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On Gathering and 
Control of Unicycle 
A(ge)nts with Crude 
Sensing Capabilities
David Dovrat and Alfred M. Bruckstein, Technion, Israel Institute of Technology

A local rule of 

behavior for 

extremely simple 

unicycle agents has 

them gather and 

remain close to one 

another, without 

ever acquiring 

information on exact 

distances or bearings 

toward other agents.

The field of swarm robotics has emerged from the desire to harness the 

power of robust, decentralized, cost-effective, no single point of fail-

ure systems. Rendezvous (or the more general gathering problem) is one of 

the classic concerns of swarm robotics:1 the ability to converge to a single or

confined set of configurations from a dis-
persed initial configuration. The formation 
problem is a natural extension of the gather-
ing problem, where the set of configurations 
the agents converge to is a predefined shape. 
Another classic problem is collective move-
ment, in which the swarm moves toward 
some desired goal.2 Solutions to these prob-
lems differ by the level of sophistication 
required from the swarming agents to per-
form their tasks.

This work stems from a desire to manip-
ulate a swarm of simple agents without 
explicit communication with any specific 
agent and without pre-labeling agents as 
leaders. Yotam Elor and Alfred Bruckstein3 
demonstrated such capabilities in a scalar- 
field gradient climb, yet to prevent ren-
dezvous at a single point in space, which 
would end the process, they added a random 
motion component, which would prove dif-
ficult to implement using real inertial robots.

Another way of preventing rendezvous is 
by gathering to a formation instead. Eric 

Schoof and colleagues4 solved the forma-
tion and collective movement problems for 
single integrator agents, equipped with com-
passes, using bearing-only measurements. 
Shiyu Zhao and Daniel Zelazo5 achieved 
formation and collective movement for sin-
gle integrator agents without requiring any 
information about the global frame, yet 
requiring relative position measurements. 
Both of these solutions to the formation 
problem trade off agent anonymity to pre-
determine the desired formation, and both 
require the communication of specific con-
trol inputs to specific leader agents to con-
trol the scale of the formation achieved.

In another model, Ilana Segall and Bruck-
stein6 showed how a broadcast control, re-
ceived by some agents, labels those agents as 
ad hoc leaders for the duration of receiving 
the broadcast signal, allowing the swarm to 
translate its location as long as any agent re-
ceives the control signal. When no agent re-
ceives an exogenous control signal, the model 
asymptotically converges to a rendezvous 
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point. This example trades off forma-
tion for leader agent anonymity.

Rodolphe Sepulchre and colleagues7  
used relative heading and position 
measurements to make their agents cir-
cle a common center of rotation, form 
a balanced splay state formation, or 
move together in parallel, thus finding 
a balance between agent anonymity 
and formation while keeping a con-
stant forward velocity, making their 
model fit for fixed-wing aircraft. How-
ever, incorporating relative heading 
into the swarming protocol requires so-
phisticated agents that can either mea-
sure other agents’ relative heading or 
communicate their own global head-
ing to other agents. Ronghao Zheng 
and Dong Sun8 presented models that 
require either bearing- or range-only 
measurements, requiring far less so-
phisticated agents to rendezvous, yet 
their models still require omnidirec-
tional sensors. Our aims in consider-
ing simplified sensing are similar to 
those recently proposed by Melvin 
Gauci and colleagues,9 where the gath-
ering problem is solved for agents with 
line-of-sight sensing.

Here, we present a decentralized, 
scalable, self-organizing swarm of 
anonymous unicycle type agents with 
a positive forward speed. The agents 
forming the swarm are severely lim-
ited in their sensing abilities, as they 
can make only a crude judgment on 
whether any other agents are in a sec-
tor in front of them or not. The agents 
are also memoryless and oblivious to a 
global frame of reference. This swarm 
of extremely simple agents is shown 
to solve the gathering problem, while 
managing to avoid rendezvous to a 
point and remain in a cohesive behav-
ioral pattern once gathered, forming 
a rotating regular polygon in some in-
stances. The swarm can also be in-
duced to perform collective movement.

The Model
Simplicity is a key factor when design-
ing swarming agents and is the main 
ingredient in the model proposed here. 

We’ve based it on the popular unicy-
cle model, which can be implemented 
using a variety of platforms, including 
wheeled vehicles subject to a nonholo-
nomic constraint. The proposed model 
also enforces a forward motion speed 
greater than some defined positive pa-
rameter, allowing its implementation 
on platforms that have minimal ve-
locity constraints, such as some fixed-
wing drones. Sector visibility sensing, 
when compared to omnidirectional 
sensing, is quite straightforward to 
implement. Omnidirectional sensing 
is relatively difficult to achieve using 
onboard sensors—for example, a ro-
bot agent would have to have at least 
one wide-angle lens, and then would 
have to either do some computing to 
translate from image coordinates to 
real-world bearing or have an array 
of sensors and then stitch the sensors’ 
outputs into a coherent snapshot of the 
current situation, requiring computa-
tional power, which isn’t lightweight, 
low on power consumption, or cheap. 
None of these problems arise in a ro-
bot with sector visibility—one simple 
camera or sensor being enough—and 
only minimal computational power is 
required to translate the sensor output 
into an algorithm’s input.

Unicycle Model
Agent i’s motion in the plane is gov-
erned by the equation
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where (xi, yi, i)T are the agent’s state, 
comprising agent i’s location, pi 5 (xi, 
yi)T, and orientation i in an arbitrary 
global frame of reference. Here, vi 
and vi are agent i’s control inputs, de-
termining its speed and rotation rate, 
respectively.

The instantaneous center of rota-
tion for agent i is denoted by ci,
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where R is the agent’s trajectory’s in-
stantaneous curvature radius.

Sector Visibility
Consider a system of N agents, 
each equipped with a binary sensor 
able to detect only whether another 
agent is within a sector with visibil-
ity radius Rv and a central angle a in 
the direction the agent is facing. A 
graph representation of such a sys-
tem,  G V E{ }= , , can be constructed 
such that every agent in the system is 
represented by a vertex in the graph, 
and all agents within agent i’s sector 
of visibility have edges directed from 
them to agent i. The sensor output 
given to agent i is either “true” if the 
number of edges directed at agent i’s 
vertex in the underlying graph or vi’s 
indegree deg2(vi) is greater than zero 
or “false” otherwise.

Controller
The unicycle agent with dynamics 
(Equation 1) is controlled by the fol-
lowing law:
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where v is a positive constant, and  
R G i( , ) is a scalar function defined 
over the graph G V E{ }= ,  such that
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Here, 0 , r , R and deg2(vi) is the 
number of neighbors perceived by 
agent i, that is, the indegree of agent 
i’s vertex in the system’s graph rep-
resentation. The controller presented 
here is decentralized in the sense that 
every agent’s behavior relies solely 
on the single agent’s indegree, infor-
mation that isn’t shared with other 
agents. Scalability is a byproduct of 
this decentralization. Furthermore, in 
the controller’s perspective, all agents 
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are anonymous, and the controller isn’t affected by which 
edge, and therefore which agent, contributes to the inde-
gree of any specific agent. The fact that only the indegree 
matters renders exact measurement of bearing angles and 
relative positions unnecessary, allowing the agents to be 
fitted with crude sensors, such as a single camera with a 
limited field of view and no depth perception. Additional 
sensors such as GPS or compasses are also unnecessary 
due to the fact that the controller doesn’t have a global 
reference point or even a global direction reference, mak-
ing the agents content in their obliviousness. Furthermore, 
the controller is stateless as only the current system state 
is used to resolve the value of R (G, i), making all agents 
memoryless.

Beacon-Agent and Two-Agent Systems
Consider a system comprising one agent and one static 
beacon, located without loss of generality at (0, 0) in the 
global frame. Other than being static, the beacon plays 
the role of an agent for all purposes. The agent turns 
with radius r when not observing the beacon, and R 
otherwise. We find interest in this rather basic scenario 
as it can be completely analyzed and is relatively easy 
to understand. Furthermore, the beacon-agent system 
analysis is the most basic building block for subsequent 
generalization.

Theorem 1
A system consisting of a beacon located at the origin and 
a single agent controlled by Equation 2 with visibility 
range Rv  ||ca(tinitial)|| 1 R converges to a periodic orbit 
having a stationary center of rotation ca and constant an-
gular velocity θa
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in finite time, where (tfinal 2 tinitial) # T(||ca(tinitial)||) and 
T(x) is given by
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Proof
A full analysis and calculation of the upper bound on the 
convergence time can be found in our technical report.10 
For brevity, we present here only the outline of the proof. 
Given a single agent with 0 , a ,  controlled by Equa-
tion 2 and a beacon located at the origin and perceived 
as an agent by the single agent’s sensors, if at time tinitial, 
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Similarly, given a single agent with  , a , 2 and 
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since the beacon is initially inside the agent’s sector of vis-
ibility and never leaves. These two cases are the only cases 
where the beacon is close enough to be detected by the 
agent, yet no switch in the turning radius ever occurs. Be-
cause Rv  ||ca(tinitial)|| 1 R, the beacon is neither always 
detected nor never detected in all other cases, and the agent 
necessarily reaches a point in time where the beacon rises 
over the agent’s dawn horizon, meaning the beacon crosses 
into the agent’s sector of visibility from the agent’s left 
side. Figures 1a and 1b categorize the agent-beacon inter-
action into states, by the distance between the agent and 
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beacon on the beacon’s rise over the 
agent’s dawn horizon. The reason for 
this categorization is that the agent’s 
trajectory pattern from beacon-rise  
to the next beacon-rise differs 
from state to state. Each state, ex-
cept sink state B, has a transition 
to another state, and all states have 
a duration until the agent transi-
tions onward. The sink state has a 
time span as well: the time it takes 
from the moment the agent first 
reaches the state until it locks into 
a periodic orbit.10 Figures  1c and  
1d show the state machines depict-
ing the convergence of a beacon-agent 
system to a periodic orbit with R , 
2r and R  2r, respectively. Notice 
the existence of loops from state E to 
itself and between states A and C in 
Figure  1c. Both loops resolve, how-
ever. The E self-loop resolves in a 
transition to any other state in a time 
period affine in ||ca(tinitial)||, and the A 
→← C loop resolves in constant time, 
depending solely on the system pa-
rameters R, r, v, a, ending in a transi-
tion to sink state B. The upper bound 
on the time it takes for the agent 
to settle in a periodic orbit around 
the beacon, T(||ca(tinitial)||), is calcu-
lated by summing all state and loop 
durations.

Figure 2 shows NetLogo (http://ccl 
.northwestern.edu/netlogo) simulation 
runs of a single agent and a beacon 
scenario. The difference between the 
simulations, other than the initial con-
ditions, is that the agents have differ-
ent sensor span angles: π

3  in Figure 2a, 
 in Figure 2b, and π4

3
 in Figure 2c. 

In Figure 2b, the signature spiral of 
the sink state B is clearly noticeable.

Theorem 2
The distance between two agents 
controlled by Equation 2 with  
0 , a , 2 and Rv . ||p1(tinitial) 2 
p2(tinitial)||) 1 4R becomes bounded in 
finite time such that

D, E, where R , 2r. (b) States A, B, D
∼
, E, where R  2r. (c) State machine for R , 2r. (d) 

State machine for R  2r.

Figure 1. A state machine representation of the system’s dynamics. (a) States A, B, C, 
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Figure 2. NetLogo simulation runs of a beacon and an agent with R 5 2r. The dot 
represents the beacon, the arrowhead represents the agent: (a) αα ππ==

3
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Proof
The theorem statement is a direct result of a geometric calculation.10

The upper bound in the previous result can be considerably shrunk, given 
the agents have opposite orientation at some point in time. Using the result 
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obtained in Theorem 1, a tighter 
bound on the distances between 
agents in a two-agent system is 
presented.

Theorem 3
In a system consisting of two agents 
controlled by Equation 2 with 0 ,  
a , 2, if at time t0, cos(1(t0) 2 
2(t0)) 5 21 and Rv . ||c1(t0) 2 c2(t0)|| 
1 2R, then for t  t0 1 Ttotal (||c2(t0) 
2 c1(t0)||), where Ttotal(x) is affine in 

x, the system converges to a configu-
ration where both agents’ centers of  
rotation are stationary and
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Proof
If cos(||1(t0) 2 2(t0)||) 5 21, then 
the agents get into and out of each 
other’s sector of visibility at the 
same time, creating point symmetry 

at =
−

b
p t p t( ) ( )

2
2 1  with regard to the 

agent’s trajectories. Point b is there-
fore stationary, and since the agents 
can’t measure distances, detecting 
point b is equivalent to sensing the 
other agent. Invoking Theorem 1 for 
each of the agents with point b as the 
beacon defines Ttotal(x), with x 5 || ci 
(t0) 2 b ||, concluding this proof.

Through observations, we have no-
ticed that in the two-agent system, the 
agents tend to synchronize their orien-
tations to face opposite directions, and 
the following conjecture is made.

Conjecture 1
A two-agent system controlled by 
Equation 2, with 0 , a , 2, con-
verges in finite time to a periodic or-
bit such that both agents rotate in a 
circular pattern with a common, in-
variant radius R , around stationary 
centers of rotation, such that
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Figure 3. NetLogo simulation runs of a two-agent system with R = 2r: (a) αα ππ==
3

,  

(b) a 5 , and (c) αα ππ== 4
3 .

(f) a 5 .

Figure 4. NetLogo simulation with eight agents with different a values. Subfigures 
(a), (b), and (c) show the cohesive behavior as the agents come closer together, 
while Subfigures (d), (e), and (f) show snapshots of the agent’s configuration  

after gathering: (a) αα
ππ ππ== ==
4

2
8 , (b) αα ππ==

6
, (c) a 5 , (d) αα ππ ππ== ==

4
2
8

, (e) αα ππ==
6

, and 
 

(a) (b) (c)

(d) (e) (f)
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Figure 3 shows NetLogo simula-
tions of a two-agent system with dif-
ferent sensor span angles. Notice that 
although it starts with random orienta-
tions, the agents face opposite directions 
by the time the snapshots were taken.

N-Agent Systems
By observing numerous simulations 
of the model presented here, such as 
in Figure 4, the following conjectures 
are made based on the gathering be-
haviors observed.

Conjecture 2
A system of N  2 agents controlled by 
Equation 2 with 0 , a ,  converges 
in finite time to a cohesive behavior in 
which every agent’s trajectory inter-
sects another agent’s trajectory at least 
once every πR

v
2  time period.

Conjecture 3
A system of N  2 agents controlled 
by Equation 2 with α π=

N
2  converges 

to a regular polygon periodic orbit.

Collective Movement
Four methods of controlling the swarm 
presented here can be divided into two 
categories, with the first taking ad-
vantage of the swarm’s scalability and 
gathering features. By either introduc-
ing new agents that don’t adhere to 
the swarming protocol, as seen in Fig-
ure 6b, or abducting agents from the 
swarm, as seen in Figure 5d, the swarm 
is compelled to gather near the unco-
operative leaders. The second category 
takes advantage of the fact that agent 
speed doesn’t factor in the swarming 
protocol. By changing agent speed ac-
cording to data acquired by additional 
sensors, control over the swarm’s loca-
tion can be added as a layer on top of 
the gathering protocol. In Figure 5e, 
the agents are assumed to be equipped 
with compasses. An azimuth is broad-
cast to all agents, yet each agent has a 
small probability (P 5 0.3) to receive 

the transmission. Upon receiving the 
transmission, the agent becomes an 
ad hoc leader for some time, during 
which the leader alters its speed by g 
sin (ac 2 as), where g is a gain param-
eter, ac is the broadcast azimuth, and 

as is the agent’s heading. In Figure 5f, 
the agents are assumed to be equipped 
with sensors that sample a potential 
field at their immediate locations. In 
the example, the swarm climbs up the 
potential field ϕ ( ) = − +x y C x y, 2 2 ,  

Figure 5. A NetLogo simulation with 20 agents with 
10

αα ππ=  illustrating collective 

movement. The geometric mean of agent’s locations is marked by x. (a) Initially, all 
agents are scattered on the plane. (b) Left to their own devices, the agents gather. (c) 
The agents synchronize their phase towards a circular formation while gathering in 
accord with Conjecture 3. (d) Taking direct control over one of the agents and moving 
it to an arbitrary location (emphasized), the swarm follows the abducted leader. Notice 
the trace of the orbit achieved in Figure 5c. (e) Relinquishing control over the abducted 
agent, it returns to the fold. By broadcast control with 0.3 reception probability, the 
swarm is then induced to move south, west, south, east, then north. (f) Introducing 
a potential field instead of the broadcast signal, the swarm performs a gradient 
climb until reaching the local maximum, where it settles to a periodic orbit around a 
stationary point.

(a) (c) (d) (e) (f)(b)

Figure 6. A swarm of TurtleBot2 platforms manipulated by an introduced leader. 
(a) Starting at scattered initial locations, the agents gather in a semicircular dynamic 
formation. (b) A leader agent is introduced to the swarm. (c) The swarming agents, 
true to their protocol, follow the leader. (d) Once removed, the leader agent no 
longer influences the swarm and the swarm returns to its cohesive behavior in a 
new location.

Leader

Leader

(a) (b)

(c) (d)
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where C is an arbitrary constant, to 
its maximal value at the origin by al-
tering each agent’s speed by 2g(x, y). 
Both methods in the speed-altering cat-
egory cause agents that are closer to the 
desired translation direction to move 
slower than agents further away, result-
ing in a pull effect from slower agents 
and a push effect from faster agents.

Four-Agent System 
Experiment
Figure 6 shows an implementation 
of the presented model using Turtle-
Bot2 platforms (www.turtlebot.com). 
Though equipped with a Kinect (with 
a 5 62°) and a netbook running ROS 
(www.ros.org), the swarming pro-
tocol implementation uses only the 
RGB camera on the Kinect and could 
do with far less computational power 
than the netbook provides. The tur-
tles are shown to converge twice, first 
when gathering from initial locations 
and once more when the interference 
of the leader agent is removed, in ac-
cord with Conjecture 2.

The decentralized model pre-
sented here is shown to be a 

scalable, self-organizing swarm of 
anonymous unicycle type agents that 
solves the gathering problem and, in 
some particular cases, the formation 
problem to a rotating regular polygon. 
The model requires the agents to have 
only limited sensing abilities, which 
enable the agents to make a crude, bi-
nary judgment on the existence of any 

other agents in the sector in front of 
them by utilizing limited computa-
tion power and without any knowl-
edge of a global frame of reference. 
The simplicity of the agents allows for 
a cost-effective implementation of the 
model, since the use of sophisticated 
equipment is rendered unnecessary. 
Possible methods for controlling the 
swarm’s location show through exam-
ple that the presented protocol could 
find use in simplifying control over a 
swarm by abducting or introducing a 
single agent and letting the rest follow, 
or by controlling the swarm as a unit 
by broadcasting a single datum. The 
presented swarm is also shown to be 
capable of finding a local maximum 
in a collectively sampled scalar field. 
Current research efforts are aimed at 
fully understanding the orientation 
synchronizing mechanism observed. 
Understanding this mechanism is key 
to a full analysis of the gathering and 
formation of regular polygons in the 
N-agent case and could prove useful 
in the analysis of future models based 
on the model presented here. Obstacle 
avoidance hasn’t been covered in this 
work, yet the TurtleBot2 experiment 
presented has incorporated obstacle 
avoidance by adding range sensors, 
without hindering the swarm’s gather-
ing nature. 
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