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An autostereogram is a single image that encodes depth information that pops out when looking at it. The trick is
achieved by setting a basic 2D pattern and continuously replicating the local pattern at each point in the image
with a shift defined by the desired disparity. In this work, we explore the dependency between the ease of per-
ceiving depth in autostereograms and the choice of the basic pattern used for generating them. We report the
results of three sets of psychophysical experiments using autostereograms generated from 2D random noise pat-
terns having power spectra of the form 1∕f β. The experiments were designed to test the ability of human subjects
to identify smooth low-resolution surfaces, as well as detail, in the form of higher-resolution objects in the depth
profile, and to determine limits in identifying small objects as a function of their size. In accordance with the
theory, we discover a significant advantage of the 1∕f noise pattern (pink noise) for fast depth lock-in and fine
detail detection, showing that such patterns are optimal choices for autostereogram design. ©2016Optical Society

of America
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1. INTRODUCTION

While the world around us is 3D, the visual data is inherently
2D. Nevertheless, the third dimension can often be inferred from
one or more images, utilizing cues such as occlusion, size, tex-
ture, lighting and shading, prior shape information, etc. [1].
Stereo vision provides binocular cues such as the vergence angle,
formed between the axes from the eyes to the convergence point
on which both eyes fixate, and, most importantly, binocular dis-
parity, which is the horizontal displacement between matching
features in the images acquired by pairs of eyes (or cameras).

The seminal work of Julesz [2] established that depth infor-
mation can be retrieved by determining correspondences of
matching local features. The correspondence problem is widely
studied and over the years many models for stereopsis have
been proposed (e.g., [3–13]). Julesz [2] further showed that
depth can be perceived from disparity alone, without any other
visual cues, by creating Random-Dot-Stereograms, which are
pairs of similar images consisting of randomly placed dots in
the plane, one of them having part of the dots slightly displaced
to encode disparity.

The phenomenon of seeing illusory depth in repeating pat-
terns was revealed even earlier by Brewster [14] in what became
known as the wallpaper effect. Ittelson [15] also reported that

effect, observing that wall surfaces with repeating patterns
appear to move forward after long stares, and letters on a type-
writer keyboard sometimes perceptually merge into one.

Tyler et al. [3,16] further studied this idea and discovered
that, instead of a stereo pair, depth can also be encoded in a
single random dot image, called a single-image random-dot
stereogram (SIRDS) or, more generally, an autostereogram.

An autostereogram is a quasi-periodic pattern with horizon-
tal deformations modulated by a spatial depth function such
that pixel values are a function of the constant distance between
the eyes and the encoded scene’s local disparity. Corresponding
pixels, i.e., pixels which originate at the same point in the depth
scene, are given the same color or gray-level value and, being
seen identical by the two eyes, they will potentially be matched
in the binocular viewing process.

Autostereograms became widespread as a very popular art
form due to a series of books titled “Magic Eye” [17] and were
proposed for applications like 3D photography and computer
graphics. Since they can be viewed without special equipment
and are easily manipulated to create various visual effects and
illusions, autostereograms can serve as an important tool in the
study of depth perception and in binocular vision research in
general (see, e.g., [18,19]).
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As part of the research efforts on autostereograms, Tyler
and Clarke [16] also invented more complex autostereograms
capable of encoding multiple depths. This concept was further
examined by [20].

Thimbleby et al. [21] proposed a computational algorithm
for autostereogram generation based on geometric constraints.
This algorithm is similar to the one developed by Julesz and
Johnson [22] and offers an iterative way of achieving the result
of Tyler and Clarke’s [16] single-step algorithm. Over the years,
other algorithms for autostereogram generation were suggested,
such as those by Minh et al. [23,24] and by Geselowitz [25].
Some research also dealt with depth-map reconstruction from
autostereograms [26,27].

Only a few studies investigated the conditions for which
autostereogram viewing is easier. Ditzinger et al. [28] found
that random noise added to the repeated patterns can improve
depth perception and reduce hysteresis effects. The work of
Bruckstein et al. [29] is the only one to deal with the effect
of the choice of basic pattern and to develop a theoretical frame-
work for analyzing the ease of depth perception in autostereo-
grams with respect to the underlying noise pattern used for the
autostereogram generation. Their model predicts that autoster-
eograms created from pink noise patterns (having a power
spectrum of 1∕f β; β � 1) should be more easily perceived than
those created using other noise patterns, as detailed in the
appendix. Whereas depth “lock-in” is anticipated to break at
fine scales for β > 1 and at coarse scales for β < 1, pink noise
leads to scale invariant match functions and is therefore optimal
for locking in and maintaining the depth perception effect
across scales.

This theoretical result nicely resonates with studies on natu-
ral images that found that such images tend to have power spec-
tra of 1∕f [30,31], suggesting that our eyes may be adapted by
evolution to optimally perceive such patterns.

Though mathematically well established, the model sug-
gested by [29] has never been experimentally tested. The cur-
rent work aims to further understand the autostereogram depth
perception mechanism by testing and verifying this model us-
ing psychophysical experiments.

2. METHODS

In order to test and confirm the prediction of the model sug-
gested by [29], we conducted three sets of psychophysical ex-
periments using autostereograms. In the first two experiments
we evaluated the effect of different noise patterns on perception
of low-resolution surfaces and higher-resolution objects (letter
profiles) in the depth dimension. In the third experiment we
explored the effect of different noise patterns on the limits of
identifying small objects in the depth dimension as a function
of their size.

A. Subjects

Fifteen participants between the ages of 20 and 34 took part in
the experiments. All of the participants had normal or corrected-
to-normal vision, and all were first tested for their ability to per-
ceive depth hidden in autostereograms. The participants were
unaware of the purpose of the study. In the third experiment,
only seven of the original fifteen participants took part.

B. Stimuli

The stimuli in all of our experiments are autostereograms that
were generated from predesigned depth maps and a desired
noise spectrum according to the algorithm described below.

First, a basic noise patch of 128 × 128 pixels having a noise
spectrum of 1∕f β was stochastically generated for each autos-
tereogram. The patch was then up-sampled by a factor of 2 to
create a 256 × 256 block with basic “pixels” of size 2 × 2, each
being a 2 × 2 replica of an original 1 × 1 pixel. Up-sampling was
performed to enable easier viewing of the autostereograms on
large monitors. The up-sampled patch was replicated vertically
to create a strip of 256 × 1024 pixels, and the strip was hori-
zontally replicated 6 times based on the viewing geometry and
the given depth map, similar to the process described in [21],
resulting in the final autostereogram sized 1536 × 1024.

Next, we shall describe the depth maps designed for each
experiment.

1. Experiment 1: Surface Recognition

Low resolution in the depth dimension was represented by
depth maps of four different smooth profiles. These depth pro-
files were designed using smooth functions to avoid occlusions,
miscorrespondences, and echoes in the creation of the autos-
tereogram [21] and were considerably different from one an-
other in order to avoid confusion in their identification
(see Fig. 1).

The autostereograms were constructed using five noise
patterns having a spectrum of 1∕f β with β � 0; 1

2
; 1; 3

2
; 2.

Examples of the generated autostereograms for the different
noise patterns are depicted in Fig. 2.

A collection of 140 autostereograms was constructed for the
experiment; each surface was used 7 times for each type of noise
pattern.

2. Experiment 2: Detail Discrimination

High-resolution detail in the depth dimension was created by
using the depth profiles of four possible letters superimposed on
the smooth surface of an ellipsoid [Fig. 1(c)].

Fig. 1. Depth maps used for experiment 1: (a) egg crate, (b) diagonal
sinus wave, (c) ellipsoid, and (d) Mexican hat.
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Since the detail in depth rides on top of a smooth ellipsoidal
surface, we in fact test the identification of higher-resolution
objects in the presence of a smooth, low-resolution back-
ground. In that regard, it should be noted that without the
ellipsoid background an artifact appeared in the generated au-
tostereograms that could have led to the hidden letter being
identified even without perceiving the depth dimension.

There were four possible detailed depth profiles in the shape
of the letters S, X, L, and T. In addition, there was a fifth option
of no letter present, serving as a control option to check
whether participants actually perceived the detail. The letters
were 240 × 240 pixels in size and were placed vertically in
the middle of the surface with horizontal displacements of

up to 400 pixels to the left or right. Those horizontal displace-
ments were used so that participants would not fixate on a sin-
gle location in the autostereograms but instead search for the
letter in the proximity of the center while still placing the letters
on a smooth background slope.

The background surface was normalized to occupy 60% of
the gray level range, and the letters (when added) were scaled to
10% of that range, i.e., higher than the highest point of the
surface at a ratio of 1/6. After incorporating the letters, a 5 × 5
low-pass filter was applied to smooth the letter boundaries in
order to avoid miscorrespondence issues that could result in
echoes in the generated autostereogram [21]. Note that filtering
was applied to the constructed depth map prior to the

Fig. 2. Examples of autostereograms of the egg crate depth map [Fig. 1(a)] with different noise patterns of the form 1∕f β: (a) β � 0 (white noise),
(b) β � 1

2, (c) β � 1 (pink noise), (d) β � 3
2, and (e) β � 2 (Brownian noise). The complete set of full size autostereograms used for our experiments

is available online at http://www.cs.technion.ac.il/~tammya/Autostereograms/ExperimentImages.zip.
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autostereogram generation and is therefore independent of the
choice of β. The letters were selected to be considerably differ-
ent from one another in order to avoid confusion in their
identification.

With the ellipsoid background and the subsequent smooth-
ing operation applied to the depth profile, the resulting depth
map is smooth enough to not induce any ripple or ringing
effects. To validate this, we asked 12 subjects to monocularly
observe 10–20 randomly chosen images from the stimulus set
and attempt to identify the letters. The participants did not
report any artifacts revealing the hidden letter and, when re-
quired to choose the letter out of the 4 possible options, the
accuracy of letter identification was 21.34%, which corre-
sponds to random guessing. Hence, we conclude that no
monocular cues enabling recognition were present in the autos-
tereogram images containing letters superimposed on the
smooth background.

As in the first experiment, the autostereograms were gener-
ated using five noise patterns associated with β � 0; 12 ; 1;

3
2 ; 2.

A collection of 125 autostereograms was constructed for the
experiment; each letter, or lack thereof, was used 5 times in
conjunction with each noise pattern.

Examples of depth maps with letters incorporated are pre-
sented in Fig. 3.

3. Experiment 3: Fine Detail Identification Limits

Similar to the second experiment, high resolution in the depth
dimension was represented by different letters superimposed
on an ellipsoid surface [Fig. 1(c)]. The letters selected for this
experiment were P and B. This time the letters were deliber-
ately chosen to be not considerably different from one another
in order to check for identification accuracy and, as opposed to
the second experiment, there is always a letter inserted. In order
to reach the limits of identification the letter sizes were smaller,
as follows: 20 × 20, 40 × 40, 60 × 60, 80 × 80, or 100 × 100
pixels.

The background surface was again normalized to occupy
60% of the gray level range, and the letters were scaled to
12%, 10%, or 8.57% of that range, i.e., higher than the highest

point of the surface at a ratio of 1/5,1/6, or 1/7. After incor-
porating the letters, here too a 5 × 5 low-pass filter was applied
to smooth the resulting surface.

Similar to the ellipsoid background, the resulting depth map
is smooth enough to not induce any ripple or ringing effects.
To validate this, we asked 12 people to monocularly observe
10–20 randomly chosen images from the stimulus set and iden-
tify the letters. The participants did not see any monocular cues
in the patterns they contemplated containing the letters, and
correspondingly the accuracy of letter identification out of
the 4 possible options was 21.34%, which is about the same
order as random selection.

As in Experiment 2, we carefully generated the depth maps
to be smooth enough in order to avoid artifacts enabling letter
identification with only monocular cues. In this case, the ac-
curacy of monocular letter identification out of the 2 possible
options was 48.53%, which again corresponds to random
guessing.

The autostereograms were constructed using three noise
patterns associated with β � 0; 12 ; 1. A collection of 180 autos-
tereograms was generated for the experiment. Each letter was
used twice for each combination of letter size and relative depth
and for each noise pattern.

Examples of the depth maps with incorporated letters used
for the identification limit experiment are presented in Fig. 4.

C. Procedure

The experiments were conducted in an isolated room at the
Intelligent Systems Lab (ISL) at the Technion. All of the par-
ticipants used the same computer and screen, with the same
room illumination, and were shown the same autostereograms
(in randomized order). The autostereograms were displayed in
full-screen mode on a 22 0 0 LCD monitor with a 1680 × 1050
resolution.

The Psychophysics Toolbox Version 3 for MATLAB
[32,33] was used for displaying the autostereograms and for
collecting the results.

The procedure was as follows. An autostereogram was
picked from the randomly ordered collection and displayed
on the screen. The participants, their hand on the computer
mouse at all times, had to press the left mouse button when
perceiving the hidden surface. A selection screen then appeared,
offering a choice between all of the possible depth maps
(surfaces or letters) and an “undefinable” option. After selecting
an answer, a new autostereogram would be displayed and so
forth until completing the set.

Fig. 3. Examples of depth maps used for experiment 2.
Fig. 4. Examples of depth maps used for experiment 3: (a) the letter
P (100 × 100 pixels) and (b) the letter B (80 × 80 pixels).
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The selection screen, besides collecting the results, resets the
focus and convergence that were previously achieved by the
participants [8], thereby ensuring that the adjustment process
starts from the same point each time. Having all the autostereo-
grams presented with the same mean disparity, the convergence
time for different values of β can thus be measured and
compared.

The selection screens used for the different experiments are
presented in Fig. 5.

The response time (RT) from the appearance of the autos-
tereogram to the left button mouse click signaling identification
was measured and the selection was checked for correctness.

Since there was no time limit on the identification of the
hidden object, participants were instructed to “give up” after
a long period of time and choose the “undefinable” option
in the selection screen.

In each experiment, participants were first shown a training
set of 10 autostereograms randomly chosen from the experi-
ment’s autostereograms pool so they would familiarize them-
selves with the test environment, calibrate their viewing
position to their optimum, and have a sense of when they need
to “give up.” After the training set, a white screen appeared and
the participants were instructed to press the left mouse button
when ready to proceed to the actual test.

3. RESULTS AND DISCUSSION

Participants were tested for accuracy and RT. Accuracy was
measured by the percentage of correct answers and by the num-
bers of mistakes and choices of “undefinable” for each noise. A
mistake was counted when the selection was neither “undefin-
able” nor the correct answer. The mean and standard deviation
(STD) of the measured RTs were computed using only the
correct responses. The two-sample one-tailed t-test was used
to evaluate whether the mean RTs obtained for different noise
patterns had statistical significance.

A. Experiment 1

Table 1 shows the rate of correct answers and the number of
mistakes or choices of “undefinable” versus the noise pattern
used. All noise types exhibit a high correctness rate, indicating
that smooth depth maps are easily recognizable across all of the
mentioned noise patterns. Yet a slightly lower accuracy can be
observed for white noise, due to its relatively high amount of
“undefinable” selections.

Since no time limit was posed on identification, the accuracy
is very high for all of the noise patterns, and so we examined the
differences in RTs.

Figure 6 presents the mean RT versus noise pattern. While
the mean RT is typically around 2 s, in 8 of the 2100 samples
(which constitute 0.38%) RTs over 10 s and up to 76 s were
measured. Therefore, we consider those samples as outliers and
exclude them from our analysis. We note that similar results
were obtained for a cutoff of 5 s.

A one-tailed t-test was performed on the RTs of every pair of
noise patterns to test whether the mean RTs have statistical sig-
nificance. The results of the t-test are presented in Table 2.

It can be observed that in accordance with [29], smooth sur-
faces hidden in autostereograms made of white noise patterns
are significantly harder to perceive than with any other noise
pattern. The best results are obtained for β � 3

2, with nonsig-
nificant differences from performance with 1 ≤ β ≤ 2.

Fig. 5. Selection screens used for the different experiments.

Table 1. Accuracy Versus Noise Patterns in the Surface
Recognition Test (Experiment 1)

White
Noise
β � 0 β � 1

2

Pink
Noise
β � 1 β � 3

2

Brownian
Noise
β � 2

Correct Rate 99.05% 99.76% 99.52% 99.29% 99.52%
Number of
Mistakes

1 1 2 2 1

Number of
Undefinables

3 0 0 1 1
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B. Experiment 2

Table 3 shows the rate of correct answers and number of mis-
takes or choices of “undefinable” versus the noise pattern used
in experiment 2. All of the noise patterns exhibit high accuracy
in letter recognition, with a slight deterioration observed for
Brownian noise (β � 2).

Figure 7 presents the mean and standard error of the RT
versus noise pattern. T-test results are presented in Table 4.

It can be observed that the best performance is obtained for
noise spectra with 1

2 ≤ β ≤ 3
2 , with nonsignificant differences

between them. Brownian noise is inferior to all other noise pat-
terns in terms of both accuracy and RT. White noise exhibits a
high RT, presumably due to the amount of time it takes to first
identify the smooth background (experiment 1), but a high cor-
rectness rate with no mistakes made by the participants.

C. Experiment 3

The results of the previous experiment indicate that pink noise
is superior to white noise in terms of RT in identification of
high-resolution details. However, in order to assure that this
did not result from the incorporated letters being too big,
the third experiment compared these noises again for signifi-
cantly smaller letters, where white noise is expected to have
an advantage over the other noise patterns. The results pre-
sented thus far show that Brownian noise (β � 2) performance
severely deteriorated between the first two experiments and it is
already significantly worse than pink noise for medium scales.
Progressing toward finer scales and approaching the identifica-
tion limit, it clearly cannot outperform the pink noise.
Therefore, Brownian noise was not included in this experiment
and we focus on the noise levels 0 ≤ β ≤ 1.
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Fig. 6. Mean RT versus noise patterns in the surface recognition
test (experiment 1). Error bars show standard the error of the
mean.

Table 2. T-Test Results for the Surface Recognition Test
(Experiment 1)

Hypothesis Significant (P-value <0.05) P-value

RT β�0 > RT β�1
2

yes 2.95e-4
RT β�0 > RT β�1 yes 5.68e-6
RT β�0 > RT β�3

2
yes 9.86e-9

RT β�0 > RT β�2 yes 3.66e-7
RT β�1

2
> RT β�1 no 0.1389

RT β�1
2
> RT β�3

2
yes 0.0063

RT β�1
2
> RT β�2 yes 0.0338

RT β�1 > RT β�3
2

no 0.0794
RT β�1 > RT β�2 no 0.216
RT β�3

2
< RT β�2 no 0.2862

Table 3. Accuracy Versus Noise Patterns in the Detail
Discrimination Test (Experiment 2)

White
Noise
β � 0 β � 1

2

Pink
Noise
β � 1 β � 3

2

Brownian
Noise
β � 2

Correct Rate 100% 99.47% 100% 99.47% 97.07%
Number of
Mistakes

0 0 0 0 6

Number of
Undefinables

0 2 0 2 5
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Fig. 7. Mean RT versus noise patterns in the detail discrimination
test (experiment 2).

Table 4. T-Test Results for the Detail Discrimination Test
(Experiment 2)

Hypothesis Significant (P-value <0.05) P-value

RT β�0 > RT β�1
2

yes 0.0162
RT β�0 > RT β�1 yes 0.0059
RT β�0 > RT β�3

2
yes 0.0152

RT β�0 < RT β�2 no 0.3938
RT β�1

2
> RT β�1 no 0.3689

RT β�1
2
< RT β�3

2
no 0.4902

RT β�1
2
< RT β�2 yes 0.0144

RT β�1 < RT β�3
2

no 0.356
RT β�1 < RT β�2 yes 0.0059
RT β�3

2
< RT β�2 yes 0.0137
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Since our aim in this experiment was testing perception lim-
its, identification was not limited in time and we focused our
analysis mainly on the identification accuracy.

The correct rate as a function of the letter size is presented in
Fig. 8. Data was accumulated and averaged for 3 different rel-
ative depths of the letters with respect to the background map.

In accordance with the results of Tyler [34,35], we see a
decrease in discriminability with the reduction of letter size.

Table 5 displays the percentage of correct answers, mistakes,
and “undefinable” choices per noise, calculated for all partici-
pants as a function of both letter size and relative depth.

It can be observed that, for all of the tested noises, accuracy
increases with letter size. However, its dependence on the rel-
ative depth seems quite random. A previous experiment that we
performed, testing a wider range of relative depths, also did not
reveal any clear dependency. The letter’s size is therefore much
more significant to its correct identification than its rela-
tive depth.

On a one-tailed t-test we found no significance in accuracy
between the different noise patterns. The lack of significance
indicates that pink noise performs comparably well for the
highest resolutions, as predicted by [29].
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Fig. 8. Correct rate versus letter size in the identification limit test
(experiment 3).

Table 5. Rate [%] of Correct (c), Mistaken (m), and Undefinable (u) Selections per Letter Size and Relative Depth, for
β � 0 (White Noise), β � 1

2, and β � 1 (Pink Noise)

20 × 20 40 × 40 60 × 60 80 × 80 100 × 100 Row Mean

Depth\Size u m c u m c u m c u m c u m c u m c

1/5 85.71 0 14.29 14.29 3.57 82.14 3.57 0 96.43 0 0 100 0 0 100 20.71 0.71 78.57
1/6 82.14 10.7 7.14 32.14 3.57 64.29 3.57 0 96.43 0 0 100 0 0 100 23.57 2.86 73.57
1/7 92.86 0 7.14 14.29 3.57 82.14 3.57 0 96.43 0 0 100 0 0 100 22.14 0.71 77.14
Col. Mean 86.9 3.57 9.52 20.24 3.57 76.19 3.57 0 96.43 0 0 100 0 0 100

β � 0

20 × 20 40 × 40 60 × 60 80 × 80 100 × 100 Row Mean

Depth\Size u m c u m c u m c u m c u m c u m c

1/5 89.29 7.14 3.57 17.89 0 82.14 0 3.57 96.43 0 0 100 0 0 100 21.43 2.14 76.43
1/6 85.71 3.57 10.71 35.71 7.14 57.14 0 3.57 96.43 0 0 100 0 0 100 24.29 2.86 72.86
1/7 89.29 3.57 7.14 17.86 0 82.14 3.57 0 96.43 0 0 100 0 0 100 22.14 0.71 77.14
Col. Mean 88.1 4.76 7.14 23.81 2.38 73.81 1.19 2.38 96.43 0 0 100 0 0 100

β � 1
2

20 × 20 40 × 40 60 × 60 80 × 80 100 × 100 Row Mean

Depth\Size u m c u m c u m c u m c u m c u m c

1/5 85.71 7.14 7.14 10.7 7.14 82.14 0 0 100 3.57 3.57 92.86 0 0 100 20 3.57 76.43
1/6 96.43 0 3.57 35.7 0 64.29 3.57 0 96.43 0 0 100 0 0 100 27.14 0 72.86
1/7 92.86 0 7.14 7.14 0 92.86 0 0 100 0 0 100 3.57 0 96.43 20.71 0 79.29
Col. Mean 91.67 2.38 5.95 17.9 2.38 79.76 1.19 0 98.81 1.19 1.19 97.62 1.19 0 98.81

β � 1
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Fig. 9. Mean RT versus letter size in the identification limit test
(experiment 3).
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Figure 9 presents the mean RT as a function of the letter
size. For all noises, RT decreases with letter size.

Our results therefore coincide with the statement made by
[2] that time required for stereopsis increases as the size of the
hidden object decreases.

In accordance with the results of experiment 2, RT for pink
noise is lower than RT for white noise even when the resolution
increases. This trend switches direction and indicates the supe-
riority of white noise only for letters no larger than 40 × 40
pixels, i.e., when approaching the identification limits. For such
small letters, the amount of correct answers to be accounted for
when analyzing the RT is very small, and the observed differ-
ence was found to be statistically insignificant.

We consider the identification limit for letter size in distin-
guishing between the letters P and B as the minimum size re-
sulting in a correct rate of above 50%. For all of the tested noise
patterns, the letter size identification limit lies between 20 × 20
and 40 × 40 pixels (meaning between 4 and 8 mm). Assuming
that the undefinable choice is equivalent to an equally distrib-
uted guess, the identification limit for letter size is even
lower and can be determined at 20 × 20 for all of the noise
patterns.

4. CONCLUSIONS

This work validated the prediction made by [29] that autostereo-
grams created with pink noise patterns are more easily and cor-
rectly perceived than those generated from other noise patterns.

The first experiment tested how the choice of basic noise
pattern affects the time and accuracy of perceiving smooth
depth maps. It was found that, in accordance with the model
of [29], recognizing smooth depth profiles is easier in autoster-
eograms created from noise patterns with β ≥ 1 than in those
with β < 1. Hence, the results indicate that autostereograms
created with pink noise patterns exhibit significantly better
depth lock-in behavior than those created with white noise
and not significantly worse than those created with higher-or-
der noises for identifying low-resolution objects.

The second experiment checked [29]’s prediction that rec-
ognition of high-resolution objects (like letters) will be easy for

white and pink noises (β ≤ 1), while harder for smoother noise
patterns (β > 1). It was found that when a mixture of low and
high resolution is concerned, RT for pink noise is significantly
lower compared with both white and Brownian noise patterns.
Compensating for the contribution of the smooth background
to the measured RTs based on the first experiment, our results
coincide with the prediction of Bruckstein et al. [29]

To further test the detection performance for high-resolu-
tion detail, the third experiment focused on discovering the
limit of identifying fine details in the depth dimension. It
should be pointed out that this experiment is preliminary
and should be extended. Specifically, an interactive adjustment
of the letter size with an adaptive step is expected to give a
more accurate estimation of the identification limit for different
noise types. Nevertheless, the experiment clearly proves that,
even when approaching the high-resolution limits, pink noise
is comparable to white noise in terms of the identification
accuracy.

The three experiments performed convincingly demonstrate
the superiority of pink noise-based autostereograms over
other noise patterns in the perception of both low- and
high-resolution objects. Hence, our experimental results sub-
stantiate the model proposed by [29] as a good mathematical
framework for analyzing autostereograms.

In spite of the proven superiority of pink noise-based autos-
tereograms, there is a certain trade-off involved. When using
IID patterns (i.e., for β � 0), it is recommended [16] to
use newly generated random pixels whenever the disparity in-
creases, but since for β ≠ 0 the dependency between neighbor-
ing pixels should be preserved, we used a different technique
that fetches pixels from the best-fitting location in the original
pattern. The latter technique may introduce artifacts in the
presence of sharp edges in the depth dimension. Therefore,
we have avoided such edges in all of our experiments; in experi-
ments 2 and 3, the letters’ boundaries were smoothed by apply-
ing a blur filter and an ellipsoid was added in the background. In
light of this trade-off, a more principled approach seems neces-
sary for generating pink noise-based autostereograms that are
able to handle depth maps having strong edges. This should
be an interesting issue to deal with in future research.

We note in closing that, besides the basic noise patterns
used for creating the autostereogram, other factors may have
an influence on the ease of depth perception in autostereo-
grams. Future research may, for example, study the effect
of using color compared with gray-level SIRDS, using specific
colors over others, or using regular structured patterns rather
than random noise. While our experiments did not reveal a
clear dependency on the relative depth of the high-resolution
detail for superimposed objects, this dependency should also
be further studied using a different or wider range of depths.

We believe that autostereograms, beyond being an amaz-
ingly popular art form, can continue to help advance the fields
of 3D rendering, camouflage, visual physiology, and games, and
still have considerable stereo-vision research potential. By val-
idating the theoretical model proposed by [29], its underlying
assumptions are strengthened, contributing to a better under-
standing of stereopsis and the correspondence detection mecha-
nism in the human visual system.

Fig. 10. Geometry of SIRDS as seen by the left and right eyes.
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APPENDIX A: THE MODEL

The model proposed by [29] for the stereopsis matching
process was developed in order to understand what makes
some autostereograms easier to perceive than others. We here
present a simplified 1D problem, referring to each image line
individually.

Let us denote the depth profile by φ�x�. A general point on
the depth surface is projected onto pixel x for the left eye view
IL, and on pixel x̃ for the right eye view IR, as illustrated in
Fig. 10. Having the depth map encoded in a single image I
means that for the two pixels to be matched as originating from
the same point in space they must have the same value,
i.e., IL�x� � IR�x̃� � I�x�.

By similar triangles, the disparity Δ from x to x̃ is given by

Δ � Eφ�x�
φ�x� � D

; (A1)

where E is the distance between the eyes and D is the viewing
distance from the image plane.

Assuming φ�x� is bounded, I over any interval �x;φ�x�� de-
termines I�·� completely (excluding singularity in the image
when the disparity gradient exceeds the angle to either eye).

When observing an autostereogram image I , the disparities
are to be decoded in order to enable perception of the hidden
depth dimension. This process can be formulated by defining
an abstract bivariate matching function Λ�x; x̃� ∈ �0; 1� that
indicates how well I�x� locally matches I�x̃� (where a value
of 1 indicates a perfect match). This function has a high ridge
along the obvious match (planar interpretation) x � x̃, and
additional matches associated with the disparity that occurs
in x̃ � x � φ�x�, x̃ � x � φ�x� � φ�x � φ�x��, etc.

For a better depth lock-in, it is desired to be able to compute
a Λ�x; x̃� that has a high ridge on the desired disparity
x̃ � x � φ�x�, and lower ridges for the other disparities, with
valleys between the ridges that enable the interpretation mecha-
nism to move between them reasonably easily.

Figure 11 demonstrates the possible behavior of the match-
ing function for different choices of the basic pattern I . Note
that for a more intuitive interpretation, we reverse the vertical
axis and interpret the high ridges of Λ as deep basins of attrac-
tion. While the red curve has very sharp ridges on the “correct”
disparities, it is difficult to “leave” the planar interpretation to
“lock in” to the desired depth profile ridge. In the green curve, I
leads to blurred ridges and no sharp depth perception. The blue

curve represents the desired function, where the ridges are sharp
for the correct disparities, yet the valleys are surmountable.

Embracing the squared difference approach previously sug-
gested by [5], the model of [29] proposes the matching func-
tion to be computed as

Λ�x; x̃� � f ��I�x� − I�x̃��2�; (A2)

where f is some smooth, monotonically decreasing function
satisfying f �0� � 1 and _f �0� < 0.

The sharpness of ridges is here determined by the Laplacian,

∇2Λ�x; x̃�jx̃�x�φ�x� � 2 _f �0�
��

d
dx

I�x�
�
2

�
�
d
d x̃

I�x̃�
�
2
�
;

(A3)

implying that the first derivative of the image controls the shape
of the matching function along the disparity line. In order to
create the high ridges needed for easy depth perception, one
should therefore create an autostereogram with a repeating pat-
tern that has high first-order derivatives in every direction.
However, we also want few accidental matches (that will obvi-
ously occur if I has a finite range). This leads toward the con-
sideration of using random patterns and assuming a matching
function based on averaging, which is

Λ�x; x̃� � f �E��I�x� − I�x̃��2��; (A4)

where I�x� is defined by extending the random pattern selected
on the basic interval �0;φ�0��. The averaging process causes
false-match peaks to disappear, and so resolves the ambiguity
of choosing from multiple possible matches.

The ridge sharpness in the stochastic case is given by

∇2Λ�x; x̃� � 2 _f �0�R 0 0�0�
��

d
dx

B�x�
�
2

�
�
d
d x̃

B�x̃�
�
2
�
;

(A5)

where B�x� is the deterministic “back-projection” into the in-
terval �0;φ�0�� and R�τ� is the autocorrelation of the process
I�x�.

This result suggests that we can control the shape of the
ridges by choosing a random process as the basic pattern with
high second derivative at the origin. A completely uncorrelated
random process such as white noise seems ideal in that respect.
However, the basin of attraction with a completely uncorrelated
random process for the obvious match could be so deep that it
will be hard to direct the visual system to the second ridge of
depth-encoding disparities.

Here, [29] adopts a coarse-to-fine model as in [4], assuming
that images presented to us are filtered by several low pass, or
bandpass, filters to create a pyramid of coarser and coarser im-
ages, and the perceptual system works its way from coarse to
fine scale to perceive depth in various resolutions. So to perceive
depth optimally, the random process we use as the basic pattern
of the autostereograms needs be scale invariant. Furthermore,
because we aim to direct the visual system from coarser to finer
resolution, it is a desired attribute that the basins of attraction at
each level will get narrower at the finer resolutions.

Let us look at the autocorrelation R�τ� of some random
process with power spectral density S�f �:

Fig. 11. Matching function’s basins of attraction as a function of
disparity.
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R�τ� �
Z

∞

0

S�f �ej2πf τdf ; (A6)

d 2R�τ�
dτ2

� −4π

Z
∞

0

f 2S�f �ej2πf τdf : (A7)

If we use a low pass filter with a cutoff frequency of f 0 � 1
σ, and

normalize τ by σ, we get

d 2Rσ�τ�
d�τσ�2

� σ2
d 2Rσ�τ�
dτ2

� −4πσ2
Z 1

σ

0

f 2S�f �ej2πf τdf : (A8)

For noise patterns with power spectra of the form S�f � �
Cf −β (β ∈ R, C constant)

R 0 0
σ �0� � −4πCσ2

Z 1
σ

0

f 2−βdf � −4πC
3 − β

σβ−1: (A9)

for β ≠ 3.
It is readily observed that for β � 1 (pink noise), R 0 0

σ �0� is
independent of σ, meaning the peaks of the matching function
have constant normalized width in scale space, giving the de-
sired scale invariance properties. From an unnormalized point
of view, the peaks get narrower with scale from coarse to fine, as
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Fig. 12. Matching function Λ�x; x̃� (left) and basins of attraction (right) for (a) and (b) white noise, (c) and (d) pink noise, and (e) and
(f ) Brownian noise. The basins of attraction are displayed as a function of the pixel displacement with respect to the planar interpretation x̃ � x.
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intended. Therefore, the model predicts that pink noise leads to
easy depth lock-in across scales with excellent detail perception.

To demonstrate this concept using our generated autoster-
eograms, we averaged the result of �I�x� − I�x̃��2 over a chosen
subset of successive image lines in several images generated with
the same depth profile and the same noise type. The matching
function is then calculated as Λ�x; x̃� � f �E��I�x� − I�x̃��2��
for f �z� � 1

1�λz , with λ � 0.001 (chosen empirically).
The result of those calculations for autostereograms created

with white, pink, and Brownian noise patterns are presented in
Fig. 12. We also present the counter-diagonal of the matching
function to show a 1D view of the basins of attraction.

It can be observed that, for white noise, the matching
function has very sharp ridges, but moving between ridges is
quite difficult due to the difficulty in getting out from the
planar interpretation ridge. For Brownian noise, the matching
function has wider ridges and smooth valleys, which allows for
an easier movement of interpretation between ridges, but may
mean a blurry image. Pink noise represents the balance between
them, having sharp ridges and valleys that are surmountable.
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