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This paper develops a discrete approach to the design of planar curves that minimize cost 
functions dependent upon their shape. The curves designed by using this approach are 
piecewise linear with equal length segments and obey various types of endpoint con- 
straints. 
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1 INTRODUCTION 

Planar curves that minimize energy functionals of the form 
J ( c ~ K ~  + B)ds, where K is the curvature and s is arc length, subject to 
various types of boundary conditions are called elastica, following 
Euler's 1744 work titled "De Curvis Elastica" [12]. Such curves, also 
called nonlinear splines in the industrial design context, are important 
in a variety of applications and have been thoroughly studied in 
the past by Max Born [2] and A. Love [24]. Recently, due to renewed 
interest in such curves in computer graphics, CAD, and as shape 
completion curves in image analysis and computer vision, several 
papers have appeared, dealing with their effective computation 

*Permanent address. Department of Computer Science, Technion - IIT 32000, Haifa, 
Israel 
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and applications; see e.g. [3,5-6,9,1 l,l4,l7-19,2l-22,25-26,30-3l]. 
Even mathematicians seem to have recently rediscovered these 
interesting objects [7,15-16,20,23,28]. Since the actual computation 
of nonlinear splines turns out to be quite difficult, in CAD people 
turned to simpler polynomial splines or rational curves (NURBS) to 
address problems of shape design, see e.g. [13,27], and some interesting 
ideas involving interpolation and design with optimized bi-arc and real 
algebraic curves which have also appeared [1,29]. 

In this paper we shall address the problem of designing discretized, 
piecewise linear curves minimizing functionals of various types that 
could be regarded as discretized versions of the "curve energy" consid- 
ered in the context of splines. We shall argue that solving the nonlinear 
equations that result from considering "discrete elastica" is a feasible 
alternative to curve design. Furthermore we claim that almost nothing 
is lost in the process of discretization since it is seldom the case that the 
differential equations arising from the continuous optimization prob- 
lem can be explicitly solved. This being the case, those equations must 
be solved by numerical integration, hence we shall end up with a dis- 
cretized solution anyhow. We therefore propose to start with a discre- 
tized problem and concentrate on numerical procedures that can 
effectively solve them. 

Let us first set the stage for the optimization problems considered. 
We shall always deal with planar polygonal curves (or poly-lines) 
with equal-length links (or segments) specified via a set of points 

1 ,,,., N ,  N+1 SO that d(Pi+1, Pi) = I for all i E {0, . . . , N )  (see Fig. 1). 
The turn angle at Pi, defined as \Iri - \Iri-l, where \Iri is the angle of 

PiPi+l with the x-axis (as in Fig. I), will be denoted by Of, and the 
curves we shall design will attempt to make these curves as smooth 
as possible by minimizing an "energy functional" that increases with 
the increase of these turn angles lei\. In fact the "discrete curvature" 
at Pi of a polyline as considered above could be defined as Ki = Bill  
and hence a reasonable "energy functional" candidate would be 

where 0 = {el, . . . , ON}, mimicking S(w2 + B)ds from the continuous 
case. 



DISCRETE ELASTICA 455 

FIGURE 1 A polygonal curve of equal-length segments. 

Sometimes one may wish to design curves that are not as smooth as 
possible but as short as possible for some given boundary conditions, 
and perhaps some additional restrictions on their curvature; see e.g. 
Dubins [lo]. For such cases we can replace the energy functionals to 
be optimized with other types of cost functions. Indeed, if, for 
example, we want to limit the "discrete curvature" of the polylines 
considered to some IKI we can define a penalty function that increases 
sharply if the discrete curvature 18/11 approaches IKl, (for example) 
as follows: 

Here, if m is large, CK, ,(ell) becomes huge when 16/11 exceeds IKI 
(see Fig. 2). With such a penalty function we could design curves to 
optimize 

for given boundary conditions. 
Boundary conditions that will be of interest to us here are the origin 

and endpoint of the polygonal curves and the directions of the first 
and last links. We shall assume that the first link starts at (0,O) 
in the plane and the last link ends at some (L,O), clearly without 
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FIGURE 2 The function CK,,(O/I) = [ 0 / ( 1 ~ ) ] * ~  for different values of m. 

any loss of generality, since we would like to have at least Euclidean 
invariance built into the design process! Moreover, since we shall 
sometimes aim to have similarity (i.e. scale) invariance, we may also 
allow I and/or L to vary freely, according to the case. 

Next we shall examine several cases of discrete elastica designs. 
Those will include solving the following type of optimization problem: 

minimize E(8,l) subject to: predetermined Qo and QN 

where Qj Qo + xi=:=, Bi for j = 1, , . . , N. There are several parameters 
in such optimization problems that can be either set a priori or 
optimized. The number of links N + 1 and the length of each link 
(jointly determining the length of the curve as (N + 1)l) are such 
parameters. L is also free if we are interested in similarity invariant 
elastica. since it scales directly with 1. 
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2. "CLASSICAL" DISCRETE ELASTICA 

We shall first discuss polygonal elastica (poly-elastica) that minimize 

subject to 

qo and \IIN predetermined 
N 

2 1  sin qi = 0. 
i=O 

Using the Lagrange multiplier technique we consider the cost function 

where denotes the vector of unknown angles {\II1,. . . , qN-1). 
Taking derivatives with respect to the N + 2 variables ql, . . . , 
A,,  h2, and I ,  leads to the system of equations 
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2.1 Numerical Experiments with Euclidean-invariant Elastica 

In this subsection we discuss the numerical solutions corresponding to 
the cost function. We also show several families of curves illustrating 
how changing some of the parameters affects the minimal cost curves 
for the various cost functions. 

The discrete Euclidean-invariant elastica curves are solutions of the 
optimization problem (1). The solutions are found by solving the 
system (2), and this was accomplished by using the technique discussed 
for the turnlcurvature limited elastica in Section 5.3 and substituting in 
K = 1 and m = 1. The program was written with the symbolic mani- 
pulation program Maple [8], and uses the Newton-Raphson method 
directly on the system (2). 

Figure 3 shows the effect on varying the terminal angle while holding 
the other parameters constant at Qo = 135", L = 10, N = 32, a = 1, ,!I = 1. 

Figure 4 shows the effect of a! and /I on the results. As the ratio ,!I/a 
increases, the contribution of the length of the curve to the cost 
function increases, and as a result the length of the curve decreases. 
This phenomenon is readily seen in Fig. 4, which shows curves for 
#?/a! = 0.1,1.0, and 10. The other parameters are fixed at = 180°, 
QN = 180°, L = 10, and N = 32. 

Figure 5 shows the effect on varying N, one less than the number 
of links, while holding the other parameters constant at qo = 45", 
\llN = -135O, L = 6, a = 1, ,3 = 1. There is very little change in the 
curve for values of N larger than 64. 

FIGURE 3 Discrete Euclideanelastica with q0 = 135", qN = -180", -13S0,. . . ,180". 
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FIGURE 4 Discrete Euclidean elastica with q,, = 1800, QN = 1800, and p/cu = 
O.l,l, 10. 

FIGURE 5 Discrete Euclidean elastica with varying N. From top to bottom at x = 5, 
these are the curves for N = 8,16,32, and 64 respectively. 

3 SIMILARITY-INVARIANT ELASTICA 

The above case addresses the problem of design of polylines that 
allows the boundary conditions to set/choose an optimal link-length 
I. We could, however, address a different type of optimization too: 
we could set I = 1 and let the endpoint (L, 0) be free to settle anywhere 
on the positive x-axis. Indeed we can readily imagine a "discrete" 
physical spline made from inelastic sections, or links, of length 1, 
connected with elastic joints where the bending potential energy 
depends on the turn angle 0 as ae2. The problem we would address 
in this case would be to determine the lowest energy configuration 
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of such a "spline" when the first link is forced to make an angle of Q0 
with the x-axis and the last link an angle of \yN with its endpoint free 
to slide along the positive x-axis (see Fig. 6). 

With I = 1 we have the following optimization problem: 

N 

minimize E(6, I )  = x ( * i  - ~ i - 1 l 2  
i=l 

N 

subject to sin qi = 0 
i=O 

Again, Lagrange multipliers were used to form the expression 

where 9 denotes the vector of unknown angles {W1, . . . , @N-I}. Taking 
derivatives with respect to the N variables q l ,  . . . , , and h leads to 
the system of equations 

2 ( - \ 2 ; . - 1 f 2 9 j - \ Y j + l ) + h ~ ~ ~ 9 j = 0 ,  j = 1 ,  ..., N-1 ,  

5 sin qi = 0. 
i=O 

Rewriting the first equation in (4), we recognize that this discrete mini- 
mization problem leads to the two point boundary value problem 

where Qo and \IIN are given. Note that in this case the total length of 
the discrete spline is a priori (implicitly) set to (N + 1). I = N + 1. 

This optimization problem was considered in [3], and solved via a 
shooting method. It represents a discrete version of a scale-invariant 
version of minimal energy curves. Indeed, it was proved in [3] that 
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- 
(0, 0) P =PN+, 

fimI 

FIGURE 6 The terminal point may "slide" along the x-axis. 

ds . J ~ ~ d s  is a scale-invariant energy measure that leads to circular 
interpolations for symmetric endpoint conditions, a very desirable 
property indeed. 

The main motivation for introducing the modified energy functional 
in [3] was the consideration of a counterintuitive result of Horn assert- 
ing that the least energy curve (minimizing l ~ ~ d s )  which starts verti- 
cally up at (0,O) and arrives vertically down at (1,O) is not a 
semicircle [17]. This result is due to the use of a cost function that 
does not penalize the curve length and is not scale invariant. Later, 
Moreton and SCquin also realized the advantage of similarity invariant 
cost functionals based on curvature and curvature variation in the 
design of curves, see [26]. The cost functions proposed by them were 
J ~ ~ d s  and J(d~/ds)~ds  for Euclidean invariant elastica and 
( i d s .  i ~ ~ d s ) ,  as in [3], and ( i d ~ ) ~ ( i ( d ~ / d s ) ~ d s )  for scale invariant ver- 
sions. We shall briefly return to some minimal variation curve design 
ideas in a later section. 

3.1 Numerical Experiments with Similarity-invariant Elastica 

As in [3], we are interested here in solutions of the minimization 
problem (3). Another program using Maple was written to solve this 
problem, specifically the system (4), for a wide range of parameter 
values. These were solved by using the technique for the "similarity- 
invariant" curvature limited elastica discussed in detail in Section 5.4 
and substituting in K = 1, m = 1, a = 1, and ,6 = 0. 

Figure 7 shows the effect on varying the terminal angle while hold- 
ing the other parameters constant at qo = 135", N = 32. 
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FIGURE 7 Discrete similarity-invariant elastica with N = 32, q0 = 135", W N  = 
-180°, -l35", . . . ,180". 

Figure 8 shows the same results as in Fig. 7, but with all of the 
distances scaled so that L = x,+~ = 1. This has the effect of changing 
the length of each link from 1 to 1 / ~ , + ~  = 1/ xZO cos 9j. 

Figure 9 shows the effect on varying N, one less than the number of 
links, while holding the other parameters constant at Qo = 45" and 
QN = -135'. 

Figure 10 shows the same results as in Fig. 9, but with all of the dis- 
tances scaled so that xN+,  = 1. The curves converge to a smooth path 
as N increases. The limiting curve is not of circle-line-circle type since 
m = 1 here; the circle-line-circle behavior appears only for large m. 

4 DISCRETE ELASTICA WITH HARD LIMITS ON TURN 

In this section we address the problem of optimizing interpolation 
curves for other types of cost functions. In particular we shall be inter- 
ested in penalizing curvatures in such a way that the resulting polylines 
will have turns, or "discrete curvatures," limited to an a priori given 
range. To obtain this result we can solve for polygonal elastica that 



FIGURE 8 Normalized similarity-invariant elastica with N = 32, qo = 135", w N  = 
-180°, -135",. .., 180". 

FIGURE 9 Similarity-invariant elastica with varying N. In order of increasing length, 
these are the curves for N = 8,16,32, and 64 respectively. 

minimize, say 
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FIGURE 10 Normalized similarity-invariant elastica with varying N. From top to 
bottom at x = 0.8, these are the curves for N = 8,16,32, and 64 respectively. 

subject to the same conditions as before. The Lagrange approach leads 
here to a nonlinear system of equations that displays the necessary 
condition for optimality, i.e. 

Taking derivatives with respect to the N + 2 variables Q1, . . . , WN-1,  
A,, A2, and 1, leads to the following system of nonlinear equations 
generalizing (2): 
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Note that if (**,AT, A;, I*) is a solution for the set of parameters 
(K, L, m, N, a ,  p), then (q*, AT, A;, cl*) is a solution for the set of par- 
ameters (Klc, cL,rn, N,a, B). Thus the solution curve scales with L 
as long as LK is held constant. 

Consequently we shall have for \Z;. the following system of nonlinear 
equations: 

with hl and A2 to be determined so as to obey the conditions 
c E ~  sin Qi = 0 and ELo Icos q i  = L > 0. Note that 1 and K (or L 
and K) scale so that all solutions for which LK equal a constant are 
similar up to a scaling parameter! 

4.1 Numerical Experiments on Curvature Hard-limited Elastica 

As we saw in Section 4, here we want to solve the minimization prob- 
lem (5). We wrote another Maple program to solve the system (6) 
for many parameter values. The system of equations was solved 
using the Newton-Raphson method with an initial guess close to 
the solution for the continuous case, as suggested by [lo]. That is, 
an approximation to a circle-linesircle type curve that meets the 
required boundary conditions is first found as follows. There 
are two generic cases: that in which the line segment is an interior 
tangent to the two circles and that in which the segment is an 
exterior tangent. Due to symmetry about the x-axis, we can assume 
that qo 2 0. The first case arises when QN is also nonnegative. 
This situation is depicted in Fig. 11. In this figure C1 and C2 are 
circles of radius R = 1/K, and are vertical line segments, 
Po is (0, O), and PN is (L, 0). is the interior tangent, and A has 
coordinates (R(sin \Yo + sina), R(- cos Qo + cosa)), B has coordinates 
(L - R(sin QN + sina), R(cos QN - cosa)), C1 is (Rsin 90 ,  - Rcos Qo), 
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FIGURE 1 1  Geometry when qN 2 0. The circle-line-circle path consists of arc 
PoDA, segment AB, and arc BEPN. 

C2 is ( L  - R sin q N ,  R cos WN), and F is ([L - R(sin WN - sin Wo)]/2, 
R(COS WN - COS q0)/2). 

Triangle ACIAF is a right triangle, and by the Pythagorean 
Theorem we obtain 

2 4R + [L - R(sin Qo + sin \Imi - 2sin a)12 + ~ ~ ( c o s  Wo + cos WN - 2cosa)* 

= [L - R(sin WO + sin WN)]~ + R~(COS !Po + cos WN)~, 

which simplifies to 

[L - R(sin WO + sin WN)] sin a + R(cos Wo + cos WN) cos a - 2R = 0. 

From this we obtain 

-be + el/b2 + c2 - e2 
tan a = 

b2 - e2 9 

where 

b = L - R(sin Wo + sin WN), c = R(COS W0 + cos QN), e = 2R. 

Having determined a ,  the length of the circle-line-circle path is found 
to be 
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so the initial guess for I, call it lo, is this length divided by N + 1, the 
number of links in the polyline. The slope of the segment piece is 

and we can let y be the arctangent of this quantity. As long as L > 4R, 
y will have a value between -n/2 and 0. For smaller values of 
L, the circles centered at C1 and C2 may intersect, and then the opti- 
mal path will take on a different structure, with the path having to 
travel far away from the circles in order to satisfy the boundary 
conditions. This case is of less practical interest, since it involves 
curves whose length is much greater than the distance between the 
terminal points. 

The initial value of q1 is chosen to be slightly more than \yo - loK, 
as turns less than loK are not penalized heavily by the cost function 
G(Q, hl,  h2, I; K, L, rn, N, a ,  B). Then the initial value of q i  is chosen 
as slightly more than \y, - iloK for i = 1,2,. . . , until this quantity is 
less than y. Coming from the other end, 9N-1 is initially chosen as 
slightly more than QN - loK, and QN-i is taken as slightly more 
than \IIN - iloK for i = 1,2,. . . , until this is smaller than y.  qi is set 
equal to y for the remaining values of i. 

We next discuss the case where the straight line segment portion is 
an exterior tangent to the two circles. This case arises when \yN is 
nonpositive and \yo is nonnegative, and is depicted in Fig. 12. In 
this figure, as in Fig. 1 1, C1 and C2 are circles of radius R = 1/K, 

and are vertical line segments, Po is (0, O), and PN is 
(L,O). Here we have AB is the exterior tangent, and A has coordi- 
nates (R(sin Wo - sin a), R(- cos qo + cos a)), B has coordinates (L- 
R(- sin \yN + sin a), R(cos QN + cos a)), C1 is (R sin Qo, - R cos \yo), 
and C2 is (L + R sin q N ,  - R cos qN). 

The situation here is simpler than in the previous case, for here arcs 
with angle a cancel. That is, the length of the curved portion is 
R(\yo - a)  + R(-QN + a )  = R(QO - QN). The length of the straight 
portion equals the distance between the two centers, and thus the 
total length of the path is 

R(\yo - q N )  + J L ~  - 2RL(sin \yo - sin q,) + 2R2[1 - cos(@o - QN)]. 
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FIGURE 12 Geometry when % 5 0. The circle-line-circle path consists of arc PoA, 
segment AB, and arc BEPN. 

This time the initial value lo is this length divided by N + 1, and the 
slope of the segment piece is 

R(COS \I'o - COS q N )  
tan y = 

L - R(sin Wo - sin @N) ' 

The procedure for choosing the initial values of the qi is similar to 
that of the previous case. The initial value of \Iri is chosen as slightly 
more than \ko - iloK for i = 1,2,. . . , until this quantity is less than 
y. However, in this case, is initially chosen as slightly less than 
qN + loK, and \IIN-~ is taken as slightly less than \VN + iloK for 
i = 1,2, . . . , until this is greater than y. qi is set equal to y for the 
remaining values of i. 

The value of -B was chosen as the initial guess for hl on the 
grounds that in a solution of (6), each of the terms 
[(qi - qi-l) /( l~)]2m is likely to be small, Cy=ocosSi will equal 
L/I w N for N large, and Cy=o sin qi will be zero. The quantity A2 

was usually found to be a small positive number, so we just used an 
initial value of zero for that. 

We went to this much trouble obtaining a good initial guess so that 
the Newton-Raphson method will converge to the correct answer, and 
in not a large number of iterations. In most of the examples fewer than 
ten iterations were required. 

Figure 13 shows the effect on varying the terminal angle while hold- 
ing the other parameters constant at !Po = 135", L = 21, N = 32, 
K=0.4 ,  m =  100, a = 1, #?= 1. 
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FIGURE 13 Minimal length curvature-limited curves with m = 100, Qo = 135", 
WN = -180", -135",.. ., 180". 

FIGURE 14 Curvature-limited elastica with Wo = 90", WN = -135", and B/(Y = 
0.1,1,10. The middle curve is the one obtained when p = a. 

Figure 14 shows the effect of a and /3 on the results when m = 10. As 
the ratio /3/a increases, the length of the curve decreases, but to much 
less a degree than in Fig. 4 when m was 1. This phenomenon may be 
seen in Fig. 14, which shows curves for B/a = 0.1,l .O, and 10. When 
m gets larger the curves for different ratios of #?/a resemble each 
other more closely. The other parameters are fixed at qo = 90°, 
qN = -135O, K = 6 ,  L = 1, and N = 24. 

Figure 15 shows the effect on varying N, one less than the number 
of links, while holding the other parameters constant at q0 = 90°, 
qN = 135O, K=0.4 ,  L = 12, m = 100, a =  1, /3= 1. As expected, 
the curves converge to nearly a circleline-circle path as N increases. 



A.M. BRUCKSTEIN et al. 

FIGURE 15 Minimal length curvature-limited elastica with varying N. From top to 
bottom at x = 2, these are the curves for N = 8,16,32, and 64 respectively. 

FIGURE 16 Minimal length curves for curvature-limited elastica with varying 
in. From top to bottom at x = 8, these are the curves for m = 3,1,10,30, and 100 
respectively. 

Figure 16 shows the effect on varying m while holding the other par- 
ameters constant at qo = 45", @N = -90°, K = 0.4, L = 15, N = 32, 
a = 1, B = 1. As m increases, the curves converge to a circle-line- 
circle path. There is little change in the curves once m is as large as 100. 

5 SIMILARITY-INVARIANT TURN-LIMITED ELASTICA 

As previously, we could set I to 1 and free the condition 
1 EL, cos qi = L to c:, cos qi > 0. However, this condition alone, 
in conjunction with a penalty function that allows all turns less 
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than K for free (almost - for high m's) could lead to some peculiar 
returns of the curve to the x-axis. Indeed, minimizing (5) with I = 1 
and B = 0 

subject to 

leads to 

Note however that as m + co the terms [(qj - Qj-l)/K12m will all 
tend to zero if I@, - qj-11 < K, hence all sequences of Qj obeying 
(\Jrj - ylj-, 1 < K and sin qi = 0 will be equally good. Therefore 
to make the problem well defined we need to impose an additional 
constraint. With similarity invariance considerations in view, we 
require the minimization of 

subject to 

e s i n *  = 0, 2 cos qi > 0. 
i=O i=O 

(Find interpolant with 1 = 1 and maximum L so that one has the great- 
est L/[(N + 1)d ratio.) 

Lagrange multipliers were used to form the expression 
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Taking derivatives with respect to the N variables Q,, . . . ,%-I, and 
h leads to this system which generalizes (4): 

2mcr[(Qj - w,-~)~"-' - (\Vj+1 - Qj)2m-1] + #? sin Q, 

(XC~, 'Os 'i) (8) 
N 

This optimization problem imposes the requirement to have 
xLo cos Qi, i.e. the excursion in the positive x-direction, as large as 
possible for a curve with given length (N + 1)l. This means that if 
we scale the curve so as to have Ax = 1, we shall have the polygonal 
curve of minimal length that obeys the (similarity invariant) local turn 
condition ((Qj+, - Qjl i ~ (  K). Or, in other words, the curve with the 
best (total length)/(Ax-excursion) ratios among all interpolating 
curves with limited turn. 

The problem with which we dealt in Section 4 has a continuous 
counterpart: an old result of Dubins (see [lo]) states that minimal 
length curves with a constraint on the (average) curvature and pre- 
scribed initial and terminal positions and tangents are always com- 
posed of a circular arc (with radius determined by the maximum 
curvature allowed), a linear segment, and another circular arc (or a 
subset of these three pieces). As seen in the next section, the numerical 
method we developed indeed yielded (for high ms) such interpolants. 
In fact, this happened for both types of optimization problems consid- 
ered above. 

5.1 Numerical Experiments for Similarity-invariant 
Turn-limited Elastica 

Here we want to solve the minimization problem (7). We wrote 
another Maple program to solve the corresponding system (8) for a 
wide range of parameter values. These were solved by a technique 
very similar to that described in detail in the previous section. The 
major difficulty arising in this case is that we do not know the value 
of L, or x,,,, beforehand, so we cannot make the same computations 
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as before. However, we found that we obtained acceptable results 
when we made an initial guess based on the approximation L x N. 

Figure 17 shows the effect on varying the terminal angle while hold- 
ing the other parameters constant at Qo = 135", K = 0.4, m = 100, 
N = 3 2 , a = I , j 3 = 1 .  

Figure 18 shows the same results as in Fig. 17, but with all of the 
distances scaled so that L = X N + l  = 1. This has the effect of changing 
1 from 1 to l/x,+,. 

FIGURE 17 Maximal reach curves with Qo = l35', qN = -18O0, - l35", . . . ,180". 

FIGURE 18 Normalized maximal reach (minimal length) curves with Qo = 135', 
QN = -]So", -135" ,..., 180". 
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Figure 19 shows the effect on varying m while holding the other 
parameters constant at = 90°, qN = -45', K = 0.4, N = 16, 
a = 1, ,B = 1. As m increases, the curves converge to a circle-line- 
circle path. There is little change in the curves once m is as large as 100. 

Figure 20 shows the same results as in Fig. 19, but with all of the 
distances scaled so that xN+, = 1. Again, as m increases, the curves 
converge to a to a circleline-circle path. 

FIGURE 19 Minimal length curves for turn-limited elastica with varying m. From 
top to bottom at x = 6, these are the curves for m = 3,1,10,30, and 100 respectively. 

FIGURE 20 Normalized similarity-invariant elastica with varying m. From top to 
bottom at x = 0.4, these are the curves for m = 3,1,10,30, and 100, respectively. 
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FIGURE 21 Similarity-invariant elastica with varying N. In order of increasing 
length, these are the curves for N = 12,24,48, and 96 respectively. 

FIGURE 22 Normalized similarity-invariant elastica with varying N. From top to 
bottom at x = 0.2, these are the curves for N = 12,24,48, and 96 respectively. 

Figure 21 shows the effect on varying N, one less than the number 
of links, while holding the other parameters constant at Qo = 180" and 
\IIN = 4 5 O ,  K = 0.7, m = 100, cr = 1, /3 = 1. 

Figure 22 shows the same results as in Fig. 21, but with all of the 
distances scaled so that xN+, = 1. The curves converge to nearly a 
circle-line-circle path since m = 100 here. Note however that since 
we do not adjust the turn parameter (K in this case is the maximum 
turn angle) at all, the limit of the curves will approach a straight line 
between two tiny circular arcs! To avoid this behavior we should 
tune K to the scale, but this would make our design dependent on 
an a priori knowledge of the scale. 

6 DISCRETE MINIMUM VARIATION ELASTICA 

In this section, following the suggestions of Moreton and Stquin [26] 
that minimum variation interpolation might lead to nicer curve 
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interpolations (in the continuous domain), we study cost functions of 
the form: 

Minimize 
{ a  [ 

(*it1 - qi) - (qi - qi-1) 

i 
l2 

subject to 

Qo, $0, q N ,  and eNtl predetermined 

or the similarity-invariant version, where we minimize 

after having set 1 = 1 and relinquishing the requirement that the poly- 
line terminate at a specific point on the x-axis. By predetermining $0 
and we mean that we wish to specify rates of change of \I, at 
the endpoints (0,O) and (L,O), respectively. This is equivalent to 
adding two points P-I and PN+2 to the path so that q-1, the angle 
between P-lPo and m, satisfies \Ir-1 = 90 - 80, and ~ N + I ,  the 
angle between PNPN+1 and PN+ PN+z, satisfies q ~ + 1  = \Ylv + &+I. 

6.1 Euclidean-invariant Minimum Variation Elastica 

With the above understanding, the Euclidean-invariant minimization 
problem takes the form 

[ (.;+I - 2: + q i - 1  Minimize a 
i=O 

subject to 

qo,  W N ,  and predetermined 
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Lagrange multipliers were used to form the expression 

where V denotes the vector of unknown angles {QI,. . . , QN-I}. 
Taking derivatives with respect to the N + 2 variables Ql, . . . , QN-, , 
)L1, h2, and I, leads to the system of equations 

This leads to a system of equations for the Qj sequence of the form 

3 ~ : ~ ( Q i + l -  2Qi + Qi-112 +- [Al sin Q, - A2 cos Qj] = 0, 
2 ( ~ -  l)p+hl ~ ~ o ~ ~ ~ Q i + h ~ ~ ~ o ~ i n ~ ~  

with Q-1, Qo, QN, and QN+, predetermined. 
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6.1.1 Numerical Experiments with Euclidean-invariant 
Minimum Variation Elastica 

In this section and in Section 6.2.1 we discuss in detail the various prob- 
lems and the numerical solutions corresponding to the cost functions 
described in Section 6. We also show several families of curves illustrat- 
ing how changing some of the parameters affects the minimal cost 
curves for the various cost functions. In all of the examples in this sec- 
tion we take Bo = ON+,  = 0, Or equivalently q-, = qo and \IIN+l = qN, 
so that the instantaneous change in curvature at each endpoint is zero. 

The discrete Euclidean-invariant minimum variation elastica curves 
are solutions of the optimization problem (9). Solving the system (10) 
and the corresponding system (12) in the next section proved to be 
more difficult than for those in Section 5, due to the difficulty of 
obtaining a good initial guess. The same type of Newton-Raphson 
method as before was used, but for some specific problems the initial 
guess had to be individually tailored. An initial guess which worked 
quite often was that in which ql = qo - KLIN, q2 = - 2KL/N, 
qN-1 = qN & KLIN, QN-2  = qNF1 * 2KL/N, and the remaining qi 
all equal to the arctangent of the slope of the line segment joining 
P2 and PN-2 obtained in this manner, with the upper of the f 
symbols used when qN < 0 and the lower sign when qN 2 0. 

Figure 23 shows the effect on varying the terminal angle while hold- 
ing the other parameters constant at qo = 135", L = 10, N = 32, 
01=1,j3=1. 

Figure 24 shows the effect of a and B on the results. As the ratio j?/o 
increases, the contribution of the length of the curve to the cost func- 
tion increases, and as a result the length of the curve decreases. This 
phenomenon is readily seen in Fig. 24, which shows curves for 
B/a = 0.1,l .O, and 10. The other parameters are fixed at Wo = 180", 
qN = 180°, L = 10, and N = 32. Note that, in comparison with 
Fig. 4, minimizing B, i.e. removing the penalty on total length, does 
not have as dramatic an effect here as in the case where the length 
was balanced against the integrated squared curvature. 

Figure 25 shows the effect on varying N, one less than the number 
of links, while holding the other parameters constant at 90 = 45", 
qN = -135O, L = 6, a = 1, ,L? = 1. In this case there is very little 
change in the curve for values of N larger than 16. 
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FIGURE 23 Discrete Euclidean minimum variation elastica with qo = 135", W N  = 
-1800, -135", ..., 180". 

FIGURE 24 Discrete Euclidean minimum variation elastica with qo = 1800, W N  = 
180°, and p/cr = 0.1,1,10. 

6.2 Similarity-invariant Minimum Variation Elastica 

With the understanding of Section 6, the similarity-invariant minimi- 
zation problem takes the form 

N 

Minimize a(llriil - 2Qi + llri-l)2+ B 
i=o cz0 cos q i  

( 1  1 )  
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FIGURE 25 Discrete Euclidean minimum variation elastica with varying N. From 
bottom to top at x = 5, these are the curves for N = 8,16,32, and 64 respectively. 

subject to 

W-1, qo, qN, and QN+l predetermined 

2 1 sin qi = 0. 
i=O 

(i.e. the problem of finding the interpolant with I = 1 and maximum L, 
so that one has the largest L/[ (N + 1)fl ratio). 

Lagrange multipliers were used to form the expression 

N B N 

3(V, A; N ,  a ,  B)  = u x(qi - -pi-,)'+ + h C sin qi, 
i=o CE~COS q i  i=o 

where V denotes the vector of unknown angles {\Il l , .  . . , \lrN-,}. 
Taking derivatives with respect to the N variables Q I , .  . . , \ I I N T 1 ,  and 
h leads to this system: 

/3 sin Wj 
2a('Vj+2 - 4qj+1 + 6q j  - 4qjT1 + qjT2) + 2 (xEO C O ~  q i )  

2 sin q i  = 0. 
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6.2.1 Numerical Experiments with Similarity-invariant 
Minimum Variation Elastica 

The discrete similarity-invariant minimum variation elastica curves are 
solutions of the optimization problem (1 1). The system (12) was solved 
by a technique very similar to that in the previous section. As in 
Section 5.1, since we do not know the value of L, or x,,, , beforehand, 
we used an initial guess based on the approximation L x N. 

Figure 26 shows the effect on varying the terminal angle while hold- 
ing the other parameters constant at Qo = 135", N = 32, a = 1, B = 1. 

Figure 27 shows the same results as in Fig. 26, but with all of the 
distances scaled so that L = xN+, = 1 .  This has the effect of changing 
I from 1 to llx,,, .  

Figure 28 shows the effect on varying Bla while holding the other 
parameters constant at = 90°, \I'N = -45O, N = 32. As in Figs 14 
and 24, as Bla increases from 0.1 to 1 to 10, so does x,,,, the 
"reach" of the curve. 

Figure 29 shows the same results as in Fig. 28, but with all of the 
distances scaled so that x,,, = 1. 

FIGURE 26 Maximal reach minimum variation curves with qo = 13Y, \ I ~ N  = -180", 
-135" ,..., 180". 
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FIGURE 27 Normalized maximal reach (minimal length) minimum variation curves 
with Wo = 135",WN = -180°, - l35', ..., 180'. 

FIGURE 28 Discrete similarity-invariant minimum variation elastica with qo = 45", 
qN = -135', and B/a = 0.1,1,10. 

Figure 30 shows the effect on varying N, one less than the number 
of links, while holding the other parameters constant at qo = 180" and 
QN = 4 5 O ,  a = 1, ,!I = 1. 

Fig. 31 shows the same results as in Fig. 30, but with all of the dis- 
tances scaled so that XN+l = 1. 
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FIGURE 29 Normalized discrete similarity-invariant minimum variation elastica 
with qo = 45", 9, = -135", and B/a = 0.1,1,10. 

FIGURE 30 Similarity-invariant minimum variation elastica with varying N. In 
order of increasing length, these are the curves for N = 12,24,48, and 96 respectively. 

FIGURE 31 Normalized similarity-invariant minimum variation elastica with vary- 
ing N. From bottom to top at x = 0.6, these are the curves for N = 12,24,48, and 96 
respectively. 
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7 CONCLUSIONS 

We have introduced and discussed discrete versions of "minimal 
energy" and "minimum curvature variation" curve designs. We 
claim the discretizations provide excellent approximations to the con- 
tinuous problems and may be very useful for a variety of CAD appli- 
cations. Of course, other types of cost functions could and should 
be considered within the same framework. 

The numerical work showed that the Newton-Raphson method was 
suitable for a wide variety of such problems, especially since good 
initial guesses could be provided, using the anticipated behavior of 
results stemming from theoretical studies of the continuous versions 
of the problems. A good initial guess was especially critical in the 
cases where the curvature penalty function approached a barrier func- 
tion (not unexpectedly!). Extensions and comparisons to other numer- 
ical approaches are currently under investigation. 

Whenever one proposes the consideration of a discretized model 
rather than the discretization of the continuous solutions of continu- 
ous models, the question of convergence of the discrete to the conti- 
nuum arises. In the context of discretized elastica as proposed 
herein, it was found that the theory of r-convergence dealing with 
discrete approximations of continuous functionals in the context of 
variational calculus is applicable here. The r-convergence proofs is 
the subject of a companion paper [4]. 
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