3. \[k \leq 2m^2 + 4m + 2, \ i = 2 \]
4. \[k \leq 2m^2 + 5m + 3, \ i = 3 \]

\((m, i)\) ordered lexicographically (priority to \(m\))

<table>
<thead>
<tr>
<th>(i/m)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>13</td>
<td>25</td>
<td>41</td>
<td>61</td>
<td>85</td>
<td>113</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>28</td>
<td>45</td>
<td>66</td>
<td>91</td>
<td>120</td>
<td>153</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>18</td>
<td>32</td>
<td>50</td>
<td>72</td>
<td>98</td>
<td>128</td>
<td>162</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>21</td>
<td>36</td>
<td>55</td>
<td>78</td>
<td>105</td>
<td>136</td>
<td>171</td>
</tr>
</tbody>
</table>