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Variational approach to moiré pattern synthesis
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Moiré phenomena occur when two or more images are nonlinearly combined to create a new superposition
image. Moiré patterns are patterns that do not exist in any of the original images but appear in the super-
position image, for example as the result of a multiplicative superposition rule. The topic of moiré pattern
synthesis deals with creating images that when superimposed will reveal certain desired moiré patterns.
Conditions that ensure that a desired moiré pattern will be present in the superposition of two images are
known; however, they do not specify these images uniquely. The freedom in choosing the superimposed im-
ages can be exploited to produce various degrees of visibility and ensure desired properties. Performance cri-
teria for the images that measure when one superposition is better than another are introduced. These cri-
teria are based on the visibility of the moiré patterns to the human visual system and on the digitization that
takes place when the images are presented on discrete displays. We propose to resolve the freedom in moiré
synthesis by choosing the images that optimize the chosen criteria. © 2001 Optical Society of America

OCIS codes: 120.4120, 100.2000, 100.2650, 100.3190.
1. INTRODUCTION
The term moiré comes from French, where it refers to wa-
tered silk. The moiré silk consists of two layers of fabric
pressed together. As the silk bends and folds, the two
layers shift with respect to each other, causing the ap-
pearance of interfering patterns. The moiré technique
for manufacturing cloth was developed in China a long
time ago and was later introduced to France in 1754 by
the English manufacturer Badger.1 Natural moiré phe-
nomena can be seen in daily life, for example in the folds
of a moving nylon curtain or in looking through parallel
wire-mesh fences. The first scientific observations were
made by Lord Rayleigh,2 who suggested using the moiré
phenomenon for testing the quality of gratings.

Two goals exist in moiré pattern research. The first is
the analysis of moiré patterns. This usually involves
some physical situation in which moiré patterns appear
either naturally or by human intervention. The task is
to analyze and characterize the patterns. Most of the re-
search in moiré pattern analysis deals with finding equa-
tions that describe the moiré patterns. In moiré pattern
synthesis the generation of certain moiré patterns is re-
quired. The synthesis process involves producing two
images such that when these images are superimposed
the required moiré patterns emerge. Moiré synthesis
and analysis are tightly linked, and understanding one
task gives insight into the other.

Over the years, various methods to model and analyze
the moiré phenomenon have been suggested. In Section
2 we describe two main approaches to modeling the moiré
phenomenon. In Section 3 we present the moiré pattern
synthesis problem, and in Section 4, we introduce criteria
for measuring the performance of moiré patterns in a su-
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perposition. In Section 5 we discuss the integrability
constraint that ensures that a certain vector field is a gra-
dient field. Section 6 reviews some basic results from
variational calculus and their use in moiré synthesis, and
Section 7 addresses the problem of recovering the poten-
tial function of a gradient field. Section 8 contains some
experimental results, followed by conclusions in Section 9.

Throughout this paper, for the sake of simplicity we
discuss the case of superposition of two images. It is not
too difficult to extend the results to several superimposed
images. We assume a multiplicative superposition rule.
Such a rule is motivated by the multiplication effect im-
plicit in laying transparencies on one another. It is pos-
sible, however, to consider other superposition rules.3

The nonlinearity of the multiplicative superposition al-
lows new frequencies that do not exist in the original im-
age to appear in the superimposed image. In fact, non-
linearity is at the heart of the moiré phenomenon, and
linear superposition such as addition does not elicit it (see
Fig. 1).

2. MOIRÉ PATTERN ANALYSIS
Two models for moiré pattern analysis are reviewed.
The indicial equation method operates in the image
plane, and the Fourier domain method operates in the fre-
quency plane. Detailed descriptions of these models ap-
pear in Ref. 4.

A. Indicial Equation Method
The simplest and oldest model for analyzing the geomet-
ric shape of moiré patterns in the superposition of two
curvilinear gratings is the indicial (or parametric) equa-
2001 Optical Society of America
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tion method surveyed in Refs. 1 and 5. This model is
based on the curve equations of the original curvilinear
gratings. If each of the original layers is regarded as an
indexed family of curves, the moiré pattern of the super-
position forms a new indexed family of curves, whose
equations can be inferred from the equations of the origi-
nal gratings.

According to this model the original images consist of
black curves on a white background. The curves in each
image are assumed to be the equal-height contours of two-
dimensional (2D) functions. We thus have two images
that consist of black curved gratings whose center lines
are the equal-height contours of two functions c(x, y) and
f(x, y) as follows:

c ~x, y ! 5 m, m P Z,

f~x, y ! 5 n, n P Z. (1)

Since the images are binary, the multiplicative super-
position is also an AND operator. Each of the curves in
both images has an index given by the height of the re-
spective contour. As a result, adjacent curves get adja-
cent integers as indices. We denote the indices of the
curves on one image by an integer variable m and the in-
dices of the curves in the second image by the integer
variable n. The coordinates m,n define an (m,n) net. At
each point of the (m,n) net, an m and an n curve intersect.

The (k1 , k2) moiré curves are defined as the curves
joining the intersection points of m and n curves whose
indices obey k1m 1 k2n 5 l, where k1 ,k2 are constant
integers and l runs over the set of integers.

Conceptually, if we let m and n vary continuously, the
(k1 , k2) moiré curves that obey

k1m 1 k2n 5 l, l P Z, (2)

Fig. 1. Two types of superposition. The two gratings in (a) and
(b) are multiplied in (c) and added in (d). Image brightness is
scaled.
become continuous curves that may be regarded as equal-
height contours of a new bivariate function g(x, y).

The order of the (k1 , k2) moiré is defined to be the
highest absolute value of k1 , k2 . The first-order moirés
are therefore the additive moiré u 1 v 5 l and the sub-
tractive moiré u 2 v 5 l. In other words, first-order
moiré patterns are the curves connecting the intersection
points of the constant sum and the constant difference of
the curves’ index values.

Clearly, not all the (k1 , k2) moirés stand out visually.
The visibility of the moiré patterns will be discussed at
greater length below. Usually only first-order moirés
stand out, if at all. In the case of first-order moirés,
sometimes only the additive or only the subtractive moiré
stands out, and sometimes no moiré is apparent at all.
(For an intuitive explanation of the visibility of the first-
order moirés see Ref. 4, p. 1.)

Substituting Eqs. (1) into Eq. (2) results in eliminating
the indices m,n:

k1c ~x, y ! 1 k2f~x, y ! 5 l, l P Z. (3)

We can thus state that the center lines of the (k1 , k2)
moiré corresponds to the equal-height contours of g(x, y)
5 k1c (x, y) 1 k2f(x, y). The indicial equation method
permits a complete geometric specification of the moiré
curves based on the implicit geometric specification of the
curves in the two original images as equal-height con-
tours of bivariate functions.

The indicial equation method has several drawbacks.
In order to use the indicial equation, we need explicit ana-
lytic expressions for the curves, which may not be readily
available. Although the method gives us a condition for
the possible moiré curves, it does not tell us whether the
moiré pattern will indeed be visible to the human eye.
For example, consider the superposition of a family of
horizontal lines and a family of vertical lines. The super-
position will consist of small squares. There will not be
any visible pattern, although the first-order moiré pat-
terns are diagonal lines connecting the opposite vertices
of each square (see Fig. 2).

B. Fourier Domain Method
So far, we have assumed that the original images were bi-
nary images showing the equal-height contours of c (x, y)

Fig. 2. Nonvisible additive and subtractive moiré patterns.
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and f(x, y) as black curves on a white background. We
now generalize this setting through the concept of peri-
odic profile.

The original images are allowed to be p(c (x, y)) and
p(f(x, y)), where p(z) is a periodic function of one vari-
able with period of 1. If p(z) is taken to be a discrete im-
pulse train @ p(z) 5 1 for z P Z and 0 otherwise] the im-
ages p(c (x, y)) and p(f(x, y)) reduce to binary images
with curves representing equal-height contours of c and
f.

In this section we will restrict ourselves to linear c and
f: c (x, y) 5 p1x 1 q1 y, f(x, y) 5 p2x 1 q2 y, p1 , p2 ,
q1 , q2 P R. Note that p(c (x, y)) and p(f(x, y)) will be
periodic images. In Fig. 3(a) a linear function c (x, y) is
shown. In Figs. 3(b), 3(c), and 3(d), p(c (x, y)) is shown,
where the periodic profile p is a discrete-impulse-train, a
cosine, and a square-wave grating, respectively. Al-
though we restrict ourselves here to linear functions, re-
sults obtained in this case are useful, since many func-
tions can locally be approximated by a linear function (the
first two terms of the 2D Taylor expansion).

The Fourier domain method analyzes the moiré pattern
in the frequency domain. According to the convolution
theorem, the multiplicative superposition rule in the im-
age domain transforms to a two-dimensional convolution
between the spectra of the original images:

g~x, y ! 5 p(c ~x, y !)p(f~x, y !) ⇔ G~u,v !

5 F @ p(c ~x, y !)# * F @ p(f~x, y !)#, (4)

where the asterisk denotes convolution.
The Fourier transform of p(x) 5 exp(2pjfx) is P(u)

5 d (u 2 f ). In the 2D domain the Fourier transform of
p(x, y) 5 exp@2pj ( f1x1f2 y)# is P(u,v) 5 d (u 2 f1 ,
v 2 f2). Since p is a periodic function, it can be ex-
panded to a Fourier series:

p~x, y ! 5 (
m52`

`

(
n52`

`

cm,n exp@2pj~mu0x 1 nv0y !#.

The Fourier transform of p(x, y) is readily obtained from
the Fourier series decomposition and linearity of the Fou-
rier transform:

P~u, v ! 5 (
m52`

`

(
n52`

`

cm,nd ~u 2 mu0 , v 2 nv0!.

Furthermore, by the convolution theorem, G(u,v) con-
sists of translated and scaled impulses, as well.

Since c (x, y) 5 p1x 1 q1 y, and f (x, y) 5 p2x 1 q2 y,
it follows that p(c (x, y)) and p(f(x, y)) have frequency
components only in the direction of the gradients ¹c and
¹f. This means that the frequency domain repre-
sentation of p(c (x, y)) and p(f(x, y)) will have impulses
only along the lines p1u 1 q1v 5 0 and p2u
1 q2v 5 0. This can also be seen from the fact that
p(c) and p(f) are rotated one dimensional (1D) periodic
functions on the x axis. Therefore F @ p(c (x, y))# and
F @ p(f(x, y))# are obtained by rotating the 1D spectra
from the u axis by the same angles. In the case of a
raised cosine profile, p( • ) is given by p(c (x, y))
5

1
2 cos@2pc (x, y)# 1

1
2, and only three impulses will exist

in the frequency domain. Two impulses at either side of
the origin are contributed by the cosine function. These
two impulses are at distance 1 from the origin and lie
along the line p1u 1 q1v, where f 5 p1x 1 q1 y. The
third impulse is contributed by the constant term and lies
at the origin.

The convolution of the impulse spectra is performed as
a discrete convolution. The location of each impulse in
the superposition spectrum will be the vectorial sum of
the locations of two impulses, one from each original im-
age. We will label the (k1 , k2) superposition impulse as
the impulse whose location is created by the vectorial sum
of the k1 impulse in the first original spectrum and the k2
impulse in the second original spectrum. The amplitude
of the (k1 , k2) impulse is the product of the amplitudes of
the k1 impulse in the first original spectrum and the k2
impulse in the second original spectrum. Figure 4 shows
the superposition of two linear gratings with a raised co-
sine profile in the frequency domain.

Each impulse in the 2D spectrum is characterized by
three main properties: its label, its geometric location,
and its amplitude. To the geometric location of an im-
pulse, a frequency vector f is attached (in the frequency
domain). This vector can be expressed in polar coordi-
nates ( f, u) where f is the distance of f from the origin
and u is the angle of f. In terms of the image domain, the
geometric location of an impulse in the spectrum deter-
mines the frequency f and the direction u of the corre-
sponding periodic component in the image. The ampli-
tude of the impulse represents the intensity of that
periodic component in the image.

The geometric locations that include impulses in
the superposition spectrum but do not include impulses in

Fig. 3. Periodic profiles of a linear function.
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the original spectra represent the moiré patterns. These
impulses represent new frequency components created by
the superposition and not by one of the original images
alone. Impulses that are labeled f (0, i) or f (i, 0) for some i
exist in one of the original images since f0 represents the
dc term.

In the case of other profiles such as the square-wave
one, we will have also higher-order moiré impulses. The
spectrum of a linear square-wave grating is an infinite set
of impulses along the frequency direction. Convolution
of two such impulse trains will result in an infinite lattice
covering the entire frequency plane.

However, we will show that the amplitude of impulses
away from the origin tends to zero. We can disregard im-
pulses with low amplitude since their effect on the image
is small.

More formally, let p(z) be a periodic function whose
values are bounded between 0 and 1. Then all its Fou-
rier series coefficients (impulse amplitudes) have absolute
values between 0 and 1:

Fig. 4. Superposition in the frequency domain: spectra of the
(a) first raised cosine grating, (b) second raised cosine grating, (c)
superposition.
p~x ! 5 (
m52`

`

cm exp~2pjmfx !,

0 < ucmu 5 U1
T E

T
p~x !exp~2pjmfx !dxU

< U1
T E

T
exp~2pjmfx !dxU < 1.

Furthermore, it is true for any convergent Fourier se-
ries that ucmu → 0 as umu tends to `. Moreover, if p(x)
has n continuous derivatives, then its Fourier transform
P(u) tends to 0 as uuu → ` at least as fast as 1/un11 (see
Ref. 6, p. 74): limuuu→`uP(u)u 5 O@1/(un11)#. Thus the
smoother the function, the more rapidly the coefficients of
the series tend to zero.

Recall that the spectra of the original images are given
by P(u) rotated along the frequency directions. Also, the
amplitude of the (k1 , k2) impulse is the product of the
amplitudes of the k1 and k2 impulses in the original im-
ages’ spectra. Therefore the amplitude of the (k1 , k2)
impulse in the superposition will tend to 0 faster than
@1/(u1 , u2)#n11, where u1 and u2 are the locations of the
k1 and k2 impulses, respectively.

The Fourier approach has the advantage that it en-
ables us to analyze the moiré patterns in the frequency
domain, which is a suitable domain for determining the
response of the visual system.

In the case of nonlinear gratings, the spectrum of the
gratings no longer consists of impulses and may be con-
tinuous. It is then impossible to analyze the superposi-
tion spectrum with the same ease as before. However, a
local frequency analysis can use the above results since
any smooth function can be approximated by a linear
function in a small enough region.

3. PROBLEM OF MOIRÉ SYNTHESIS
Synthesis of moiré patterns is the generation of two im-
ages that when superimposed will reveal the intended
moiré pattern. We restate the condition for the genera-
tion of a certain moiré pattern. Let c (x, y),f(x, y) be
two 2D functions, and let p(z) be a 1D periodic function
with period of unity. The superposition
p(c (x, y))p(f(x, y)) will contain the (k1 , k2) moiré pat-
tern whose geometric layout is the equal-height contours
of g(x, y) if the following condition holds:

g~x, y ! 5 k1c ~x, y ! 1 k2f~x, y !. (5)

In the synthesis setting we assume that g(x, y) is given.
Equation (5) shows that f is completely determined by g
and c (and, conversely, c is completely determined by g
and f). There is, however, a degree of freedom in choos-
ing c or f. The moiré pattern described by g will stand
out visually for some choices of c, and yet it may be hid-
den for other choices owing to the inherent filtering pro-
cess of the human visual system. We will first determine
criteria for evaluating the superposition image. Using
these criteria, we will choose c and f that will satisfy Eq.
(5) and optimize our performance criteria. From here on,
we will deal with synthesis of first-order (1, 21) moiré
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patterns, since higher-order moiré patterns are generally
less dominant (see Subsection 2.B). Synthesis of the (1,
1) or higher-order moiré patterns requires some straight-
forward modifications.

4. PERFORMANCE CRITERIA
When synthesizing moiré patterns, we have to choose c
and f from an infinite set of functions that satisfy Eq. (5).
In this section we propose criteria to estimate the visual
performance of the moiré. On the basis of these criteria
we can decide whether one choice of c and f that satisfy
Eq. (5) is better than another. In Section 7 we use these
criteria to optimally choose c and f. We will first con-
sider performance criteria for linear moiré. We assume
that the superposition image and the resulting moiré pat-
terns are approximately linear in a small enough region.
On the basis of local analysis and the results for linear
moiré performance, we will formulate criteria for general
moiré patterns.

A. Linear Moiré Performance
The filtering process of the human visual system is nicely
demonstrated in two simple experiments. A figure of co-
sine vertical bars with continuously varying frequencies
and amplitudes (see Ref. 7, Fig. 2.4-3, p. 35) demonstrates
sensitivity to the spatial frequency of the cosine bars.
Comparing a figure of a checkerboard with a rotated du-
plicate (see Ref. 8, Fig. 5.2, p. 83) demonstrates the
nonisotropy of the visual system filtering: The human vi-
sual system is more sensitive at 0 and 90 deg than at 45
deg to changes with equal contrast and frequency.

The contrast of a pattern I is defined by C 5 (Imax
2 Imin)/(Imax 1 Imin), where Imax and Imin are the maxi-
mum and minimum intensities, respectively, in the pat-
tern. For an absolute uniform image, Imax 5 Imin and C
5 0. For a square-wave grating, Imax 5 1, Imin 5 0, C
5 1. Since the denominator is proportional to the mean
intensity, contrast can also be considered as the degree of
modulation of intensity above the mean. For sinusoidal
gratings the contrast is proportional to the amplitude.

The contrast sensitivity function (CSF) of a system is
CSF5output contrast/input contrast. It is not always
feasible to measure the output for humans in a completely
controlled fashion. Necessarily, psychological experi-
ments are used, requiring many assumptions about the
system’s behavior.

The experimental procedure for measuring the CSF in-
volves presenting each of a set of vertical sinusoidal grat-
ings on a visual display to a viewer who can vary the con-
trast control while maintaining contrast average
luminance. For a given pattern coarseness, the viewer is
asked to adjust the contrast until the grating is just
barely distinguishable. The threshold of contrast percep-
tion c(u) is obtained at different spatial frequencies, and
the contrast sensitivity function is CSF(u) 5 a/c(u) (the
constant a is assigned to barely distinguishable contrast).

Dooley (see Ref. 9, p. 118) has provided the following
equation to fit the data from the above experiments:

CSF~u ! 5 u5.05@exp~20.138u !#@1 2 exp~0.1u !#u, (6)
where u 5 2pf and f is the spatial frequency along the x
axis in cycles per degree.

A review of the nonisotropy of the visual system10 de-
scribes results of the following experiment. Gratings
were presented to a viewer at different angles and differ-
ent distances. The distances at which the gratings were
barely visible represent the sensitivity of the visual sys-
tem to orientation.

As a measure of the visibility of an impulse whose lo-
cation on the frequency plane is f, we take

V~f! 5 H1~ ifi ! • H2(angle~f!), (7)

where H1 and H2 are the functions obtained from the
above two experiments.

Recall that for the raised cosinusoidal profile we have
only the first-order moiré. In moiré pattern synthesis we
receive the desired pattern p( g(x, y)) 5 p( p1x 1 q1 y)
as input. The gradient of the desired pattern ¹g
5 ( p, q) points in the required frequency direction. In

addition, 1/i¹gi is the distance between two adjacent pe-
riods of p( g(x, y)). Therefore the magnitude of the spa-
tial frequency of p( g(x, y)) is i¹gi . In other words, for
p(g(x, y)) to appear as the (1, 21) moiré, f(1, 21) should be
equal to ¹g. Since in moiré synthesis we receive g as in-
put, the location of f(1, 21) is set by ¹g when Eq. (5) is sat-
isfied.

The freedom in choosing different c and f that satisfy
Eq. (5) allows control of the location of f(1, 1) . For the (1,
21) moiré to be visible, we should minimize the visibility
of the (1, 1) moiré. The optimal fopt ,copt for this mini-
mization is

fopt 5 arg min
f

H1~ if~1, 1 !i ! • H2(angle~f~1, 1 !!), (8)

copt 5 g 1 fopt . (9)

f(1, 1) can be computed by

f~1, 1 ! 5 ff 1 fc 5 ¹f 1 ¹c 5 2¹f 1 ¹g,

where we used the following result:

g 5 c 2 f⇒¹c 5 ¹g 1 ¹f.

According to the visibility function (7) the visual sys-
tem will be less responsive to higher frequencies, and
hence the performance will improve as i¹fi is increased.
Such uncontrolled improvement in the performance be-
comes problematic when we use digital media to repre-
sent the images. As we further increase i¹fi we will get
an additional strong unwanted moiré between the grating
and the pixel frequency of the display, as a result of alias-
ing.

To account for this effect in the performance criteria,
another term, M, will be added to Eq. (7) as follows:

V~f~1, 1 !! 5 H1~ if~1, 1 !i ! • H2(angle~f~1, 1 !!) 1 M~ if~1, 1 !i !.

(10)
This term will become dominant for very high frequen-

cies and prevent the unbounded decrease in Eq. (10).
This digitization term M(if(1, 1)i) should be negligible for
low frequencies and dominant for high frequencies. In
addition to choosing M with these properties, we should
choose the crossing point
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M~ if~1, 1 !i ! 5 H1~ if~1, 1 !i ! • min H2(angle~f~1, 1 !!)
(11)

with care. To do so, we chose the function M( • ) to be of
the form M( • ) 5 mM̃( • ), where M̃( • ) is an increasing
polynomial and m is a parameter. m is determined so as
to set the crossing point (11) as described below. We de-
fine the digitization threshold Tf as the frequency at
which the gratings c and f create the aliasing effects.

We denote f̃ and c̃ as the functions computed by Eqs.
(8) and (9). We would like i¹f̃i and i¹c̃i to be smaller
than the digitization threshold by e1 . 0i¹f̃i , Tf

2 e1 , i¹c̃i , Tf 2 e1 . Since the choice of M affects
the choice of f̃ and only then is c̃ computed, we will ex-
plore the relation between i¹fi and i¹ci:

g 5 c 2 f,

¹c 5 ¹g 1 ¹f, (12)

i¹ci 5 i¹g 1 ¹fi < i¹gi 1 i¹fi . (13)

If the condition i¹f̃i , Tf 2 e1 holds, we have i¹c̃i
< Tf 2 e1 1 i¹gi .

We denote the frequency of the crossing point as fcp .
If we assume that i¹f̃i < fcp 1 e2 , e2 . 0, we arrive at
the following result: If we choose the crossing-point fre-
quency fcp according to fcp < Tf 2 i¹gi 2 e1 2 e2 , f̃
and c̃ will satisfy i¹f̃i < Tf 2 e1 2 i¹gi , i¹c̃i < Tf
2 e1 .

Intuitively, the value of e1 represents how much we
would like to stay away from the digitization threshold,
and e2 represents the possibility that the minimization
procedure will carry i¹f̃i beyond the crossing point.

B. Performance of Nonlinear Moiré Patterns
The visibility of the (1, 1) moiré in a general superposition
over a region V is defined as

W(f~1, 1 !)~V! 5 EE
V
V(f~1, 1 !~x, y !)dxdy,

where V( f(1, 1)(x, y)) is the function defined in Eq. (10).
This follows from giving equal importance to the visibility
of all points and using V( f(1, 1)(x, y)) as the visibility cri-
terion at the point (x, y).

Over a discrete image I of size M 3 N we have

W( f~1, 1 !)~I ! 5 (
i51

M

(
j51

N

V( f~1, 1 !~i, j !). (14)

5. INTEGRABILITY CONSTRAINT
In minimization of the visibility of the (1, 1) moiré, Eq.
(14) depends on f(1, 1)(x, y) 5 2¹f(x, y) 1 ¹g(x, y).
Since Eq. (14) depends explicitly on ¹f, we may state the
optimization problem as follows: for each (i, j) find
¹fopt(i, j) that will minimize V( f(1, 1)(i, j)).

The problem with such a scheme is that the obtained
vector field ¹fopt may not be a conservative field. This
means that no function can be found for which ¹fopt will
be the gradient (for more information on conservative
fields and the integrability constraint see any standard
vector analysis textbook such as Ref. 11, pp. 1076–1082).

Enforcing the integrability test for ¹f, we are led to the
following problem:

¹fopt 5 arg min
¹f

W( f~1, 1 !)~I ! (15)

subject to fxy 5 fyx .

As we shall see in Section 6, our variational solution will
not impose integrability as a hard constraint, but we shall
enforce it approximately by means of a penalty term.

6. RESULTS FROM VARIATIONAL
CALCULUS
In this section we will state some results from variational
calculus that are used in the following sections. For a
more complete description refer, for example, to Ref. 6 or
Ref. 12.

The calculus of variations deals with minimizing func-
tionals. A functional is a mapping from a set of functions
to the real line. A fundamental result of the calculus of
variations is that the extrema of functionals must satisfy
an associated differential equation called the Euler equa-
tion over the domain.

The Euler equation is a necessary but not sufficient
condition for the existence of an extremum. By extrema
we mean local minima, maxima, and inflection points.
We assume that all functions and functionals are continu-
ous and have derivatives. Another assumption is that
the functional values are positive.

For example, a functional I1 that depends on a bivari-
ate function z(x, y), as follows,

I1@z# 5 EE
V
F~x, y, z, zx , zy!dxdy,

yields the following Euler equation:

Fz 2
]

]x
Fzx

2
]

]y
Fzy

5 0.

A different functional I2 that depends on z(x, y) and its
derivatives, as follows,

I2@z# 5 EE
V
F~x, y, z, zx , zy , zxx , zxy , zyy!dxdy,

yields the following Euler equation:

Fz 2
]

]x
Fzx

2
]

]y
Fzy

1
]2

]x2 Fzxx

1
]2

]x]y
Fzxy

1
]2

]y2 Fzyy
5 0.

The functional I3 that depends on the gradient of
z(x, y), i.e., ¹z(x, y) 5 (p(x, y), q(x, y)), as follows,

I3@ p,q# 5 EE
V
F~x, y, p, q, px , py , qx , qy!dxdy,

yields a coupled set of differential Euler equations:
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Fp 2
]

]x
Fpx

2
]

]y
Fpy

5 0,

Fq 2
]

]x
Fqx

2
]

]y
Fqy

5 0.

The Euler differential equations need boundary condi-
tions in order to have a specified solution. However, in
many problems there are no imposed prior conditions on
the boundary values, or the behavior of the function at
the boundary may be restricted by some general condi-
tions. In such cases, the variational calculus supplies us
with further conditions for the boundary values. These
conditions are also necessary conditions for the functional
to be stationary with respect to variations (see Ref. 6, p.
208). Such conditions are called natural boundary condi-
tions.

In the case of I1 , the natural boundary condition is

~Fzx
, Fzy

! • n 5 0,

where n is the normal to the parametric curve represent-
ing the boundary of V.

For I3 , the natural boundary conditions are

~Fpx
, Fpy

! • n 5 0, ~Fqx
, Fqy

! • n 5 0. (16)

Recall [from Eq. (10)] that the visibility of the (1, 1)
moiré in a small area surrounding (x, y) is expressed by
V( p(x, y), q(x, y)), where ( p(x, y), q(x, y)) 5 ¹f. In-
stead of minimizing a term based on V subject to the in-
tegrability constraints py 5 qx , we incorporate the inte-
grability constraints through a penalty term ( py 2 qx)2

to the functional. This approach seems to work better
than other approaches that try to strictly enforce the in-
tegrability constraints.13 The parameter l permits con-
trol of the trade-off between a ‘‘smoother’’ vector field that
will enable better recovery of f and a vector field that
reaches lower visibility. The squaring of V and the par-
ticular form of the penalty term were chosen to produce
simple Euler equations.

Adding a penalty term that represents the integrability
constraint and squaring V results in the following func-
tional:

I@ p, q# 5 EE
V
(V2~ p, q ! 1 l~ py 2 qx!2)dxdy. (17)

Equation (17) is in I3 form, and its Euler equations are

2VVp 1 l~ pyy 2 qxy! 5 0,

2VVq 1 l~qxx 2 pyx! 5 0. (18)

By discretizing Eqs. (18) we obtain the following iterative
scheme:

pi, j
k11 5 p̄ i, j

k 2
1

2
q̃ i, j

k 2
1

2l
V~ pi, j

k , qi, j
k !Vp~ pi, j

k , qi, j
k !,

qi, j
k11 5 q̄ i, j

k 2
1

2
q̃ i, j

k 2
1

2l
V~ pi, j

k , qi, j
k !Vq~ pi, j

k , qi, j
k !,

where
p̄ i, j 5
pi, j11 1 pi, j21

2
,

q̄ i, j 5
qi11, j 1 qi21, jx

2
,

p̃ i, j 5
pi11, j11 1 pi21, j21 2 pi11, j21 2 pi21, j11

4
,

q̄ i, j 5
qi11, j11 1 qi21, j21 2 qi11, j21 2 qi21, j11

4
.

As initial conditions, we took an arbitrary vector field.
The boundary conditions are described in Section 9.
Note that the natural boundary conditions (16) in this
case reduce to the integrability condition py 5 qx on the
boundary. The above iterative scheme is simple, and al-
though in our experiments it converged quickly, we ex-
pect more complicated methods such as multigrid meth-
ods to be more efficient.

7. RECOVERING HEIGHT FROM
GRADIENT
A. Height-from-Gradient Problem
The height-from-gradient problem deals with the follow-
ing problem: Given a vector field F(x, y), find a function
f(x, y) such that ¹f(x, y) 5 F(x, y).

Note that the solution f is not unique, since adding a
constant term to f will result in another solution to the
problem. This problem can therefore be classified as an
initial-value problem: Given an initial value at some lo-
cation f(x0 , y0) and F(x, y), find f(x, y) for all the re-
gion.

A simple solution to this problem is

f~x, y ! 5 f~x0 , y0! 1 E
C

¹f • dl, (19)

where C is a curve from (x0 , y0) to (x, y). This method
allows us to compute c completely once an initial value
c (x0 , y0) is determined. The problem with Eq. (19) is
that it is numerically unstable. A height value at some
point would in the presence of noise depend on the inte-
gration path that was taken. It is better to find a best-fit
surface f! to f. This can be accomplished by a varia-
tional calculus setting.13 The variational approach to
height from gradient is discussed in Subsection 7.B.

B. Variational-Calculus Setting for Height from
Gradient
Given the vector field F(x, y) 5 (p(x, y), q(x, y)) and a
possible approximate solution f!, we wish to minimize
the following functional:

EE
V
~ fx

! 2 p !2 1 ~ fy
! 2 q !2dxdy. (20)

Calculating the Euler equation for functional (20)
yields Df! 5 px 1 qy , where Df! is the Laplacian of f!:
]2f!/]x2 1 ]2f!/]y2. This equation is a second-order el-
liptic partial differential equation called a Poisson equa-
tion. The Poisson equation has been widely studied, and
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many procedures for numerical solutions exist. In our
experiments we used two methods to solve this equation.
One is a multigrid method, and the other is based on sine
transforms and tridiagonal solutions.14

Once again, note that this equation does not uniquely
specify a solution without further constraints. In fact,
we can add any function h that satisfies Dh 5 0 to the so-
lution. For this particular problem, the natural bound-
ary conditions are ( fx

!, fy
!) • n 5 ( p, q) • n, where n is

the normal to the curve that represents the boundary.
With these boundary conditions the solution is still not
unique, since an arbitrary constant can be added to f!

without changing the functional. To get a unique solu-
tion, one can fix arbitrary height at some point.

8. EXPERIMENTAL RESULTS
When solving Eqs. (18) we have to specify a boundary con-
dition and an initial value. The initial value is pi, j

0 ,qi, j
0

for all i, j in the domain. The boundary condition is the
update rule from one iteration to the next along the
boundary of the domain. Since we have no a priori
knowledge of the boundary values, we will consider two
methods for updating the boundary values between itera-
tions.

If we have additional knowledge on the desired p and q,
we may be able to incorporate this knowledge into the
boundary condition. For example, if the desired pattern
can be rolled up along the x and y axes to form the surface
of a three-dimensional torus or donut, periodic boundary
conditions can be used.

In periodic boundary conditions, the boundary value in
the next iteration is taken from the computed values
along the opposite boundary. For the case of an image I
of size N 3 N, the update rule is

pi,1
k 1 1 5 pi,N21

k , pi,N
k11 5 pi,2

k ,

p1,i
k11 5 pN21,i

k , pN,i
k11 5 p2,i

k ,

and the boundary of qi, j
k is updated in a similar manner.

Periodic boundary conditions will perform well for peri-
odic shapes, but this is hardly the general case.

In the general case, if we knew py ,qx on the boundary,
we could update the boundary values by integration:

p~1, j ! 5 p~1, j 2 1 ! 1 E
j21

j

py~1, t !dt,

p~N, j ! 5 p~N, j 2 1 ! 1 E
j21

j

py~N, j !dk,

p~i, 1 ! 5 p~i, 2 ! 2 E
2

1

py~i, t !dt,

p~i, N ! 5 p~i, N 2 1 ! 1 E
N21

N

py~i, t !dt. (21)

The values of q can be similarly updated.
The integration can be numerically approximated by

the trapezoidal rule (see Ref. 15, p. 190) as follows:
p~1, j ! 5 p~1, j 2 1 ! 2
1
2 (py~1, j 2 1 ! 1 py~1, j !),

p~N, j ! 5 p~N, j 2 1 ! 1
1
2 (py~N, j 2 1 ! 1 py~N, j !),

p~i, 1 ! 5 p~i, 2 ! 2
1
2 (py~i, 2 ! 1 py~i, 1 !),

p~i, N ! 5 p~i, N 2 1 ! 1
1
2 (py~i, N ! 1 py~i, N 2 1 !).

(22)

We now turn to the problem of approximating the de-
rivatives in Eq. (22). We can approximate
qx(i, 1), qx(i, N), i 5 2 ... N 2 1 by the central-
difference formula (see Ref. 15, p. 675). The values of
qx(1, j), qx(N, j) can be approximated by forward or
backward formulas. We can now use the fact that p and
q satisfy py 5 qx on the boundary to compute py needed
for the above computation.

The values at the corners p(1, 1), p(1, N),
p(N, 1)p(N, N), q(1, 1), q(1, N), q(N, 1), q(N, N) are
subject to large numerical error, and we average them
with values from neighboring pixels.

To evaluate the algorithm it would be desirable to syn-
thesize moiré patterns whose optimal f and c are known.
We could then compare the optimal f and c with the func-
tions found by the minimization process.

Finding optimal f and c for arbitrary moiré patterns
requires exhaustive search over a function space. Such
search is in the general case clearly impractical. How-
ever, for certain moiré patterns, optimal synthesis can be
computed without exhaustive search. An example of
such moiré patterns is linear patterns.

From the structure of the optimality criterion it is clear
that the optimal ¹f should be constant throughout the
image. The optimal f should therefore be a linear image.

To find the optimal f we proceed as follows. Every lin-
ear function f is characterized by two parameters ( p, q)
5 ¹f. Finding the optimal f reduces in this case to
evaluating the performance criteria over R2. The opti-
mal f is not unique, since the performance criteria is
symmetric with respect to reflection around the lines x
5 0, y 5 0, y 5 x, y 5 2x. In other words,
V( p0 , q0) 5 V( p0 , 2 q0) 5 V(2p0 , q0), and so on.

We then check the solution found by the iterative
scheme. Starting from an initial condition of ( p, q)
5 (0, 1) and using the boundary conditions (22), we ar-
rive at the solution whose gradient is identical to one of
the optimal gradient. The initial values and the values
at iteration 20 are shown in Fig. 5. The dotted vectors
represent the gradient of the original linear image, and
the solid vectors represent the computed ¹f.

It is interesting to start with two functions, create a su-
perposition, and feed this superposition to the iterative
procedure. In general, the solution will not be the same
as the two original functions. The reason for this is that
the superposition we started with was probably not opti-
mal or that the algorithm converges to a different local
minimum.
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However, we succeeded in calculating the two original
functions in the following case. We start with two el-
lipses whose centers are shifted along the x axis. The
equations for two such ellipses are

~x 2 s !2

a2 1
y2

b2 5 h2,

~x 1 s !2

a2 1
y2

b2 5 k2.

Fig. 5. Linear moiré, initial condition (top), and values after 20
iterations (bottom).

Fig. 6. Hyperbolic patterns: results for natural boundary con-
ditions.
The indicial equation is h 2 k 5 p. By elimination of h
and k from these equations and after some rearrange-
ments, the following equation is obtained,5

4x2

a2p2 2
y2

~b2p2/4! 2 b2s2 5 1, (23)

which represents a hyperbola parameterized by p.
Indeed, when we used the synthesis algorithm to pro-

duce hyperbolic moiré patterns, such ellipses were found.
In Fig. 6 results are shown for natural boundary condi-
tions, and in Fig. 7 results are shown for periodic bound-
ary conditions. The iterative process converged fast in
our experiments. Usually after approximately 200 itera-
tions there was no apparent change in the images. The
minimized functional values for the above experiment are
plotted in Fig. 8.

Fig. 7. Hyperbolic patterns: results for periodic boundary con-
ditions

Fig. 8. Decrease in functional value.
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The parameter l in Eq. (17) allows control of the
‘‘smoothness’’ of the solution. The results in Fig. 9 were
obtained for l 5 200. Compare these images with Fig.
10, which was obtained for l 5 1000.

A face image g(x, y) and its raised cosine periodic pro-
file 0.5 cos@2pfg(x, y)# 1 0.5 are shown in Figs. 11 and 12.
The computed f and c and the superposition image are
shown in Figs. 13 and 14. The periodic profile of the face
image in Fig. 15 is shown in Fig. 16. The computed f
and c are shown in Fig. 17, and the superposition image
is shown in Fig. 18.

In our scheme for moiré synthesis, the superposition
image consists of low-frequency and high-frequency com-

Fig. 9. Result for l 5 200.

Fig. 10. Result for l 5 1000.
Fig. 11. Face image 1.

Fig. 12. Periodic profile of Fig. 11.

Fig. 13. c and f computed for Fig. 12.
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ponents. The low-frequency components represent the
desired pattern and zero-order moiré patterns (if they ex-
ist). The high-frequency components represent the (1, 1)
moiré terms that were ‘‘pushed’’ outside the visibility
circle and higher-order moirés. We can therefore apply
low-pass filtering to the superposition image to enhance
the desired pattern. An example of applying simple low-
pass filtering is shown in Fig. 19. Compare the recon-
structed image (Fig. 19) with the original pattern (Fig.
16).

If, in addition, the periodic profile does not have a dc
term, zero-order moiré patterns do not exist, and hence
we expect better reconstruction.

Fig. 14. Superposition of the images in Fig. 13.

Fig. 15. Face image 2.

Fig. 16. Periodic profile of Fig. 15.
Fig. 17. c and f computed for Fig. 16.

Fig. 18. Superposition of the images in Fig. 17.

Fig. 19. Low-pass filtering applied to Fig. 18.
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9. CONCLUSIONS
The suggested visibility criteria seem to produce good re-
sults especially in simple cases such as Fig. 6. In more-
complicated images (such as the face images), the optimi-
zation algorithm seems to converge to a local minimum,
and the final result depends on the initial conditions. Al-
though in the general case the boundary condition is un-
known, experimental results show that this affects only
solution pixels near the boundary.

The results of this work suggest another application
that might have been overlooked. If the desired pattern
is smooth, the two original images bear little or no resem-
blance to the desired pattern. The desired pattern is cre-
ated by the nonlinear superposition of the two images.

Moiré pattern synthesis may then be used for some sort
of visual cryptography. Instead of transmitting the im-
age on an unsecured channel, it is possible to transmit
two images that create a moiré pattern of the desired pat-
tern. However, note that for nonsmooth images such as
the face image in Fig. 15, areas of discontinuities in c and
f may indicate the location of the boundary of the face.

A method for visual cryptography for binary images
has been proposed in Ref. 16 that allows perfect recon-
struction, but the reconstructed image is half the resolu-
tion of the transmitted images. Extending this method
to gray-level images will require transmitting two very
large images. In moiré synthesis, perfect reconstruction
is not possible. However, as is seen in the previous ex-
amples, it is often easy to recognize the pattern from the
superposition. Our performance criteria were designed
for visibility of the moiré patterns. Other applications,
such as visual cryptography, certainly require different
performance criteria. The optimization scheme, how-
ever, may remain the same.
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terpretations of moiré patterns,’’ J. Opt. Soc. Am. 54, 169–
175 (1964).

6. R. Courant and D. Hilbert, Methods in Mathematical Phys-
ics (Interscience, New York, 1953), Vol. 1.

7. W. K. Pratt, Digital Image Processing, 2nd ed. (Wiley, New
York, 1991).

8. R. Ulichney, Digital Halftoning (MIT Press, Cambridge,
Mass., 1987).

9. M. Levine, Vision in Man and Machine (McGraw-Hill, New
York, 1985).

10. M. Taylor, ‘‘Visual discrimination and orientation,’’ J. Appl.
Opt. 53, 763–765 (1963).

11. G. Thomas and R. Finney, Calculus and Analytic Geometry,
9th ed. (Addison-Wesley, Reading, Mass., 1996).

12. H. Sagan, Introduction to the Calculus of Variations (Dover,
New York, 1969).

13. B. K. P. Horn and M. J. Brooks, ‘‘The variational approach
to shape from shading,’’ Comput. Vis. Graph. Image Pro-
cess. 2, 174–203 (1986).

14. G. Strang, Introduction to Applied Mathematics
(Wellesley–Cambridge Press, Wellesley, Mass., 1986).

15. R. L. Burden and J. D. Faires, Numerical Analysis, 6th ed.
(Brooks Cole, Pacific Grove, Calif., 1997).

16. M. Naor and A. Shamir, ‘‘Visual cryptography,’’ in EURO-
CRYPT 1994, Lecture Notes in Computer Science (Springer-
Verlag, New York, 1995), Vol. 950, pp. 1–12.


