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Abstract

We present a local rule of behavior for extremely simple agents, only able
to detect the presence of other agents in a visibility sector directly in front of
them. By implementing this simple, local, rule of interaction, the agents co-
ordinate their movement without ever acquiring any information on the exact
location of any other agent. The simplicity of the agents allow for a cost ef-
fective implementation of the model, since the use of sophisticated equipment
is rendered unnecessary. The formation to which the agents converge, be it a
rotating regular polygon, a set of rotating polygons, or some other cohesive
behavior, depends on a set of simple predefined parameters: the agents’ field
of view, their common speed and their rotation radii. The work presented
here contains a full analysis of a beacon-agent system, as well as convergence
theorems for a 2-agent system and equilibrium analysis for a N -agent system.
Gathering in the N -agent case and orientation synchronization in the 2-agent
case are demonstrated in simulation. Methods of controlling the location of
such a swarm are also discussed and were tested both in simulations and in
the lab with actual robots.
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Index of Symbols

N Number of agents in a given system. N ∈ N.

α Central angle of agents’ sector of visibility. 0 ≤ α ≤ 2π, α ∈ R.

Rv Radius of agents’ sector of visibility.

G The graph representation of a given system. G = {V, E}, where V is the
set of vertices representing agents, and E is the set of directed edges
representing data flow to the perceiving agent from the agents perceived
by it.

vi Agent i’s vertex in the underlying graph representation.

deg−(vi) The indegree of vi, i.e. the number of vi’s incoming edges in the
graph representation, or the number of agents detected by agent i.
deg−(vi) ∈ Z.

O the origin of an arbitrary global reference frame.

xi Agent i’s x coordinate in an arbitrary global reference frame. xi ∈ R.

yi Agent i’s y coordinate in an arbitrary global reference frame. yi ∈ R.

θi The angle between agent i’s body frame and an arbitrary global reference
frame. 0 ≤ θi < 2π.

vi The velocity vector of agent i.

ωi Agent i’s turning rate, i.e. ωi = d
dtθi.

pi Agent i’s position, i.e. pi = (xi, yi)
T . In case of a single agent, pi is replaced

by pa in order to emphasize the fact that only one agent exists.

ci Agent i’s center of rotation. ci ∈ R2.

p The vector of all agents’ positions, i.e. pT = (p1, p2, ..., pN ) = (x1, y1, ..., xN , yN ).

θ The vector of all agents’ orientation, i.e. θ = (θ1, θ2, ..., θN )

v The constant speed of all agents in all systems described in this work.
v ∈ R.

R(G, i) Agent i’s turning radius, as a function of the current state of the
underlying graph G. R(G, i) ∈ {R, r}; 0 < r < R; R, r ∈ R

S The system’s switching number, an agent switches its turning radius when
the number of agents it senses in its sector of visibility rises above or
falls below this number. S ∈ N.

ϕi Agent i’s polar angle in an arbitrary global reference frame, i.e. ϕi =
arctan 2 (yi, xi).

T A time span, usually denotes a period time for systems with periodic orbits.
T ∈ R.
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Chapter 1

Introduction

”Go to the ant, thou sluggard; consider her ways, and be wise:
Which having no guide, overseer, or ruler, Provideth her meat in
the summer, and gathereth her food in the harvest.”

- Proverbs 6:6, King James Bible

Since biblical times, and perhaps since the dawn of mankind, the inquis-
itive human mind has been fascinated by the emergence of complicated col-
lective behaviors in nature, especially when performed by the simplest of
creatures. We as a species are enchanted by the emergence of sophisticated
patterns from coordinated behavior, perhaps since we find it so difficult to
achieve agreement and harmony amongst ourselves. The ant has continued
to be the subject of observations throughout the ages, and her ways are still
considered by contemporary biologists and physicists such as the authors of
[6], [13] and references therein.

The ant and its colony are interesting from an engineering standpoint as
well, where the prospect of achieving decentralized coordination using implicit,
indirect communication between autonomous a(ge)nts (or man-made ants,
either physical robots or virtual agents) with limited sensing capabilities and
limited memory and computational power is most appealing. Mathematical
models of the ant colony, with some modifications, have been shown to be
capable of solving complicated optimization problems, see for instance [4],
[33], and [8].

The field of Swarm Robotics has emerged from the desire to harness the
power of robust, decentralized, cost-effective ant-like systems, having no single
point of failure. Though we consider the ant as the paradigm for swarm
robotics, inspiration may be found in other occurrences of collective behavior
in nature such as schools of fish [34] [25], flocks of birds, herds of mammals [26]
and, of course, swarms of insects [27] [15]. Some researchers draw inspiration
for their swarm robotics work from the rules governing objects and particles
such as planetary motion, thermodynamics [10] and hydrodynamics [24] as
well.

The rendezvous, or the more general gathering problem, i.e. the ability
to converge to a single location or to a confined set of configurations from a
dispersed initial configuration, is one of the classic concerns of swarm robotics
[14]. The formation problem is a natural extension of the gathering problem
- when we require the set of configurations the agents converge to to have
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some predefined shape. Another important problem is the control of collective
movement - once a cohesive swarm has formed it would be nice to be able
to have it move towards some desired goal [21]. Solutions to these problems
proposed so far in the literature differ in the level of sophistication required
from the swarming agents in order to perform their tasks. The rest of this
chapter is dedicated to comparing a few notable works in the field of swarm
robotics, based on the criteria listed below.

1.1 Criteria for Comparing Robotic Swarms

Decentralized Control We consider a model where each agent acts locally
based on local, partial information to be decentralized. A decentral-
ized model, as we see it, is such that not only the computation effort
may be dispersed among the swarm’s agents, but that the information
is dispersed as well. A model is considered by us as distributed and not
decentralized if data is explicitly shared among agents, even if the work
examined implemented the model by dispersing the computation efforts
across multiple agents. The differentiating factor is whether the single
agent has access to information sensed by other agents rather than the
agent relying on its own sensing abilities alone, or if all data used by a
single agent’s behavior protocol is known to all agents. When the avail-
ability of global information or the ability to share information explicitly
enables a single agent to solve the entire model’s behavior, the model
might as well be centralized, and therefore is considered by us as such.

Anonymous Agents Agent’s that are interchangeable, have no label nor
specific role to fulfill are considered by us to be anonymous. Agents may
assume a role, such as leaders or followers, while remaining anonymous
as long as their role is not specific to them, i.e. an agent may be a
leader as long as the fact that the agent is a leader is unknown to the
follower agents, and the leader’s identity is unknown to the controlling
operator. We treat fixed network topologies as labels, since every agent
is connected to a specific other agent, even if the agents themselves are
identical and follow the same behavioral rule.

Nonholonomic Unicycles The addition of a nonholonomic constraint to
an agent makes it implementable by wheeled robots. This criterion dif-
ferentiates works focused on the popular single integrator linear model
from works focused on the nonlinear unicycle model.

Implementable by Fixed Wing UAVs Fixed wing UAVs have a minimal
forward velocity constraint. This criterion refines the differentiation of
works using unicycle models. While all unicycle model systems are ap-
propriate for wheeled vehicle implementations, only those with a prede-
termined minimal forward velocity are suitable for fixed wing UAVs.

Implicit Collective Movement Not all local interaction protocols enable
arbitrary control with local sensing of shared data, e.g. a potential field.
This criterion does not imply considerations of heterogeneous roles in the
swarm (such as leaders and followers) since analyzing whether a swarm
is susceptible to leader manipulation is out of the scope of most works
considered here. Such an analysis can be found, for instance, in [29].
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Limiting Shape or Formation of the Swarm Indicates whether the model
converges to a predefined formation, i.e. whether given enough time, the
relative locations of the agents are a finite set.

Topological Constraints This criterion indicates whether the model has
constraints on its underlying neighborhood topology. An example of a
model requiring a specific topology is any model based on cyclic pursuit,
requiring the underlying neighborhood graph to have ring topology. A
pervasive requirement is that the underlying neighborhood communica-
tion graph must be connected. In this categorization, the requirement
for a connected neighborhood graph is not considered as a topological
constraint.

Limited Sensing Abilities A model is considered to have limited sensing
if the agents’ ability to sense other agents or obstacles depends on their
location and orientation relative to the location of the objects being
sensed.

Bearing Only Any control which requires only the bearing information from
the controlled agent to other objects is a bearing only control.

Crude Sensing A model with a control that does not require exact informa-
tion is considered crude. Crude sensing implies low cost equipment and
less computation power required for the model. An example of crude
sensing is given in a model where the agents can only detect whether
another agent is in a sector in front of them or not, opposed a model
where exact bearing angles to other agents need to be measured.

Memoryless Agents Agents that can recall past states are considered to
have memory, and are therefore less simple than agents that rely only
on the current system state.

Global Position Obliviousness Agents are unaware of a global frame.

Global Orientation Obliviousness Agents are unaware of a global direc-
tion, i.e. agents that carry no compass are called oblivious to global
orientation.

The discussion below, in light of of the criteria set above, is summarized
in Tables 1.1, and 1.2, 1.3.

1.2 Literature Survey

In this section a short description of a few examples of notable trends in
swarm gathering, formation and collective movement is given. The examples
are then compared using the criteria in Section 1.1. For other criteria and
categorization of swarm robotics, see surveys by Barel et al. [3] focused on the
gathering problem, Oh et al. [23] focused on formation control and Navarro
& Mat́ıa [22], focused on collective movement. For further reading see the
bibliography of the surveys just given as reference, as most of the work cited
here is from extra sources.
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1.2.1 Gathering & Formation

Bruckstein in [4] solves the gathering problem using cyclic pursuit with first
order integrators. Any pure cyclic pursuit solution such as the one intro-
duced by Bruckstein involves labeling the agents, keeping the topology of the
underlying interaction graph invariant.

Marshall et al. [19] introduce unicycle agents in cyclic pursuit, showing
that their equilibrium formations are regular polygons, not discussing however
their convergence to those formations from any initial condition.

Dimarogonas and Kyriakopoulos solve the gathering problem in [7] for
a group of nonholonomic unicycles able to measure relative distances and
having access to a common compass direction, for both static and dynamic
communication topologies.

Zheng et. al. build upon the foundations set in [19] and present a unicy-
cle model which solves the formation problem in [39] for circular formations
using cyclic pursuit with agents able to stop and go backwards while sensing
relative position of one pursued agent for each vehicle. In [37] Zheng et al.
show that the results in [39] can solve the gathering problem for N wheeled
unicycle model agents, without the need for the agents to rely on any global
measurement, replacing the unidirectional cyclic topology with a more general
bidirectional position measurement, as long as the underlying graph is uni-
formly jointly connected. Their results include proof of convergence for the
fixed topology case, and ultimate boundedness analysis around a stationary
point depending on initial conditions for systems with dynamic topology. In
[42] Zheng et al. present two bearing only controllers, based on prior results in
[41], that solve the rendezvous problem for N wheeled unicycle model agents,
and two distance only controllers that solve the rendezvous problem for up
to 2 wheeled unicycle model agents, while showing through Monte Carlo [18]
simulations that the distance only controllers proposed achieve practical con-
vergence as well for the N agent case. Zheng et al. then extend their finds in
[38] and [40], achieving circumnavigation of a static target with multiple, cus-
tomizable, radii by a swarm of unicycle agents using relative, omnidirectional
position measurements or bearing only measurements.

Gauci et al. took a different approach to solve the gathering problem in
[12], and proposed a controller where agents equipped with very simple binary
sensors were considered and a controller was synthesized and refined via an
optimization process. The agents considered there were differential wheeled
robots, which are equivalent to the unicycle model.
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Reference
[4] [7] [37] [41] [42] [12]

Decentralized Control Yes Yes Yes Yes Yes Yes
Anonymous Agents No Yes No No No Yes
Nonholonomic Unicycles No Yes Yes Yes Yes Yes
Fit for Fixed Wing UAVs No No No No No No
No Topological Constraints No Yes Yes Yes Yes Yes
Limited Sensing Abilities No Yes No No No Yes
Bearing Only Yes No No Yes Yes Yes
Crude Sensing No No No No No Yes
Memoryless Agents Yes Yes Yes Yes Yes Yes
Global Position Obliviousness Yes Yes Yes Yes Yes Yes
Global Orientation Obliviousness Yes No Yes Yes Yes Yes

Table 1.1: A Comparison of Solutions to the Gathering Problem

1.2.2 Collective Movement

Egerstedt and Hu present a solution to the collective movement problem in [9]
where a virtual leader follows a reference trajectory, and actual robots main-
tain formation relative to the virtual leader. The control scheme presented
is platform independent, and is demonstrated on the unicycle model. They
use both position and orientation error feedback. The underlying formation
constraint function may require all-to-all communication and measurement of
relative positions, as well as the position relative to a virtual leader, and the
protocol is not anonymous. The actual robots are assigned to virtual robots
that maintain the formation.

Elor and Bruckstein consider a ”cloud” of random walking agents that
perform gradient climbing without converging to a predetermined formation
in [11]. In [29], Segall and Bruckstein analyze a broadcast control mechanism,
where collective movement is achieved by identical agents that follow the
same interaction rule while some of the agents detect and also incorporate
a globally broadcast control signal, implicitly making them leaders. This
approach requires the agents to share a global reference orientation, e.g. a
”global north”.

Schoof et al. solve the formation and collective movement problems in
[28] for single integrator agents, equipped with compasses, using bearing only
measurements. They implement change in scale by sending at least two agents
equal magnitude controls along the vector between them yet in opposite di-
rections, and translation by sending all agents the same control input signals.
Any other combination of control input transmission results in changes both
in scale and the location of the centroid. Rotation is achieved by broadcasting
a constant rotation control input to all agents. Shiell and Vardy introduce in
[32] modifications to the model presented in [28], while using Schoof’s model
as a benchmark, by using a Dynamic Neighbor Selection (DNS) algorithm
in order to form the swarm’s underlying communication graph. The use of
DNS improves the model’s scalability, flexibility, robustness and performance
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Reference
[19] [39] [38] [40]

Decentralized Control Yes Yes Yes Yes
Anonymous Agents No No No Yes
Nonholonomic Unicycles Yes Yes Yes Yes
Fit for Fixed Wing UAVs Yes No No No
Implicit Collective Movement Yes Yes Yes Yes
No Topological Constraints No No No Yes
Limited Sensing Abilities No No No Yes
Bearing Only No No No Yes
Crude Sensing No No No No
Memoryless Agents Yes Yes Yes Yes
Global Position Obliviousness Yes Yes Yes Yes
Global Orientation Obliviousness Yes Yes Yes Yes

Table 1.2: A Comparison of Solutions to the Formation Problem

as defined in [32], at the cost of a reduced set of possible formations and loss
of rigidity. The convergence to a formation for the model in [32], based on
DNS, has no analytical proof.

Zhao and Zelazo achieve formation and collective movement for single
integrator agents in [36] without the need for broadcasting control inputs to
all agents and without requiring any information about the global frame, yet
they require relative position measurements. Proof that scale and translation
of the formation can be controlled if at least two leader agents are introduced
to the swarm is presented. Zhao and Zelazo use infinitesimal bearing rigidity
considerations in order to prove convergence to the desired formation.

Yu and Liu present and analyze a method for anonymous unicycle agents
to form a circular formation around a moving target in [35], yet their method
requires relative position measurements and measuring the tracked target’s
second derivative in order to do so.

Pimenta et al. in [24] use Smoothed Particle Hydrodynamics (SPH), uti-
lizing a global potential function, to let the agents flow down the gradient
while avoiding collisions and obstacles. The unicycle agents only need to
measure the location of nearby agents in order to calculate the ”forces” that
their neighbors apply on them.

Sepulchre et al. use relative heading and position in [30] to induce their
agents to circle a common center of rotation, to form a balanced splay state
formation where the agents’ orientation phases are uniformly spaced around
the circle, or to move together in parallel. In [31] Sepulchre et al. do the
same with a general communication framework. Jain and Ghose extend the
Sepulchre model to a system of heterogeneous agents, by reaching the splay
state in [17], and reaching velocity synchronization in [16], for two and three
agent systems and with simulations for the N-agent system case. Arranz et al
[2] extended [31] to deal with a moving center of rotation, requiring all agents
to measure the second derivative of the center of rotation. Moore and de
Wit [20] adjusted [2] for gradient climbing by letting the agents communicate
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their potential readings to one another and calculating the center of rotation’s
movement accordingly.

Reference
[9] [11] [29] [28] [32] [36]

Decentralized Control No Yes Yes Yes Yes Yes
Anonymous Agents No Yes No No Yes No
Nonholonomic Unicycles Yes No No No No No
Fit for Fixed Wing UAVs No No No No No No
Implicit Collective Movement No Yes No Yes No No
Formation Yes No No Yes Yes Yes
No Topological Constraints No No Yes No Yes No
Limited Sensing Abilities No No No No No No
Bearing Only Sensing No No No Yes Yes No
Crude Sensing No No No No No No
Memoryless Agents Yes Yes Yes Yes Yes No
Global Position Obliviousness No Yes Yes Yes Yes Yes
Global Orientation Obliviousness Yes Yes No No No Yes

Reference
[35] [24] [30] [31],[17],[16],[2],[20] Our Model

Decentralized Control Yes Yes Yes Yes Yes
Anonymous Agents Yes Yes Yes Yes Yes
Nonholonomic Unicycles Yes Yes Yes Yes Yes
Fit for Fixed Wing UAVs No No Yes Yes Yes
Implicit Collective Movement No Yes Yes Yes Yes
Formation Yes No Yes Yes Yes
No Topological Constraints Yes Yes No Yes Yes
Limited Sensing Abilities Yes Yes No No Yes
Bearing Only Sensing No No No No Yes
Crude Sensing No No No No Yes
Memoryless Agents Yes Yes Yes Yes Yes
Global Position Obliviousness Yes No Yes Yes Yes
Global Orientation Obliviousness Yes Yes Yes Yes Yes

Table 1.3: A Comparison of Solutions to the Collective Movement Problem

1.3 Research Objectives and Expected Sig-

nificance

In this work a decentralized, scalable, self organizing swarm of anonymous uni-
cycle type agents with a constant forward velocity is presented. The swarm
solves the formation problem by forming either a moving regular polygon, or

12

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

IS
-2

01
7-

02
 -

 2
01

7



a moving formation comprised of several regular polygons, or simply by main-
taining cohesiveness. The end result is a consequence of very few parameters
that can be programmed into the agents’ local behavior protocol. The agents
forming the swarm are limited in their sensing abilities. We assume they can
only make a crude judgment on how many other agents are in a sector ahead
of them. The agents are also memoryless and oblivious in the sense that they
do not share a global frame of reference in space. The swarm is capable of
collective movement and we impose no topology constraints. Collective move-
ment is achieved by manipulating the swarm’s formation, by interfering with
one, some, or all of the member agents’ behavior. The motivation for our
work stems from a desire to bridge the gap from previous theoretical results,
such as in [11], to practical micro-robotic systems based on agents that live
in a world imposing severe physical constraints on agent motion rules and
sensing capabilities. We here built upon the foundations set by [37] and [42]
on unicycle-agent based swarms, and propose a way to keep the the agents’
velocity input free for use in controlling the swarm’s location. This leads to
novel challenges in both theory and practice. Additional constraints on the
model are also imposed to make the robotic agents as simple as possible. The
agents’ sensing capabilities are further reduced by not requiring to measure
relative orientations and not requiring omni-directional sensing. These re-
ductions may indeed imply less sophisticated and expensive equipment upon
implementation. Our aims in considering simplified sensing are similar to
those recently proposed in [12]. Finally, several methods for controlling the
swarm’s location are presented, while ensuring cohesive, dynamic and flexible,
shaped formations.
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Chapter 2

The Model

Simplicity is key when designing swarming agents and is the main ingredient
in the model proposed here. One of the greatest promises of swarm robotics
is functionality invariant to scale, and scale invariance must stem from the
simplicity of the agents in order to allow cost efficient swarms. The proposed
model is based on the popular Unicycle Model, allowing implementation using
a variety of platforms, including wheeled vehicles subject to nonholonomic
constraints. The proposed model also dictates a forward motion greater than
some defined positive parameter, allowing implementation on platforms that
have a minimal velocity constraint, such as some fixed wing drone-like flying
robots. Sector Visibility, when compared to omni-directional sensing, is quite
straightforward. Omni-directional sensing is not trivial to achieve using on-
board sensing. A robot agent would have to have at least one expensive
wide angle lens, and then would have to do some computing in order to
translate from camera coordinates to real world bearing, or have an array
of sensors, then stitch the sensors’ outputs into a coherent snapshot of the
current situation, requiring computational power, which is neither lightweight,
low on power consumption, nor is it cheap. None of these problems arise in
a robot with sector visibility, simply because any camera will do the job and
minimal computational power is required to translate the sensor output into
the necessary input for local behavior control algorithms. Figure 2.1 shows an
implementation of the presented model using TurtleBot2 platforms1. Though
equipped with a Kinect and a netbook running ROS, the implementation uses
only the RGB camera on the Kinect and could do with far less computational
power than the netbook provides.

1http://www.turtlebot.com/
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(a) Having gathered from their initial lo-
cations, the agents congregate in a circu-
lar formation.

(b) An operator controlled ”shepherd”
agent is introduced to the swarm.

(c) The swarming agents, true to their
protocol, follow the shepherd agent.

(d) Once removed, the shepherd agent
no longer influences the swarming agents
and they return to their circular forma-
tion in their new location.

Figure 2.1: The ”Turtle Bale” project at the Technion MARS Laboratory.

2.1 The Unicycle Model

Agent i’s motion in the plane is governed by the equation ẋi
ẏi
θ̇i

 =

 vi cos(θi)
vi sin(θi)

ωi

 (2.1)

where (xi, yi, θi)
T are the agent’s state, comprising agent i’s location, pi =

(xi, yi)
T , and orientation θi in an arbitrary global frame of reference (see

Figure 2.2). Here, vi and ωi are agent i’s control inputs, determining its
speed and rotation rate respectively.
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ωi
θi

vi

xi

yi

x

y

Figure 2.2: The Unicycle Model

2.2 Sector Visibility

Consider a system of N agents, each equipped with a sensor able to count only
the number of other agents it perceives in a sector with visibility radius Rv and
a central angle α in the direction the agent is facing. A graph representation
of such a system, G = {V, E}, can be constructed such that every agent in the
system is represented by a vertex in the graph, and all agents within agent i’s
sector of visibility have edges directed from them to agent i. Figure 2.3 shows
an example of such a system and its underlying graph. The sensor output
given to agent i is the count of agents seen, i.e. the number of edges directed
at agent i’s vertex in the underlying graph, or vi’s indegree deg−(vi).

agent 3

α

Rv

α

Rv

agent 1

agent 2

α

Rv

x

y

v2

v1

v3

Figure 2.3: On the left, three agents in an arbitrary global frame for which the
agent’s coordinates (x, y, θ) are defined. To the right, the system’s underlying graph
representation.
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2.3 The Controller

The unicycle agent described in Section 2.1 is controlled by vi

ωi

 =

 v

v
R(G,i)

 (2.2)

where v is a positive constant and R(G, i) is a scalar function defined over the
graph G = {V, E} such that

R(G, i) =


r

R

if

if

deg−(vi) < S

deg−(vi) ≥ S.
(2.3)

Here deg−(vi) is the number of neighbors perceived by agent i, i.e. the inde-
gree of agent i’s vertex in the system’s graph representation, 0 < r < R, and
S ∈ N is defined as the system’s Switching Number, a threshold of detected
agents given as a system design parameter known to all agents.

The controller presented here is decentralized in the sense that every
agent’s behavior relies solely on the single agent’s indegree, information that
is not shared with other agents. Scalability is a byproduct of this decentraliza-
tion. Furthermore, in the controller’s perspective, all agents are anonymous,
and the controller isn’t affected by which edge, and therefore which agent, con-
tributes to the indegree of any specific agent. The fact that only the indegree
matters renders exact measurement of bearing angles and relative positions
unnecessary, allowing the agents to be fitted with crude sensors, such as a
single camera with limited field of view and no depth perception. Additional
sensors such as GPS or compasses are also unnecessary due to the fact that
the controller does not have a global reference point, or even a global direc-
tion reference, making the agents content in their obliviousness. Finally, the
controller is stateless as only the current system state is used to resolve the
value of R(G, i), making all agents memoryless.
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Chapter 3

Theoretical Results

Simple as the model presented in Chapter 2 may be, its theoretical analysis
is surprisingly highly non-trivial. In this chapter three interesting instances
of such systems are analyzed. One consists of a single agent interacting with
a static beacon perceived by it as an agent. Then proof is given that 2-agent
systems always converge to a configuration where the agents closely orbit
each other. Finally some periodic orbits for N agent systems are discovered
and discussed. In order to facilitate the discussion, a few definitions are
introduced:

Definition 1. When an agent changes its angular velocity it is said to have
switched its turning radius.

Definition 2. A system is said to be periodic when all its agents repeat some
pattern of movement, i.e. the system state has a periodic orbit. Hence there
exists some minimal time interval T in which a repetitive movement pattern
is completed, i.e., [

p(t)
θ(t)

]
=

[
p(t+ T )
θ(t+ T )

]
(3.1)

where p(t) ∈ R(2N×1) and θ(t) ∈ R(N×1) are the agents’ position and
orientation vectors.

Definition 3. The instantaneous center of rotation for agent i is denoted by
ci hence:

ci(t) = pi(t) +R(G, i)
[
− sin (θi(t))

cos (θi(t))

]
.

See illustration in Figure 3.1.

Definition 4. A system is said to converge to a periodic orbit if there exists
some Tc such that for ∀t > Tc, the system is periodic.

Definition 5. The ray starting at an agent’s location and going off in an angle
of α

2 relative to the agent’s body frame is called the agent’s dawn horizon, as
it is on the outermost edge of the agent’s visibility sector in the direction of
the agent’s rotation. See illustration in Figure 3.2.

Definition 6. The ray starting at an agent’s location and going off in an angle
of −α

2 relative to the agent’s body frame is called the agent’s dusk horizon,
as it is on the outermost edge of the agent’s visibility sector in the direction
opposite of the agent’s rotation. See illustration in Figure 3.2.
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ωi

θi

R(G, i)
[
− sin (θi(t))

cos (θi(t))

]

vi

xi

yi

pi

ci

x

y

Figure 3.1: The instantaneous center of rotation for agent i

α
Dusk Horizon

Dawn Horizon

Figure 3.2: The agent seen here has a visibility sector with central angle α, defining
its dawn and dusk horizons.

Definition 7. When an agent crosses another agent’s horizon it is said to
either rise or set. An agent rises over some other agent’s horizon if it enters
the other agent’s field of view. An agent sets over some other agent’s horizon
if it leaves the other agent’s field of view.

Definition 8. If an agent rotates around point c with radius r and field of view
angle 0 < α < π, then the circle centered at c with radius r cos

(
α
2

)
is called

the agent’s blind circle, since anything inside this circle is never perceived by
it. See illustration in Figure 3.4.

Definition 9. If an agent rotates around point c with radius R and field of
view angle π < α < 2π, then the circle centered at c with radius r cos

(
α
2

)
is

called the agent’s vigil circle, since anything inside this circle is perpetually
perceived by it. See illustration in Figure 3.5.

Definition 10. A beacon is an agent which is stationary. A beacon is per-
ceived by other agents as another agent.

Definition 11. A multi agent system is said to converge to a moving forma-
tion if all agents eventually reach a configuration where their relative positions
and velocities are constant.
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Definition 12. A multi agent system is said to converge to a behavioral
cohesive formation if all agents eventually reach a configuration in which the
agents’ relative positions are bounded, i.e. there exists an upper bound to the
distance between any two agents.

Definition 13. The bearing angle βji is defined as the argument of agent j’s
position vector in agent i’s local frame. In the global frame perspective,

βji = ] (pj − pi)− θi.

Figure 3.3 shows an illustration of this definition.

pi

pj pj − pi

θi

] (pj − pi)

vi

βji

agent i

vj

agent j

x

y

Figure 3.3: The bearing angle βji.
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3.1 A Single Agent and A Beacon

Consider a system comprised of one agent and one static beacon, located
without loss of generality at (0, 0) in the global frame. Other than being
static the beacon is an agent for all purposes, and is detected by the single
agent as another agent. In this section S = 1, since any other value would
cause the agent to never switch turning radii. With S = 1, the agent rotates
with radius r when not observing the beacon, and R otherwise.

The goal of this section is to show that the system described here converges
in linear time to a configuration which is defined and predetermined by the
system’s parameters (Theorem 3.1.1), where the agent either rotates in a

circle with radius r around a fixed point c such that ‖c‖ ≤ r cos
α

2
(Lemma

3.1.9), rotates in a circle with radius R around a fixed point c such that

‖c‖ ≤ R cos
α

2
(Corollary 3.1.5), or rotates in a circle with radius ra ∈ [r,R]

around the origin (Corollary 3.1.6). This goal is achieved by showing that a
distant agent always gets closer to the beacon (Lemmas 3.1.5, 3.1.6, 3.1.8 and
Corollaries 3.1.3, 3.1.4), an agent too close to the beacon gets pushed back
(Lemma 3.1.7) and an agent whose center of rotation is located just right stops
switching, making the system periodic as described here (Lemma 3.1.1 and
Corollary 3.1.1). Lemmas 3.1.2 and 3.1.3 serve to show that Theorem 3.1.1
holds for any initial condition as long as the visibility radius is bigger than
the maximal distance between the beacon and the agent along the agent’s
trajectory.

We shall begin our analysis with Lemma 3.1.1 and Corollary 3.1.1, iden-
tifying the conditions under which the system is periodic, i.e. the agent’s
motion around the beacon is a periodic orbit.

Lemma 3.1.1. Given a single agent with 0 < α < π controlled by (2.2) and
a beacon located at the origin and perceived as an agent by the single agent’s
sensors, if at time t0, ‖ca(t0)‖ < r cos

(
α
2

)
, then the system is periodic with

θ̇a(t) =
v

r
.

Proof. Figure 3.4 shows the geometry of this proof. Once the beacon enters
the inner circle it remains outside of the agent’s field of view. Since the beacon
is forever outside the agent’s field of view, no switching occurs, and the agent

remains on the r radius circle with θ̇(t) =
v

r
, and the system is periodic.
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r cos α
2

α
2

pa(t0)

O

ca(t0)

Figure 3.4: An agent traveling upon the r radius circle with α field of view never
perceives the beacon (located at O) if it is inside a concentric circle with radius
r cos

(
α
2

)
.

Corollary 3.1.1. Given a single agent with π ≤ α < 2π and Rv > R
(
1− cos

(
α
2

))
controlled by (2.2) and a beacon located at the origin and perceived as an agent
by the single agent’s sensors, if at time t0, ‖ca(t0)‖ ≤ −R cos

(
α
2

)
, then the

system is periodic with

θ̇a(t) =
v

R
.

Proof. Figure 3.5 shows the geometry of this proof. Once the beacon enters
the inner circle it remains inside the agent’s field of view. Since the beacon
is forever inside the agent’s field of view, no switching occurs, and the agent

remains on the R radius circle with θ̇(t) =
v

R
, and the system is periodic.
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R cos α
2

α
2

pa(t0)

O

ca(t0)

Figure 3.5: An agent traveling upon the R radius circle with α field of view always
perceives the beacon (located at O) if it is inside a concentric circle with radius
R cos

(
α
2

)
.

Lemmas 3.1.2, 3.1.3 and Corollary 3.1.2 serve to show that if a beacon-
agent system isn’t periodic by initial conditions, the beacon will eventually
rise over the agent’s dawn horizon.

Lemma 3.1.2. Given a single agent with 0 < α < π and Rv > 2R sin
(
α
2

)
controlled by (2.2) and a beacon located at the origin and perceived as an
agent by the single agent’s sensors, if at time t0, r cos

(
α
2

)
≤ ‖ca(t0)‖ < r,

then the system will reach a configuration where θa(t) = ϕ(t) + π − α
2 , where

the agent’s position is pa(t) = (xa(t), ya(t))
T and ϕ(t) = arctan 2 (ya(t), xa(t))

in less than max
(
αR
v ,

2πr
v

)
time.

Proof. Under the assumption r cos
(
α
2

)
≤ ‖ca(t0)‖ < r, Figure 3.6 shows that

if at pa(t0) the agent had the beacon in its field of view, the intersection
between all possible locations of the beacon and the agent’s field of view
reduces to null in less than the time required by the agent to complete an α
arc on the R circle. If the agent had the beacon within its field of view at
t = t0, and did not by t = t0 + αR

v , then there must be some point in time
in between where the beacon was at the edge of the agent’s field of view, i.e.
θa(t) = ϕ(t)+π− α

2 in accordance with the lemma. In the figure, pa(t1) is the
location of the agent by the time the said intersection is reduced completely
for r1, and pa(t2) is the location of the agent by the time the said intersection
is reduced completely for r2.

The longest possible time for the beacon to reach the edge of the agent’s
field of view in case the beacon is outside the agent’s field of view at time
t0 is the case in which the beacon had just left the field of view at t0 at the
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pa(t0)

pa(t1)

pa(t2)

Figure 3.6: The three circles in the diagram that touch at pa(t0) have radii R, r2, r1
in descending order of magnitude such that 2r1 < R < 2r2. For each circle with
radius r, an inner circle with radius r cos α

2
is drawn, and for each agent location

pa(t) presented, a line depicting the agent’s field of view limit is drawn as well.

furthest point possible. More accurately put,{ ∥∥pa(t−0 )
∥∥ = r− sin α

2
θa(t

−
0 ) = ϕ(t−0 ) + π − α

2 ,

where t−0 is an instant just before t0 and r− is just a bit smaller than r. In this
case, the agent will have to come just under full circle before seeing the beacon
again, therefore the configuration depicted by the lemma must be reached in
less than 2πr

v time.

Lemma 3.1.3. Given a single agent with 0 < α < π and Rv > ‖pa(t0)‖+ 2r
controlled by (2.2) and a beacon located at the origin and perceived as an
agent by the single agent’s sensors, if at time t0, r ≤ ‖ca(t0)‖ , then the
system will reach a configuration where θ(t) = ϕ(t) +π− α

2 , where the agent’s
position is pa(t) = (xa(t), ya(t))

T and ϕ(t) = arctan 2 (ya(t), xa(t)) in less

than 2πr+(R−r)α
v time.

Proof. Similarly to the proof given for Lemma 3.1.2, if the beacon is in the
agent’s field of view at t0, the intersection between all possible locations of
the beacon and the agent’s field of view reduces to null by the time required
for the agent to complete an α arc on the R circle. The fact that 0 < α < π
and Rv > ‖pa(t0)‖ + 2r means that once detected, the beacon leaves the
agent’s sector of visibility only when setting over its dusk horizon and not by
becoming too distant. If the beacon has just left the agent’s field of view,
then it will take the agent less than (2π−α)r

v time to have the beacon enter its
field of view again. By assuming Rv > ‖pa(t0)‖ + 2r we can guarantee that
when the beacon rises over the agent’s dawn horizon, the agent will still be
able to detect it.
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Corollary 3.1.2. Given a single agent with π ≤ α < 2π and Rv > ‖pa(t0)‖+
2R controlled by (2.2) and a beacon located at the origin and perceived as an
agent by the single agent’s sensors, if at time t0, −R cos

(
α
2

)
≤ ‖ca(t0)‖, then

the system will reach a configuration where θ(t) = ϕ(t) + π − α
2 , where the

agent’s position is pa(t) = (xa(t), ya(t))
T and ϕ(t) = arctan 2 (ya(t), xa(t)) in

less than 2πR
v time.

Proof. Since the beacon is out of the vigil circle yet at a distance where the
agent is able to detect it even if moving the farthest it can away from the
beacon under control (2.2), the beacon is bound to set over the agent’s dusk
horizon if it is detected at t0 by t0 + αR

v , only to rise again over the agent’s

dawn horizon by t0 + αR+(2π−α)r
v , or to rise over the agent’s dawn horizon if

the beacon was out of the agent’s field of view at t0 by t0 + (2π−α)r
v . In any

case, the beacon rises over the agent’s dawn horizon in less than 2πR
v time.

To sum up all previous results, the following lemma is given to formally
claim that the beacon-agent system is either periodic from initial conditions,
or reaches a point in time where the beacon is rising over the agent’s dawn
horizon in less than 2πR

v time.

Lemma 3.1.4. Given a single agent with 0 < α < 2π and Rv > ‖pa(t0)‖+2R
controlled by (2.2) and a beacon located at the origin and perceived as an
agent by the single agent’s sensors, the system is either periodic or reaches
a configuration where θa(t) = ϕ(t) + π − α

2 , where the agent’s position is
pa(t) = (xa(t), ya(t))

T and ϕ(t) = arctan 2 (ya(t), xa(t)) in less than 2πR
v time.

Proof. Given 0 < α < π, the beacon-agent system is periodic if ‖ca(t0)‖ <
r cos

(
α
2

)
by Lemma 3.1.1. An agent with 0 < α < π starting at r cos

(
α
2

)
≤

‖ca(t0)‖ will detect the beacon within max
(
αR
v ,

2πr
v ,

2πr+(R−r)α
v

)
< 2πR

v time

by Lemmas 3.1.2 and 3.1.3. Similarly, given π ≤ α < 2π, the beacon-agent
system is periodic if ‖ca(t0)‖ ≤ −R cos

(
α
2

)
by Corollary 3.1.1, and the agent

detects the beacon in less than 2πR
v time by Corollary 3.1.2 otherwise.

The following Lemmas, 3.1.5, 3.1.6, 3.1.8, 3.1.7 and Corollaries, 3.1.3 and
3.1.4 serve to set up a state machine used in Lemma 3.1.9’s proof. The state
machine has states defined by the agent’s distance from the beacon at the
moment, denoted t0, in which the beacon rises over the agent’s dawn horizon
for the first time under the conditions defined, i.e, θa(t0) = ϕ(t0) + π − α

2 , as
shown in Figure 3.7. For the remainder of the discussion, the visibility radius
is taken such that it is always greater than the distance between the agent
and the beacon, i.e. Rv > ‖pa(t0)‖+ 2R.
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pa

θa

ϕ

xa

ya va
α
2

x

y

Figure 3.7: A beacon located at an arbitrary global frame origin rises over an agent’s
dawn horizon.

Lemma 3.1.5. Given a single agent controlled by (2.2) with 0 < α < 2π and

a beacon located at the origin, for T defined as T =
2πr + α(R− r)

v
, and for

every t0 ≤ t ≤ t0 +kT and k ∈ N such that ‖pa(t0 + (k − 1)T )‖ ≥ 2R sin
(
α
2

)
,

where t0 is the moment when the agent first detected the beacon, the agent
approaches the beacon in a periodic manner, described by the following equa-
tions:

ϕ(t0 + kT ) = ϕ(t0)

θa(t) =


ϕ(t0) + π − α

2 + v
R t, (t0 + kT ) ≤ t ≤ (t0 +

αR

v
+ kT )

ϕ(t0) + π + α
2 + v

r t, (t0 +
αR

v
+ kT ) < t ≤ (t0 + (k + 1)T )

pa(t) =



pa(t0) +R

[
sin(θa(t))− sin (θa (t0))
cos(θa(t0))− cos(θa(t))

]
,

(t0 + kT ) ≤ t ≤ (t0 +
αR

v
+ kT )

pa(t0)− 2R sin(α2 )

[
cos(ϕ(t0))
sin(ϕ(t0))

]
+ r

 sin(θa(t))− sin

(
θa

(
t0 +

αR

v

))
cos

(
θa

(
t0 +

αR

v

))
− cos(θa(t))


,

o.w.

pa(t+ kT ) = pa(t) + 2k(r −R) sin
(
α
2

) [ cos(ϕ(t0))
sin(ϕ(t0))

]
.

(3.2)

Proof. The significance of t0 is that it is the exact moment when the beacon
enters the agent’s field of view, causing a transition in the underlying graph
from deg−(va) = 0 to deg−(va) = 1, where va is the vertex corresponding
with the agent in the underlying graph. Figure 3.8 shows a trajectory of an
agent returning twice to θa(t) = θa(t0). Let T be the time it takes an agent
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x

y

t = t0α
t = t0 + T

α
t = t0 + 2T

α

Figure 3.8: An agent moving toward a beacon. Beginning its journey slightly before
t0, three instances of the agent are shown at t = t0, t = t0 + T and t = t0 + 2T for
α = π

3
and R = 4r.

to complete a full rotation, i.e., if θa(t0) = θ0, then T is the shortest amount
of time between t0 and whenever θa(t) = θ0 again:

dθa
dt

= ωa(t)

⇓

T =

t0+T∫
t0

dt =

θ0+2π∫
θ0

dθa
ωa(θa(t))

=

θ0+α∫
θ0

dθa
ωa(θa)

+

θ0+2π∫
θ0+α

dθa
ωa(θa)

=

θ0+α∫
θ0

R

v
dθa +

θ0+2π∫
θ0+α

r

v
dθa =

Rα

v
+
r(2π − α)

v

⇓

T =
2πr + α(R− r)

v
. (3.3)

Figure 3.9 shows a diagram depicting the geometry of this proof. At t0,
the agent is located at B, with its forward direction tangent to the circles
centered at E and A, aligning with BK. The segment BC is a segment of

the line connecting the agent and the beacon. Since ]CBK =
α

2
, the beacon

enters the agent’s field of view and the agent switches from traveling upon
the circle centered at E with radius r to the circle centered at A with radius
R. The agent traverses on the circle centered at A until the beacon leaves the
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E

F

A

B

C

D

G

H

α
2

K

α
2

Figure 3.9: The geometry of a full θ cycle for the agent-beacon system, transitioning
from point B to C to H, completing the cycle.

agent’s field of view at point C.
]CBK =

α

2

]ABK =
π

2

⇒ ]ABC =
π − α

2
.

Since 4ABC is an isosceles triangle:

]BAC = π − 2
π − α

2
= α.

and the amount of time needed for the agent to travel from B to C is the arc
length divided by the agent’s velocity:

TBC =
αR

v
.

Once reaching C, the beacon slips out of the agent’s field of view, causing the
agent to switch from traversing the circle centered at A with radius R to the
circle centered at G with radius r. The agent completes a θ cycle at point H,

TCH =
2π − α
v

,

therefore

T = TBC + TCH =
αR

v
+

(2π − α)r

v
=

2πr + α(R− r)
v

.

All three triangles,4ABC,4EBF and4GHC are isosceles, with base angles

equal to
π − α

2
, making them similar to one another. Notice that CH is a
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segment of BC, making ϕ(t0 +T ) = ϕ(t0). Also notice that once reaching H,
the beacon enters the agent’s field of view once more, and the cycle repeats.

Since AD is the altitude of the isosceles triangle 4BAC, it is also the
angle bisector of ]BAC = α and the perpendicular bisector of BC, therefore

|BD| = |CD| = R sin
α

2
⇒ |BC| = 2R sin

α

2
.

Using the fact that 4ABC is similar to 4GHC we get

|CH|
|BC|

=
r

R
⇒ |CH| =

2rR sin
α

2
R

= 2r sin
α

2

⇓

|BH| = 2(R− r) sin
α

2
.

Since ϕ(t0 + T ) = ϕ(t0) and the beacon is located at the origin,

‖p(t0)‖ − ‖p(t0 + T )‖ = |BH| = 2(R− r) sin
α

2
.

As the only difference in the agent’s state after T time is that the agent’s
location pa is closer to the beacon, the agent repeats the exact cycle again, as
seen in Figure 3.8 for as long as the beacon is outside the circle with radius
R when θa = θ0, i.e., for every k ∈ N such that

‖p(t0 + (k − 1)T )‖ ≥ |BC| = 2R sin
(α

2

)
.

Since the entire cycle is exactly the same as the cycle before, except for a
translation transformation A (p(t), k) such that

A (p(t), k) = p(t) + 2k(r −R) sin
(α

2

)[ cos(ϕ(t0))
sin(ϕ(t0))

]
and

pa(t+ kT ) = A (pa(t), k) = pa(t) + 2k(r −R) sin
(α

2

)[ cos(ϕ(t0))
sin(ϕ(t0))

]
,

reaching the statement in (3.2).

Lemma 3.1.6. Given a single agent controlled by (2.2) with 0 < α < 2π, if
d = ‖pa(t0)‖, where t0 is the moment when the beacon is on the agent’s dawn

horizon such that 1 <
d

R sin
(
α
2

) ≤ 2 and γ = 2 arcsin

 d cos
(
α
2

)√
R2 + d2 − 2dR sin

(
α
2

)
− α,

then 

∥∥∥pa (t0 + γR
v

)∥∥∥ = 2R sin
(
α
2

)
− d < R sin

(
α
2

)
ϕ
(
t0 + γR

v

)
= ϕ(t0) + γ

θa

(
t0 + γR

v

)
= ϕ

(
t0 + γR

v

)
+ π − α

2 .

(3.4)
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E

F

B1

C1

G

A

B2

C2

γ

α

α
2

α
2

Figure 3.10: An agent traveling upon the circle centered at E reaches point B1 at
t0, at which time the beacon located at point G rises over the agent’s dawn horizon
and the agent consequently switches radius from r to R. When arriving at point
B2, the beacon sets over the agent’s dawn horizon.

Proof. Figure 3.10 shows the geometry used in this proof. Consider a beacon
at point G and an agent traveling counter clockwise upon the circle centered
at point E, somewhere between points F and B1. When the agent reaches
B1, the beacon enters the agent’s field of view and the agent switches from
traveling the circle centered at E to the circle centered at A. We denote this
moment as t0 and d = ‖pa(t0)‖ =

∣∣B1G
∣∣. If d > R sin

(
α
2

)
then the beacon

will stay in the agent’s field of view until leaving it at point B2.
Notice that 4AB2C2 is 4AB1C1 rotated by γ around A, making the two

triangles congruent. These triangles are also isosceles, making

]AB1G = ]AB2G = ]AC1G =
π − α

2
.

Furthermore, 4AB2C1 is an isosceles triangle, therefore

]AB2C1 = ]AC1B2.

Since:
]GB2C1 = ]AB2C1 − ]AB2G

and
]GC1B2 = ]AC1B2 − ]AC1G,

the triangle 4GC1B2 is also isosceles.
Using the law of cosines on the triangle 4AGB1,

|AG|2 = R2 + d2 − 2dR cos

(
π − α

2

)
= R2 + d2 − 2dR sin

(α
2

)
.
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Using the law of sines on the triangle 4AGB1,

|AG|
sin
(
π−α
2

) =
d

sin
(
γ + α−γ

2

)
⇓

sin

(
2γ + α− γ

2

)
=

d

|AG|
sin

(
π − α

2

)
⇓

sin

(
α+ γ

2

)
=

d

|AG|
cos
(α

2

)
⇓

α+ γ

2
= arcsin

(
d

|AG|
cos
(α

2

))
⇓

γ = 2 arcsin

(
d

|AG|
cos
(α

2

))
− α

⇓

γ = 2 arcsin

 d cos
(
α
2

)√
R2 + d2 − 2dR sin

(
α
2

)
− α.

Since the agent travels at v speed, it will take it T time to reach B2 from B1

where

T =
γR

v
.

Once reaching B2, using the fact that 4GC1B2 is isosceles and
∣∣B1C1

∣∣ =
2R sin

(
α
2

)
, we get ∥∥∥∥p(t0 +

γR

v

)∥∥∥∥ = 2R sin
(α

2

)
− d.

Also,
]AB1G = ]GB2A

⇓

]B1AB2 = ]B2GB1 = γ

⇓

ϕ

(
t0 +

γR

v

)
= ϕ(t0) + γ.

Finally, since the beacon leaves the agent’s field of view at B2:

θa

(
t0 +

γR

v

)
= ϕ

(
t0 +

γR

v

)
+ π − α

2
.
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E

F
G

B1

C1

D1

A

B2

C2

D2

α
2

Figure 3.11: The outer circle centered at A has a R radius, the inner circle centered
at A has a R cos

(
α
2

)
radius.

Lemma 3.1.7. Given a single agent controlled by (2.2) with 0 < α < 2π such
that d = ‖pa(t0)‖, where t0 is the moment when the beacon is on the agent’s
dawn horizon and 0 ≤ d < r sin

(
α
2

)
, then

‖pa (t0 + T )‖ = 2r sin
(
α
2

)
− d > r sin

(
α
2

)
ϕ (t0 + T ) = ϕ(t0) + γ

θa (t0 + T ) = ϕ (t0 + T ) + π − α
2

(3.5)

where T =
rγ

v
and γ = 2π + 2 arcsin

 d cos
(
α
2

)√
d2 + r2 − 2dr sin

(
α
2

)
− α.

Proof. Figure 3.12 shows the geometry of this proof. Consider a beacon at
point G and an agent at point B1 traveling upon the circle with radius r
centered at point A. Even though the agent perceives the beacon, any in-
finitesimal movement in the agent’s direction θ perpendicular to AB1 would
result in the beacon leaving the agent’s field of view and the agent continuing
on the circle with radius r centered at A. The next time the agent perceives
the beacon would be after it has traversed an arc length of rγ and has arrived

at point B2. Traversing an arc of rγ length at constant speed v takes T =
rγ

v
time. Using the cosine law on 4AGB1 we get∣∣AG∣∣2 =

∣∣GB1

∣∣2 +
∣∣AB1

∣∣2 − 2
∣∣GB1

∣∣ ∣∣AB1

∣∣ cos (]AB1G)

= d2 + r2 − 2dr cos

(
π − α

2

)
= d2 + r2 − 2dr sin

(α
2

)
.

32

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

IS
-2

01
7-

02
 -

 2
01

7



B1

C1

G

A

B2

C2

γ

α

α
2

Figure 3.12: An agent traveling from point B1 away from a beacon located at point
G.

Using the sine law on 4AGB1 we get∣∣AG∣∣
sin
(
π−α
2

) =

∣∣B1G
∣∣

sin (]GAB1)
=

d

sin
(α+γ

2 − π
)

⇓√
d2 + r2 − 2dr sin

(
α
2

)
cos
(
α
2

) =
d

sin
(α+γ

2 − π
)

⇓

sin

(
α+ γ

2
− π

)
=

d cos
(
α
2

)√
d2 + r2 − 2dr sin

(
α
2

)
⇓

γ = 2π + 2 arcsin

 d cos
(
α
2

)√
d2 + r2 − 2dr sin

(
α
2

)
− α.

Since triangles 4AB1C1 4AB2C2 are congruent and 4AB1C2 is an isosceles
triangle,

]AB1C2 = ]AC2B1

along with the congruent angles

]AB1G = ]AC2G

identifying 4GB1C2 as an isosceles triangle by ]GB1C2 = ]GC2B1 with
d = |B1G| = |C2G|. Therefore

‖p (t0 + T )‖ =
∣∣B2G

∣∣ =
∣∣B2C2

∣∣− ∣∣GC2

∣∣ = 2r sin
(α

2

)
− d.
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The agent’s behavior as described in Lemmas 3.1.5, 3.1.6 and 3.1.7 can be
viewed as a transition from one system state to another state, beacon rise to
beacon rise over the agent’s dawn horizon. The next lemma and its corollaries
correspond to a sink state, i.e. there is no transition out of the system state
described therein, and this final state is such that brings the agent-beacon
system to its final periodic orbit.

Lemma 3.1.8. Given a single agent controlled by (2.2) with 0 < α < π such
that d = ‖pa(t0)‖, where t0 is the moment when the beacon is on the agent’s
dawn horizon and r sin

(
α
2

)
≤ d ≤ R sin

(
α
2

)
, then

‖pa (t0 + T )‖ = r sin
(
α
2

)
ϕ (t0 + T ) = ϕ(t0) + tan

(
α
2

)(
ln (d)− ln

(
r sin α

2

))
θa (t0 + T ) = ϕ (t0 + T ) + π − α

2

(3.6)

where T =
d− r sin

(
α
2

)
v cos

(
α
2

) .

Proof. Consider the diagram presented in Figure 3.14. As long as the beacon
is on the segment GD, any movement the agent makes with ωa = v

R will
cause the beacon to slip out of the agent’s field of view, while any movement
the agent makes with ωa = v

r pushes the beacon deeper into the agent’s field
of view. Yet, when the beacon is within the agent’s field of view the agent
has ωa = v

R and when not the agent moves with ωa = v
r . This type of

control is called Sliding Mode Control, and it serves this case by maintaining
the beacon exactly at α

2 in the agent’s body frame for as long as r sin α
2 ≤

‖pa(t)‖ ≤ R sin α
2 as will be shown presently.

Let βba be the beacon’s bearing angle from the agent’s perspective, and
let βr be the angle at which the beacon rises over the agent’s dawn horizon,
i.e. βr (ya, xa) = arctan 2 (ya, xa) + π − α

2 . Similarly, let βs be the angle
at which the beacon sets over the agent’s dusk horizon, i.e. βs (ya, xa) =
arctan 2 (ya, xa) + π + α

2 .
Let X : R3 7→ R

3 be the vector field describing the agent’s control input
given the agent’s state such that:

X (xa, ya, θa) =

{ (
v cos θa, v sin θa,

v
R

)(
v cos θa, v sin θa,

v
r

) ∣∣∣∣ βr (ya, xa) + 2πk ≤ θa ≤ βr (ya, xa) + 2π (k + 1)
βs (ya, xa) + 2πk < θa < βs (ya, xa) + 2π (k + 1)

The vector field X is piecewise continuous in the sense that for every k ∈ Z
and 2πk < θa ≤ 2π(k + 1), the Dk ∈ R3 space where

Dk = {{(−∞,∞)× (−∞,∞)× (2πk, 2π(k + 1)]} \ (0, 0, θ)}

can be divided into 2 disjoint, open, and connected sets Dr,k,DR,k as seen in
Figure 3.13, in which X has a constant, hence continuous, value and R3 =⋃
k Dk, where Dk = Dr,k

⋃
DR,k and Di,k is the closure of Di,k. Let SX =

{θa = βr + 2πk} be the set of points at which X is discontinuous such that the
agent has the beacon on its dawn horizon and r sin

(
α
2

)
≤ ‖pa(t)‖ ≤ R sin

(
α
2

)
,
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and let XD+ =
(
v cos θa, v sin θa,

v
R

)
be the continuous extension of X to SX

”above” the SX spiral and XD− =
(
v cos θa, v sin θa,

v
r

)
”under” the SX spiral.

Notice that XD+ , XD− and
(
XD− −XD+

)
=
(

0, 0, (R−r)vRr

)
are all constant

and therefore continuously differential on SX . The Filippov set-value map in
the vicinity of SX is therefore given as:

F [X](x, y, θ) = F [X](u) = co

{
lim
i→∞

X(ui) : ui → u, ui 6∈ SX
}

=


(
v cos θ, v sin θ, vR

)(
v cos θ, v sin θ, [ vR ,

v
r ]
)(

v cos θ, v sin θ, vr
)

∣∣∣∣∣∣
βr + 2πk < θ < βs + 2πk
θ = βr + 2πk
βs + 2πk < θ < βr + 2π(k + 1)

where co stands for convex closure. Notice that for an agent with configuration
u ∈ {SX \ (0, 0, θ)}:

θ̇a =
d

dt
(βr (xa, ya) + 2πk) =

d

dt

(
arctan 2 (ya, xa)−

α

2
+ 2πk

)
=

d

dt
arctan

(
ya
xa

)
=

1

1 +
(
ya
xa

)2 ddt
(
ya
xa

)

=
x2a

x2a + y2a

ẏaxa − yaẋa
x2a

=
xav sin θa − yav cos θa

‖pa‖2

=
‖pa‖ v

(
cos
(
θa + α

2 − π
)

sin θa − sin
(
θa + α

2 − π
)

cos θa
)

‖pa‖2

=
v

‖pa‖
sin
(
π − α

2

)
=

v

‖pa‖
sin
(α

2

)
For each agent configuration u ∈ SX , i.e. (xa, ya, θa) ∈ SX , the vector
XD+(u) =

(
v cos θa, v sin θa,

v
R

)
either points into D−,

‖pa‖ < R sin
(α

2

)
⇒ v

R
<

v

‖pa‖
sin
(α

2

)
,

or points into SX ,

‖pa‖ = R sin
(α

2

)
⇒ v

R
=

v

‖pa‖
sin
(α

2

)
.

Similarly, for each u = (xa, ya, θa) ∈ SX , the vectorXD−(u) =
(
v cos θa, v sin θa,

v
r

)
either points into D+,

‖pa‖ > r sin
(α

2

)
⇒ v

r
>

v

‖pa‖
sin
(α

2

)
,

or points into SX ,

‖pa‖ = r sin
(α

2

)
⇒ v

r
=

v

‖pa‖
sin
(α

2

)
.

Hence, by proposition 5 in [5], there exists a unique Filippov solution for (2.1)
with control inputs (2.2) for every initial condition r sin

(
α
2

)
< ‖pa(t0)‖ <

R sin
(
α
2

)
, and in particular for u ∈ SX , the agent’s dynamics become ẋa

ẏa
θ̇a

 =

 v cos θa
v sin θa
v
‖pa‖ sin

(
α
2

)
 (3.7)
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resulting in a solution for u̇ = X(u) which slides along SX and maintains the
beacon on the agent’s dawn horizon while sliding.

(a)

Figure 3.13: The surfaces θ = βr + 2πk (lower) and θ = βs + 2πk (upper), with
k ∈ {0, 1} and α = π

4
. In 3.13a, D0 = {{(−∞,∞)× (−∞,∞)× (0, 2π]} \ (0, 0, θ)}

is shown to be divided into 2 disjoint, open, and connected sets.

Since the beacon is maintained at α
2 in the agent’s body frame, the agent

spirals into the beacon with a radial velocity of v cos
(
α
2

)
towards the beacon,

and tangent velocity v sin
(
α
2

)
, as seen in Figure 3.14, and the distance between

the agent and the beacon becomes r sin
(
α
2

)
after T time,

v cos
(α

2

)
T = d− r sin

(α
2

)
.

Solving for T results in

T =
d− r sin

(
α
2

)
v cos

(
α
2

) .

Since the agent spirals towards the beacon with angular velocity ωb(t) =
v sin

(
α
2

)
‖pa(t)‖

, we can calculate the location of the agent in the global coordinates

at the moment when ‖pa(t)‖ = ‖pa(t0 + T )‖ = r sin
(
α
2

)
,

ϕ(t0 + T ) = ϕ(t0) +

t0+T∫
t0

ωb(t)dt

= ϕ(t0) +

t0+T∫
t0

v sin
(
α
2

)
‖pa(t)‖

dt = ϕ(t0) +

t0+T∫
t0

v sin
(
α
2

)
‖pa(t0)‖ − v cos

(
α
2

)
(t− t0)

dt

= ϕ(t0)− tan
α

2

t0+T∫
t0

−v cos
(
α
2

)
d− v cos

(
α
2

)
t+ v cos

(
α
2

)
t0
dt
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E

G

A

B

D

v

α
2

v cos α
2

v sin α
2

Figure 3.14: A single agent spiraling towards a beacon with 0 < α < π. If the beacon
is anywhere on the segment between points G and D, then the agent, detecting the
beacon, travels on the circle centered at A, causing the beacon to set over the agent’s
dawn horizon, which in turn brings the agent to switch and travel upon the circle
centered at E, bringing the beacon to rise over the agent’s dawn horizon, making
the agent travel upon the circle centered at A and so forth.

= ϕ(t0)− tan
(α

2

)[
ln
(
d+ v cos

(α
2

)
t0 − v cos

(α
2

)
t
)]t0+T

t0

= ϕ(t0) + tan
(α

2

)(
ln (d)− ln

(
d− v cos

(α
2

)
T
))

= ϕ(t0) + tan
(α

2

)(
ln (d)− ln

(
r sin

(α
2

)))
.

Notice that at t = t0 + T , ωb =
v

r
.

Corollary 3.1.3. Given a single agent controlled by (2.2) with α = π such
that d = ‖pa(t0)‖, where t0 is the moment when the beacon is on the agent’s
dawn horizon and r ≤ d ≤ R, then the system is periodic with period T = 2πd

v .

Proof. Similar to the proof given for Lemma 3.1.8, the same considerations
lead the agent with α = π to maintain the beacon at π

2 in the agent’s body
frame, essentially orbiting the beacon with the dynamics described in equation
3.7,  ẋa

ẏa
θ̇a

 =

 v cos θa
v sin θa
v
‖pa‖ sin

(
π
2

)
 =

 v cos θa
v sin θa

v
d

 .
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Corollary 3.1.4. Given a single agent controlled by (2.2) with π < α < 2π
such that d = ‖pa(t0)‖, where t0 is the moment when the beacon is on the
agent’s dawn horizon and r sin

(
α
2

)
≤ d ≤ R sin

(
α
2

)
, then

‖pa (t0 + T )‖ = R sin
(
α
2

)
ϕ (t0 + T ) = ϕ(t0) + tan

(
α
2

)(
ln (d)− ln

(
2d−R sin

(
α
2

)))
θa (t0 + T ) = ϕ (t0 + T ) + π − α

2

(3.8)

where T =
R sin

(
α
2

)
− d

v cos
(
α
2

) .

Proof. Similar to the proof given for Lemma 3.1.8, the same considerations
lead the agent with π < α < 2π to maintain the beacon at α

2 in the agent’s
body frame. The agent therefore spirals away from the beacon with a radial
velocity of v cos α2 , and tangent velocity v sin α

2 , as seen in Figure 3.15. The
distance between the agent and the beacon becomes R sin

(
α
2

)
after T time,

v cos
(α

2

)
T = R sin

(α
2

)
− d

⇓

T =
R sin

(
α
2

)
− d

v cos
(
α
2

) .

E

C

A

B

D

v

α
2

v sin α
2

v cos α
2

Figure 3.15: A single agent spiraling away from a beacon with π < α < 2π.

Since the agent spirals away from the beacon with angular velocity ωb(t) =
v sin

(
α
2

)
‖pa(t)‖

, we can calculate the location of the agent in the global coordinates
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at the moment when ‖pa(t)‖ = ‖pa(t0 + T )‖ = R sin
(
α
2

)
:

ϕ(t0 + T ) = ϕ(t0) +

t0+T∫
t0

ωb(t)dt

= ϕ(t0) +

t0+T∫
t0

v sin
(
α
2

)
‖pa(t)‖

dt = ϕ(t0) +

t0+T∫
t0

v sin
(
α
2

)
‖pa(t0)‖ − v cos

(
α
2

)
(t− t0)

dt

= ϕ(t0)− tan
α

2

t0+T∫
t0

−v cos
(
α
2

)
d− v cos

(
α
2

)
t+ v cos

(
α
2

)
t0
dt

= ϕ(t0)− tan
(α

2

)[
ln
(
d+ v cos

(α
2

)
t0 − v cos

(α
2

)
t
)]t0+T

t0

= ϕ(t0) + tan
(α

2

)(
ln (d)− ln

(
d− v cos

(α
2

)
T
))

= ϕ(t0) + tan
(α

2

)(
ln (d)− ln

(
2d−R sin

(α
2

)))
.

Notice that at t = t0 + T , ωb =
v

R
.

Lemma 3.1.9 and its Corollaries, 3.1.5 and 3.1.6, use the results obtained
so far to set the stage for Theorem 3.1.1.

Lemma 3.1.9. A system consisting of a single agent controlled by (2.2) with
0 < α < π and a beacon located at the origin and perceived as an agent by the
single agent’s sensors converges to a trajectory having an invariant center of

rotation ‖ca(t)‖ ≤ r cos
α

2
for t ≥ tinitial + Ttotal (‖ca (tinitial)‖) where

Ttotal (x) =
2πr + α (R− r)

2v(R− r) sin
(
α
2

)x+
R− r
v

tan
(α

2

)

+
3αR+ (6π + α) r

v
+

(2π + α) r2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

) .
Proof. If the initial conditions are such that ‖ca(t = 0)‖ < r cos

(
α
2

)
, then by

Lemma 3.1.1, the system is periodic. By Lemmas 3.1.2 and 3.1.3, for every
‖ca(t = 0)‖ ≥ r cos

(
α
2

)
, the beacon enters the agent’s field of view in less than

TS = 2πr+αR
v time, putting the system at the starting configuration required

for each of the Lemmas 3.1.5, 3.1.6, 3.1.8, 3.1.7. Following the dynamics de-
scribed in this section, each of the lemmas 3.1.5, 3.1.6, 3.1.8, 3.1.7 corresponds
with a transition in a state machine, where the states are ranges of ‖pa(t)‖
at the point in time where θa(t) = ϕ(t) + π − α

2 , and the transitions between
states reflect where the agent will be the next time θa(t) = ϕ(t) + π − α

2 .
Figure 3.16 shows two state machines corresponding with R < 2r and R ≥

2r configurations. In both configurations shown, state E is the state represent-
ing all cases where ‖pa(t0)‖ ≥ 2R sin α

2 and θa(t0) = ϕ(t0)+π− α
2 . By Lemma
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‖pa‖
0 r sin α

2
R sin α

2
2r sin α

2
2R sin α

2

A B C D E

(a) States A,B,C,D,E where R < 2r.

‖pa‖
0 r sin α

2
R sin α

2
2R sin α

2

A B D̃ E

(b) States A,B, D̃, E where R ≥ 2r.

BC

A DE

(c) State Machine for R < 2r.

B

A D̃E

(d) State Machine for R ≥ 2r.

Figure 3.16

3.1.5, θa

(
t0 + k

(
2πr + α(R− r)

v

))
= θa(t0), ϕ

(
t0 + k

(
2πr + α(R− r)

v

))
=

ϕ(t0) and ∥∥∥∥pa(t0 + (k − 1)

(
2πr + α(R− r)

v

))∥∥∥∥ ≥ 2R sin
(α

2

)
remaining in state E for as long as t ≤ t0 + (k − 1)

(
2πr + α(R− r)

v

)
, at

which point ‖pa(t)‖ < 2R sin
(
α
2

)
and the state machine transitions into one

of the other states. Given a distance d0 at which the agent entered state E for
the first time and is at most ‖ca(tinitial)‖+R, the total time an agent spends

in state E is TE =

⌊
d0

2(R−r) sin(α2 )

⌋
2πr+α(R−r)

v .

Similarly, state A is the state representing all cases where ‖pa(t0)‖ <
r sin α

2 and θa(t0) = ϕ(t0) + π − α
2 . By Lemma 3.1.7,

θa

t0 +

r

(
2π + 2 arcsin

(
‖pa(t0)‖ cos (α2 )√

‖pa(t0)‖2+r2−2‖p(t0)‖r sin (α2 )

)
− α

)
v



= ϕ

t0 +

r

(
2π + 2 arcsin

(
‖pa(t0)‖ cos (α2 )√

‖pa(t0)‖2+r2−2‖p(t0)‖r sin (α2 )

)
− α

)
v

+ π − α

2
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and

r sin
(α

2

)
<

∥∥∥∥∥∥∥∥∥∥
pa

t0 +

r

(
2π + 2 arcsin

(
‖pa(t0)‖ cos (α2 )√

‖pa(t0)‖2+r2−2‖p(t0)‖r sin (α2 )

)
− α

)
v


∥∥∥∥∥∥∥∥∥∥
≤ 2r sin

(α
2

)
,

transitioning from A to B if R ≥ 2r or to either B or C if R < 2r. In the
worst case, where ‖pa(t0)‖ = r sin

(
α
2

)
− ε for a positive yet arbitrarily small

ε, the state machine will transition out of state A in TA = 2πr
v time.

State B represents all cases in which r sin α
2 ≤ ‖pa(t0)‖ ≤ R sin α

2 and
θa(t0) = ϕ(t0) + π − α

2 . By Lemma 3.1.8, state B is a sink state which
brings the system to ‖pa(t0)‖ = r sin

(
α
2

)
, ‖c(t)‖ = r cos

(
α
2

)
and θa(t) =

θa(t0) + v
r (t − t0), at which point the system is periodic. In the worst case,

where ‖pa(t0)‖ = R sin
(
α
2

)
, the system becomes periodic once entering state

B in TB = R−r
v tan

(
α
2

)
time.

State C represents all cases in which R sin α
2 < ‖pa(t0)‖ ≤ 2r sin α

2 and
θa(t0) = ϕ(t0) + π − α

2 with R < 2r. State D represents all cases in which
2r sin α

2 < ‖pa(t0)‖ < 2R sin α
2 and θa(t0) = ϕ(t0) + π − α

2 with R < 2r.

State D̃ represents all cases in which R sin α
2 < ‖pa(t0)‖ < 2R sin α

2 and
θa(t0) = ϕ(t0) + π − α

2 with R > 2r. Lemma 3.1.6 shows that states C, D

and D̃ transition to either states A or B in a time span less than or equal to
TD = αR

v . The state machine corresponding with R ≥ 2r seen in Figure 3.16d
has no transition loops, except for state E which was discussed earlier, and
eventually transitions to other states. On the other hand, the state machine
corresponding with R < 2r seen in Figure 3.16c has a loop between states
A and C, yet as will be shown presently, the loop resolves in an eventual
transition to state B.

Suppose that ‖pa(t = t0)‖ is such that corresponds with the system being
at state C, i.e. R sin α

2 < ‖pa(t = t0)‖ ≤ 2r sin α
2 . According to Lemma 3.1.6,

the system transitions either to state A or B, whichever state

‖pa(t = t1)‖ =

∥∥∥∥∥∥pa(t = t0) +
R

v

2 arcsin

 ‖pa(t0)‖ cos
(
α
2

)√
R2 + ‖pa(t0)‖2 − 2 ‖pa(t0)‖R sin

(
α
2

)
− α

∥∥∥∥∥∥
= 2R sin

(α
2

)
− ‖pa(t0)‖

falls into. Let us assume that 2R sin
(
α
2

)
− ‖pa(t0)‖ lies in state A, then

according to Lemma 3.1.7 the system transitions either to state B or state C,
whichever state

‖pa(t = t2)‖ =

∥∥∥∥∥∥pa
t1 +

r

v

2π + 2 arcsin

 ‖pa(t1‖ cos
(
α
2

)√
‖pa(t1‖2 + r2 − 2 ‖pa(t1‖ r sin

(
α
2

)
− α

∥∥∥∥∥∥
= 2r sin

(α
2

)
− ‖pa(t1)‖

= ‖pa(t0)‖ − 2 (R− r) sin
(α

2

)
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lies in. Since 0 < 2 (R− r) sin
(
α
2

)
for all 0 < α < 2π, then ‖pa(t2)‖ < ‖pa(t0)‖

for any ‖pa(t0)‖ in state C, causing the system to take a constant sized step
towards never returning to state C every time the state leaves state C.

Similarly, suppose that ‖pa(t = t0)‖ is such that corresponds with the sys-
tem being at state A, i.e. 0 ≤ ‖pa(t = t0)‖ < r sin

(
α
2

)
. According to Lemma

3.1.7, the system transitions either to state B or C, whichever state

‖pa(t = t1)‖ =

∥∥∥∥∥∥pa(t = t0) +
r

v

2π + 2 arcsin

 ‖pa(t0)‖ cos
(
α
2

)√
r2 + ‖pa(t0)‖2 − 2 ‖pa(t0)‖ r sin

(
α
2

)
− α

∥∥∥∥∥∥
= 2r sin

(α
2

)
− ‖pa(t0)‖

falls into. Let us assume that 2r sin
(
α
2

)
− ‖pa(t0)‖ lies in state C, then ac-

cording to Lemma 3.1.6 the system transitions either to state B or back to
state A, whichever state

‖pa(t = t2)‖ =

∥∥∥∥∥∥pa
t1 +

R

v

2 arcsin

 ‖pa(t1‖ cos
(
α
2

)√
‖pa(t1‖2 +R2 − 2 ‖pa(t1‖R sin

(
α
2

)
− α

∥∥∥∥∥∥
= 2R sin

(α
2

)
− ‖pa(t1)‖

= ‖pa(t0)‖+ 2 (R− r) sin
(α

2

)
lies in. Since 0 < 2 (R− r) sin

(
α
2

)
for all 0 < α < 2π, then ‖pa(t2)‖ >

‖pa(t0)‖ for any ‖pa(t0)‖ in state A, causing the system to take a constant
sized step towards never returning to state A every time the state leaves state
A. Combining these two results concludes this proof since any cycle between
states A and C must end eventually in a transition to state B in a time span
equal to or less than

TC = max

(
(TA + TD)

⌊
r sin

(
α
2

)
2 (R− r) sin

(
α
2

)⌋+ TA, (TA + TD)

⌊
2r sin

(
α
2

)
2 (R− r) sin

(
α
2

)⌋+ TD

)

≤ 2πr + αR

v

r

R− r
+ max

(
2πr

v
,
αR

v

)
.

The overall time for the agent to converge to the beacon is therefore assured
to be at most

Ttotal = TS + TA + TB + TC + TD + TE

≤ 2πr + αR

v
+

2πr

v
+
R− r
v

tan
(α

2

)
+

(
2πr + αR

v

r

R− r
+ max

(
2πr

v
,
αR

v

))

+
αR

v
+

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋ 2πr + α (R− r)
v

= 2
2πr + αR

v
+
R− r
v

tan
(α

2

)
+

(
2πr + αR

v

r

R− r
+ max

(
2πr

v
,
αR

v

))

+

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋ 2πr + α (R− r)
v
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≤ 2πr + αR

v

(
3 +

r

R− r
+

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋)+
R− r
v

tan
(α

2

)

−αr
v

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋

≤ 2πr + αR

v

(
3 +

r

R− r
+

(
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ))+
R− r
v

tan
(α

2

)

−αr
v

(
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) )

=
2πr + αR

v

(
6R sin

(
α
2

)
− 4r sin

(
α
2

)
+ ‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) )
+
R− r
v

tan
(α

2

)

−αr
v

(
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) )

=
2πr + α (R− r)

2v(R− r) sin
(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

(2πr + αR)
(
6R sin

(
α
2

)
− 4r sin

(
α
2

)
+R

)
− αRr

2v(R− r) sin
(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

12πRr sin
(
α
2

)
− 8πr2 sin

(
α
2

)
+ 2πRr + 6αR2 sin

(
α
2

)
− 4αRr sin

(
α
2

)
+ αR2 − αRr

2v(R− r) sin
(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

2
(
3αR2 + (6π − 2α)Rr − 4πr2

)
sin
(
α
2

)
+ 2πRr + αR2 − αRr

2v(R− r) sin
(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

3αR2 + (6π − 2α)Rr − 4πr2

v(R− r)
+
αR2 + (2π − α)Rr

2v(R− r) sin
(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

3αR+ (6π + α) r

v
+

(2π + α) r2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

) .
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Corollary 3.1.5. A system consisting of a single agent controlled by (2.2)
with π < α < 2π and a beacon located at the origin and perceived as an agent
by the single agent’s sensors converges to a trajectory having an invariant

center of rotation ‖ca(t)‖ ≤ −R cos
α

2
for t ≥ tinitial + Ttotal (‖ca (tinitial)‖)

where

Ttotal (x) =
2πr + α (R− r)

2v(R− r) sin
(
α
2

)x+
R− r
v

tan
(α

2

)
+

(2π + α)R+ 4πr

v
+

2πr2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

) .
Proof. This proof differs the proof given for Lemma 3.1.9 only by referring to
Corollary 3.1.2 instead of Lemmas 3.1.2 and 3.1.3 for the time it takes to enter
any one of the states of the state machine in Figure 3.16 for the first time, and
by referring to Corollary 3.1.4 instead of Lemma 3.1.8 when entering state B
in the state machine.

Ttotal = TS + TA + TB + TC + TD + TE

≤ 2πR

v
+

2πr

v
+
R− r
v

tan
(α

2

)
+

(
2πr + αR

v

r

R− r
+ max

(
2πr

v
,
αR

v

))

+
αR

v
+

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋ 2πr + α (R− r)
v

=
2πR

v
+

2πr + αR

v
+
R− r
v

tan
(α

2

)
+

(
2πr + αR

v

r

R− r
+ max

(
2πr

v
,
αR

v

))

+

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋ 2πr + α (R− r)
v

≤ 2πr + αR

v

(
2 +

r

R− r
+

⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋)+
R− r
v

tan
(α

2

)
+

2πR

v

−αr
v

(⌊
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ⌋)

≤ 2πr + αR

v

(
2 +

r

R− r
+

(
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) ))+
R− r
v

tan
(α

2

)
+

2πR

v

−αr
v

(
‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) )

=
2πr + αR

v

(
4R sin

(
α
2

)
− 2r sin

(
α
2

)
+ ‖ca (tinitial)‖+R

2(R− r) sin
(
α
2

) )
+
R− r
v

tan
(α

2

)
+

2πR

v

− αr

2v(R− r) sin
(
α
2

) ‖ca (tinitial)‖ −
αRr

2v(R− r) sin
(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

(2πr + αR)
(
4R sin

(
α
2

)
− 2r sin

(
α
2

)
+R

)
− αRr + 4πR(R− r) sin α

2

2v(R− r) sin
(
α
2

)
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=
2πr + α (R− r)

2v(R− r) sin
(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

8πRr sin
(
α
2

)
− 4πr2 sin

(
α
2

)
+ 2πRr + 4αR2 sin

(
α
2

)
− 2αRr sin

(
α
2

)
2v(R− r) sin

(
α
2

)
+
αR2 − αRr + 4πR2 sin

(
α
2

)
− 4πRr sin

(
α
2

)
2v(R− r) sin

(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

2
(
4πRr − 2πr2 + 2αR2 − αRr + 2πR2 − 2πRr

)
sin
(
α
2

)
2v(R− r) sin

(
α
2

)
+

2πRr + αR2 − αRr
2v(R− r) sin

(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

2
(
2 (π + α)R2 + (2π − α)Rr − 2πr2

)
sin
(
α
2

)
+ αR2 + (2π − α)Rr

2v(R− r) sin
(
α
2

)
=

2πr + α (R− r)
2v(R− r) sin

(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)
+

(2π + α)R+ 4πr

v
+

2πr2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

)
Corollary 3.1.6. A system consisting of a single agent controlled by (2.2)
with α = π and a beacon located at the origin and perceived as an agent by
the single agent’s sensors converges to a trajectory having constant angular
velocity and the agent’s distance from the beacon is invariant such that

r ≤ ‖pa(t)‖ ≤ R

for t ≥ tinitial + Ttotal (‖ca (tinitial)‖) where:

Ttotal (x) =
π (R+ r)

2v(R− r)
x+

4πr2

v(R− r)
+

13R+ 12r

2v
π.

Proof. This proof differs the proof given for Corollary 3.1.6 only by referring
to Corollary 3.1.3 instead of Lemma 3.1.8 when entering state B in the state
machine. Upon entering state B at time t0, the agent instantaneously enters
the steady state with radius ‖pa(t0)‖. The upper bound on convergence time
therefore becomes

Ttotal = TS + TA + TC + TD + TE .

Using the proof of Corollary 3.1.5 we get

=
2πr + α (R− r)

2v(R− r) sin
(
α
2

) ‖ca (tinitial)‖+
(2π + α)R+ 4πr

v
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+
2πr2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

) .
Substituting α with π we get:

=
π (R+ r)

2v(R− r)
‖ca (tinitial)‖+

3πr2

v(R− r)
+

7πR+ 10πr

2v
.

Theorem 3.1.1. A system consisting of a beacon located at the origin and
a single agent controlled by (2.2) with visibility range Rv ≥ ‖ca(tinitial)‖ + R
converges to a periodic orbit having a stationary center of rotation ca and
constant angular velocity θ̇a such that

‖ca‖


≤ r cos

(
α
2

)
for 0 < α < π

= 0 for α = π

≤ −R cos
(
α
2

)
for π < α < 2π

and θ̇a


= v

r for 0 < α < π

∈
[
v
R ,

v
r

]
for α = π

= v
R for π < α < 2π

in finite time, where (tfinal − tinitial) ≤ T (‖ca (tinitial)‖) and T (x) is given by

T (x) =



2πr+α(R−r)
2v(R−r) sin(α2 )

x+ R−r
v tan

(
α
2

)
+ 3αR+(6π+α)r

v + (2π+α)r2

v(R−r) + αR+2πr
2v sin(α2 )

+ πr2

v(R−r) sin(α2 )
, 0 < α < π

(
(R+r)

2v(R−r)x+ 4r2

v(R−r) + 13R+12r
2v

)
π, α = π

2πr+α(R−r)
2v(R−r) sin(α2 )

x+ R−r
v tan

(
α
2

)
+ (2π+α)R+4πr

v + 2πr2

v(R−r) + αR+2πr
2v sin(α2 )

+ πr2

v(R−r) sin(α2 )
, π < α < 2π.

Proof. By combination of Lemma 3.1.9, Corollary 3.1.5 and Corollary 3.1.6.

Figure 3.17 shows two NetLogo1 simulations of a single agent and a beacon
scenario. The difference between the two simulations, other than the difference
in initial conditions, is that the agent in Figure 3.17e has a central angle π

3
while the agent in Figure 3.17j has a central angle π. The initial conditions
can be seen in Figures 3.17a and 3.17f. The agent travels towards the beacon
in Figures 3.17b and 3.17g, this stage corresponds with state E in Lemma
3.1.9. The transition through other states of Lemma 3.1.9 can be seen in
Figures 3.17c and 3.17h. In Figure 3.17h the signature spiral of state B is
clearly visible. The periodic orbit state can be seen in Figure 3.17d and 3.17i,
where the agent repeats the same circle over and over again.

1https://ccl.northwestern.edu/netlogo/
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(a) (b) (c) (d)

(e) α = π
3

(f) (g) (h) (i)

(j) α = π

Figure 3.17: Two NetLogo simulations of a beacon and an agent with R = 6 and
r = 4. The red dot represents the beacon, the blue arrowhead represents the agent.

3.2 Two Agents Converge

Consider a system consisting of two agents. In this section we take S = 1
in order to allow each agent to rotate with radius r when not observing the
other agent, and R otherwise. The goal of this section is to show that the
system described here reaches a configuration where the distance between
the agents is bounded by a constant defined by the system parameters in fi-
nite time (Theorem 3.2.1). Another result given here shows that the 2-agent
system converges in linear time to a predetermined configuration defined by
the system’s parameters when initial conditions are set such that one agent’s
orientation is opposite the other agent’s orientation (Theorem 3.2.2). The
first goal is achieved by identifying the potential switching agent’s orientation
which brings the agents’ centers of rotation farthest apart (Lemma 3.2.1),
and then by showing that even the worst possible switch in terms of bring-
ing the centers of rotation towards each other still brings the agents’ centers
of rotation closer than they were before switching, as long as the distance
between centers of rotation before switching was greater than some constant
defined by system parameters (Lemma 3.2.2). The second goal is achieved by
recognizing the similarities between the 2-agent system and the agent-beacon
system discussed previously.

The following lemma describes the worst case scenario with regards to
bringing the two agents together, by identifying θ∗, the worst possible orien-
tation of the agent performing a radius switch.

Lemma 3.2.1. For 0 < α < 2π and every p1,p2 configuration, let d =
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c1
dc2 d

pr,r,e

pr,s,e

pr,r,b

pr,s,b

pR,r,e

pR,s,e

pR,r,b

pR,s,b

(a) 0 < α ≤ π

c1
dc2 d

pR,r,e

pR,s,e

pR,r,b

pR,s,b

pr,r,e

pr,s,e pr,r,b

pr,s,b

(b) π ≤ α < 2π

Figure 3.18: A general configuration for two agents with centers of rotation c1, c2 at
distance d from one another. Arcs in bold represent all θi values for which R (G, i)
can be determined solely by d and θi, regardless of θj. The arcs of the filled sectors
represent possible locations of ci after switching. pa,b,c represents the location of an
agent with center of rotation ci where a is the agent’s radius at the time (either r or
R), b can be either r or s depending on whether the other agent is rising or setting,
and c can be either b or e, representing the beginning and the end of an arc in which
switching is possible.
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‖c1 − c2‖ and let θ∗ be agent i’s orientation corresponding with the radius
switch that brings ci closer to cj the least, then

θ∗ = arcsin

R+ r cos
α

2
d

+ π − α

2
.

c1
d

x
A

B

C

R

θi,r,r,e −
π

2

θi,r,r,e −
π

2

θi,r,r,e

α

2

c2 d

x
A

B

C

R

θi,r,r,e −
π

2

θi,r,r,e −
π

2

θi,r,r,e

α

2
pr,r,e

Figure 3.19: The geometry used to prove Lemmas 3.2.1 and 3.2.2.

Proof. For 0 < α ≤ π, let pi,r,r,e be agent i’s position as its dawn horizon
becomes tangent to the R radius circle around cj at the point where agent
i’s rotation takes agent i’s dawn horizon away from agent j’s R circle, as
shown in Figure 3.18a. If agent i has not switched radius from r to R until
reaching pi,r,r,e, agent i must switch at that point since by that point all the
possible locations of agent j have risen over agent i’s dawn horizon. The
orientation of agent i at pi,r,r,e relative to the vector ci−cj , θi,r,r,e, is therefore
the greatest possible angle where switching from r to R is possible for any
ci, cj configuration when at distance d from one another. Using Figure 3.19,
and the law of sines we get

|Bc1|
sin π−α

2

=
r

sin

(
π −

(
π − α

2

)
−
(
π −

(
θi,r,r,e −

π

2

))) =
r

sin
(
θi,r,r,e +

α

2
− π

)
⇓

|Bc1| =
r cos

α

2

sin
(
θi,r,r,e +

α

2
− π

)
and

|Bc2| =
R

sin
(
θi,r,r,e +

α

2
− π

) .
Similarly, for π ≤ α < 2π, θi,r,r,b corresponds with the earliest opportunity
for agent j to rise over agent i’s dawn horizon, making it the worst case
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for bringing ci closer to cj , as can be seen inf Figure 3.18b. By geometric
consideration similar to those presented in Figure 3.19, we get

|Bc1|
sin α−π

2

=
r

sin
(

3π −
(
θi,r,r,b +

α

2

)) =
r

sin
(

2π −
(
θi,r,r,b +

α

2
− π

))
⇓

|Bc1| =
r cos

α

2

sin
(
θi,r,r,b +

α

2
− π

)
and

|Bc2| =
R

sin
(
θi,r,r,b +

α

2
− π

) .
Noticing that θi,r,r,e for 0 < α ≤ π and θi,r,r,b for π ≤ α < 2π are interchange-
able, we denote

θ∗ =

{
θi,r,r,e
θi,r,r,b

∣∣∣∣ 0 < α ≤ π
π < α < 2π

therefore,

d = |Bc1|+ |Bc2| =
R+ r cos

α

2

sin
(
θ∗ +

α

2
− π

)
⇓

sin
(
θ∗ +

α

2
− π

)
=
R+ r cos

α

2
d

⇓

θ∗ +
α

2
− π = arcsin

R+ r cos
α

2
d


⇓

θ∗ = arcsin

R+ r cos
α

2
d

+ π − α

2
.

Lemma 3.2.2. Given two agents with 0 < α < 2π and Rv > d+2R controlled
by (2.2), where d is the distance between the agents’ centers of rotation before
switching, the agents’ centers of rotation get closer together upon every switch
as long as

d >

√√√√√√
R

(
1 + 2 cos

(α
2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
.
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Proof. Figure 3.19 shows a general configuration of ci and cj , where d is the
current distance between centers of rotation, and x is the longest distance
possible between centers of rotation post switch. Using the law of cosines,

x2 =

 d2 + (R− r)2 − 2d(R− r) cos
(
θ∗ −

π

2

)
0 < α ≤ π

d2 + (R− r)2 − 2d(R− r) cos
(

2π −
(
θ∗ −

π

2

))
π < α < 2π

where θ∗ is the same as in Lemma 3.2.1. Notice that

cos
(

2π −
(
θ∗ −

π

2

))
= cos

(
θ∗ −

π

2

)
= sin (θ∗)

therefore,
x2 = d2 + (R− r)2 − 2d(R− r) sin (θ∗) .

If the centers of rotation are to get closer by the switch, x must be smaller
than d:

x < d⇒ x2 < d2

⇓

d2 + (R− r)2 − 2d(R− r) sin (θ∗) < d2

⇓

(R− r) < 2d sin (θ∗) .

Using Lemma 3.2.1 we get

(R− r) < 2d sin

arcsin

R+ r cos
α

2
d

+ π − α

2


⇓

(R−r) < 2d

cos

arcsin

R+ r cos
α

2
d

 sin
(
π − α

2

)
+
R+ r cos

α

2
d

cos
(
π − α

2

)
⇓

(R−r) < 2d cos

arcsin

R+ r cos
α

2
d

 sin
(α

2

)
−2
(
R+ r cos

α

2

)
cos
(α

2

)
⇓

R
(

1 + 2 cos
(α

2

))
− r

(
1− 2 cos2

α

2

)
< 2d sin

(α
2

)√√√√√1−

R+ r cos
α

2
d

2

⇓

R
(

1 + 2 cos
(α

2

))
− r

(
1− 2 cos2

α

2

)
< 2d sin

(α
2

) √d2 − (R+ r cos
α

2

)2
d

⇓
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R
(

1 + 2 cos
(α

2

))
− r

(
1− 2 cos2

α

2

)
< 2 sin

(α
2

)√
d2 −

(
R+ r cos

α

2

)2
⇓

R
(

1 + 2 cos
(α

2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

) <

√
d2 −

(
R+ r cos

α

2

)2
⇓R

(
1 + 2 cos

(α
2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
< d2

⇓

d >

√√√√√√
R

(
1 + 2 cos

(α
2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
.

Throughout the rest of this section, Rv is taken such that the agents
leave each-other’s field of view only by setting over each-other’s dawn of dusk
horizons.

Theorem 3.2.1. The distance between two agents controlled by (2.2) with
0 < α < 2π becomes bounded in finite time such that:

‖pj(t)− pi(t)‖ ≤

√√√√√√
R

(
1 + 2 cos

(α
2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
+(R−r)+2R.

Proof. As seen in Lemma 3.2.2, two agents controlled by (2.2) get closer by
each switch as long as

‖cj − ci‖ >

√√√√√√
R

(
1 + 2 cos

(α
2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
= dcritical.

Once closer than dcritical, the next switch could at most add a distance of
R − r to the centers of rotation, as R − r is the step size for any center of
rotation upon each switch. Given the centers of rotation, the actual position
of each agent is at most R from its center, leaving us with

‖pj − pi‖ ≤

√√√√√√
R

(
1− 2 cos

(α
2

))
− r

(
1 + 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
+(R−r)+2R.
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The upper bound in the previous result can be considerably shrunk given
the agents have opposite orientation at some point in time. Lemma 3.2.3
shows that once two agents have opposite orientations, they remain that way.
Theorem 3.2.2 uses this fact, as well as the result of Theorem 3.1.1, in order to
present a tighter bound on the distances between agents in a 2-agent system.

Lemma 3.2.3. In a system consisting of two agents controlled by (2.2) with
0 < α < 2π, if at some time t0, cos(θ1(t0) − θ2(t0)) = −1, then cos(θ1(t) −
θ2(t)) = −1 ∀t > t0.

Proof. If cos(θ1(t0) − θ2(t0)) = −1, then the agents get into and out of each
others sector of visibility at the same time, causing ∀t > t0,

θ̇1(t) = θ̇2(t)

⇓
d

dt
(θ1(t0)− θ2(t0)) = θ̇1(t)− θ̇2(t) = 0

⇓

θ1(t)− θ2(t) = const

⇓

cos(θ1(t)− θ2(t)) ≡ −1.

Theorem 3.2.2. In a system consisting of two agents controlled by (2.2)
with 0 < α < 2π, if at time t0, cos(θ1(t0) − θ2(t0)) = −1 then for t ≥ t0 +
Ttotal (‖c2 (t0)− c1 (t0)‖) where Ttotal (x) is affine in x, the system converges
to a configuration where both agents’ centers of rotation are invariant and

‖c1(t)− c2(t)‖ ≤
{

2r cos
(
α
2

)
0 < α < π

−2R cos
(
α
2

)
π ≤ α < 2π.

In addition, the agents’ angular velocity remains constant and common to both
agents, θ̇1(t) = θ̇2(t) = θ̇a,

θ̇a



=
v

r
0 < α < π

∈
[ v
R
,
v

r

]
α = π

=
v

R
π < α < 2π.

Proof. If cos(θ1(t0) − θ2(t0)) = −1, then the agents get into and out of each
others sector of visibility at the same time, creating point symmetry at b =
p2−p1

2 with regards to the agent’s trajectories. Point b is therefore stationary,
and since the agents have bearing only sensing, sensing point b is equivalent
to sensing the other agent. Invoking Theorem 3.1.1 for each of the agents
with point b as the beacon concludes this proof.

Figure 3.20 presents a visualization of the steady state reached by Theorem
3.2.2.
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c1

r cos
(
α
2

)

p1

rα
2

c2

r cos
(
α
2

)

p2

r
α
2

(a) With ‖c1 − c2‖ = 2r cos
(
α
2

)
, point b is located where both agents’ blind circles touch.

c1

p1

α
2

c2

p2

α
2

(b) When ‖c1 − c2‖ < 2r cos
(
α
2

)
, point b is in both agents’ blind circles.

Figure 3.20: Two configurations with α = π
2

and cos (θ1 − θ2) = −1. Agent 1 rotates
on the green circle on the right, agent 2 rotates on the orange circle on the left. The
blind circle of each agent, with radius r cos

(
α
2

)
is shown as well.

Conjecture 3.2.1. A 2-agent system controlled by (2.2), with 0 < α < 2π
converges in finite time to a periodic orbit such that both agents rotate in a
circular pattern with a common, invariant radius around stationary centers
of rotation, such that

‖c1(t)− c2(t)‖ ≤
{

2r cos
(
α
2

)
0 < α < π

−2R cos
(
α
2

)
π ≤ α < 2π

and r


= r 0 < α < π
∈ [r,R] α = π
= R π < α < 2π.

Figure 3.21 shows two NetLogo simulations of a 2-agent system. The
difference between the two simulations, other than the difference in initial
conditions, is that the agent in Figure 3.21e has a central angle π

3 while the
agent in Figure 3.21j has a central angle π. The initial conditions can be
seen in Figures 3.21a and 3.21f. The agents travel towards each other in Fig-
ures 3.21b and 3.21g, notice that the agents’ orientation becomes increasingly
synchronized during this stage. The agents negotiate a final configuration
in Figures 3.21c and 3.21h, reaching a configuration that enables the steady
periodic orbit states in Figures 3.21d and 3.21i, in accord with Conjecture
3.2.1.
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(a) (b) (c) (d)

(e) α = π
3

(f) (g) (h) (i)

(j) α = π

Figure 3.21: Two NetLogo simulations of a 2-agent system with R = 6 and r = 4.

3.3 Balanced States of the Swarm

In previous sections we analyzed the mechanics involved in converging from
any initial conditions to a confined space in systems of two agents and agent-
beacon systems. In this section, we consider a system with N agents. Two
theorems regarding the steady states of an N-agent system are presented,
and conjectures regarding reaching these states are provided as well. For the
duration of this section, Rv =∞.

Theorem 3.3.1. If N = nm such that n,m ∈ N, and if S ≤ m and each
agent’s field of view α is set such that α = 2π

n , then if at some point in
time, the agents are set in m clusters of n agents such that, without loss of
generality due to arbitrarily naming the agents and setting the origin’s location
and orientation: 

xi,k

yi,k

θi,k


t=t0

=


R sin θi,k

−R cos θi,k

2π

n
i+ ϕk


,

(3.9)

where i ∈ {0, .., n− 1}, k ∈ {0, ..,m− 1} and ϕk is some arbitrary phase
common to all agents within a n-cluster, then for every moment t such that
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t ≥ t0: 
xi,k

yi,k

θi,k

 =


R sin θi,k

−R cos θi,k

2π

n
i+ ϕk +

v

R
(t− t0)


.

Proof. Given a state where Equation 3.9 holds, all agents perceive exactly m
other agents, and therefore all agents rotate simultaneously around the same
center of rotation, c = c0 = c1 = cN−1. Every consecutive agents’ locations,
along with c, create an isosceles triangle with side length R and base angle
π − α

2
, maintaining the equilibrium for all time.

Theorem 3.3.2. If N = nm such that n,m ∈ N, and if S > m and each
agent’s field of view α is set such that α = 2π

n , then if at some point in
time, the agents are set in m clusters of n agents such that, without loss of
generality due to arbitrarily naming the agents and setting the origin’s location
and orientation: 

xi,k

yi,k

θi,k


t=t0

=


r sin θi,k

−r cos θi,k

2π

n
i+ ϕk


,

(3.10)

where i ∈ {0, .., n− 1}, k ∈ {0, ..,m− 1} and ϕk is some arbitrary phase
common to all agents within a n-cluster, then for every moment t such that
t ≥ t0: 

xi,k

yi,k

θi,k

 =


r sin θi,k

−r cos θi,k

2π

n
i+ ϕk +

v

r
(t− t0)


Proof. Given a state where Equation 3.10 holds, all agents perceive exactly
m other agents, therefore all agents rotate simultaneously around the same
center of rotation, c = c0 = c1 = cN−1 with radius r. Every consecutive
agents’ locations, along with c, create an isosceles triangle with side length r

and base angle
π − α

2
, maintaining the equilibrium for all time.

Figure 3.22 shows the course of a NetLogo simulation experiment con-
ducted in order to verify Theorem 3.3.2 over a 10-agent system. Due to
limitations of the simulation, discussed briefly in the beginning of Chapter 5,
Theorem 3.3.1 cannot be reliably simulated, but the verification of Theorem
3.3.2 by simulation may serve to verify Theorem 3.3.1 as well, since the two
theorems are closely related. From the difficulties to simulate the balanced
states in Theorem 3.3.1 we may learn that the balanced states there are un-
stable in the sense that they are sensitive to error in measurements, while the
balanced states in Theorem 3.3.2 are more stable in that sense.
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(a) Initially, all
agents are in a
formation accord-
ing to Equation
3.10.

(b) With α = 1
5π,

S = 2 every agent
senses one other
agent, remaining
in formation.

(c) With α = 2
5π,

S = 3, every
agent senses two
other agents, re-
maining in forma-
tion.

(d) Steadily going
up to α = π,
S = 6, the agents
remain in forma-
tion.

Figure 3.22: A simulation with 10 agents. By changing S along with α, the swarm
formation is kept the same.

By observing numerous simulations of the model presented in Chapter
2, the following conjectures, based on the gathering behaviors observed, are
made:

Conjecture 3.3.1. A system of N ≥ 2 agents controlled by (2.2) with 0 <
α < π, such that 0 < S ≤ N−1, converges in finite time to a cohesive behavior
in which the every agent’s trajectory intersects another agent’s trajectory at
least once every 2πR

v time period.

Though according to Conjecture 3.3.1, the swarm ultimately converges,
it doesn’t always do so to balanced states as presented in Theorems 3.3.1
and 3.3.2. Figure 3.23 shows a set of simulations where six agents with ratio
r
R = 1

2 initialized at random xi, yi, θi ultimately converge such that every
agent’s trajectory intersects another at least once in a completion of a θ cycle.
The exception is Figure 3.23f, where S > N−1 and the agents do not converge
at all.

Conjecture 3.3.2. A system of N = nm agents controlled by (2.2), such
that n,m ∈ N, α = 2π

n and S = m converges in finite time to a periodic orbit
consisting of m rotating n-regular polygons.

Figure 3.24 shows one example of convergence to a periodic orbit, while
Figure 3.25 shows six agents with radius ratio r

R = 1
2 , initialized at random

xi, yi, θi and the end behavior they display.
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(a) α = π
6 , S = 1 (b) α = π

2 , S = 2 (c) α = 5
6π, S = 3

(d) α = 7
6π, S = 4 (e) α = 3

2π, S = 5 (f) α = 11
6 π, S = 6

Figure 3.23: A simulation with 6 agents with different S values.

Figure 3.24: A simulation of a swarm of 10 agents converging from random initial
conditions to a balanced state (left). On the right, a snapshot of the resulting
balanced state.
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(a) α = π
3 , S = 1, resulting

in a regular hexagon peri-
odic orbit.

(b) α = 2
3π, S = 2, result-

ing in two equilateral trian-
gles, in this case one on top
of the other.

(c) α = π, S = 3, result-
ing in three pairs of agents
facing opposite directions.

(d) α = 4
3π, S = 4. 4 is

not a divisor of 6, and the
swarm converges to some
cohesive behavior as op-
posed to a periodic orbit.

(e) α = 2
3π, S = 2, result-

ing in two equilateral trian-
gles, clearly defined in this
case.

(f) α = π, S = 3, resulting
in three pairs of agents fac-
ing opposite directions.

Figure 3.25: A simulation with 6 agents with different S values.
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Chapter 4

Controlling the location of
the Swarm

Control over the location of the swarm may be achieved in a number of ways,
briefly discussed in this chapter. The fact that we have not used the velocity
control input in gathering the swarm, leaves this input free for use in con-
trolling the swarm, as described in Subsections 4.2 and 4.3. In addition, the
swarm’s gathering nature may also be utilized in order to control the swarm,
as described below.

4.1 Control by Leader Agents

The swarm can be manipulated by either introducing ”shepherd” agents as
demonstrated in Figure 2.1, or by hijacking agents that are already part of
the swarm, as demonstrated in simulation in Figure 4.1. The scalability of the
swarm allows for the addition and removal of agents without compromising the
self-stabilizing behavior of the swarm. Adding shepherd agents, i.e. agents
that are controlled by some operator, or hijacking one or more agents by
overriding their interaction protocol with an operator command, introduces
leader agents into the swarm. The existence of leader agents in the swarm
causes the swarm’s agents, unaware that the leader agents’ protocol is any
different than their own, to try and incorporate these agents into the swarm’s
formation. Since the leader agents do not adhere to the swarming protocol,
the swarm implicitly adapts by following the leaders.

4.2 Control by Predefined or Broadcast Po-

tential Field

Another way of controlling a swarm rotating in a circular formation is by
letting the single agent’s speed be dictated by a global scalar potential field
induced in the environment. Figure 4.2 shows a simulation of such a swarm.
In the example presented, each agent is equipped with a location sensor, e.g.
a GPS receiver, and a radio receiver. An operator is assumed to broadcast
a potential function ϕ(x, y, t), and every agent that detects the broadcast
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(a) Initially, all agents are
scattered on the plane.

(b) Left to their own devices,
the agents aggregate.

(c) While aggregating, the
agents also synchronize their
phase towards a circular for-
mation.

(d) A steady state where
each agent autonomously
finds its place and phase
within the swarm formation
is quickly achieved.

(e) By ”hijacking” one of the
agents and moving it to the
corner (emphasized), the en-
tire swarm is manipulated as
a reaction.

(f) Relenquishing control
over the hijacked agent
returns the swarm to its
steady state, now at a new
location.

Figure 4.1: A simulation with 8 agents. Notice the agent’s trajectories in each phase
of the experiment.

updates its speed, v, according to

v = ϕ(x, y, t)

where (x, y) is the agent’s location. As a result, a difference in speed between
agents is introduced on top of the swarm’s protocol, causing the slower agents
to pull at the swarm, and the swarm moves in a direction perpendicular to
the potential field’s gradient. Instead of broadcasting the potential function,
the function can be preloaded into the agent’s controlling protocol. Since the
swarm moves in the direction of the left perpendicular to the potential field’s
gradient, the swarm can readily be made to patrol the potential field along a
certain contour line.

4.3 Control by Local Sensing

Instead of being explicitly known to the agents, the potential field could be
sampled by the agent’s sensors at the agent’s location, as described in [11].
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(a) Steady state, no po-
tential field present.

(b) A potential field with a
horizontal gradient causes
the swarm to move verti-
cally.

(c) A potential field with
a vertical gradient causes
the swarm to move hori-
zontally.

Figure 4.2: A swarm in circular formation rotating under the influence of a potential
field.

Electromagnetic signal strength, a specific chemical particle count, sound fre-
quency and intensity, are examples of quantities that can be measured on the
fly by an agent’s sensors. Since changes in these quantities over time and
space describe a potential field function, a swarm of agents equipped with
sensors that can measure these quantities can readily function without a GPS
or radio receiver.
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Chapter 5

Simulation Results

In this chapter simulation verifications of the theoretical results introduced
in Chapter 3 are presented. Simulations were conducted using NetLogo1

and python2. In both environments, the numeric value assigned for π is
3.141592653589793, which is smaller than the actual π[1]. The numeric na-
ture of the simulations lead to inaccuracies in the simulated agent’s behavior,
as can be seen in Figures 3.17 and 3.21, causing the agents with α = π to con-
tinue to converge to an r radius around the center of rotation when in a perfect
simulation they would have found some radius rf such that r ≤ rf ≤ R, as
dictated by Corollary 3.1.6. Due to this inherent imperfection, this chapter
loosely uses the term π as the numeric value and not the exact one. This
imperfection of the numeric world actually has implications to the real world
implementation of the model suggested here. Any robot implemented using a
digital processor would have the same issue. However, the only consequence
is that the agents continue to converge to a smaller radius than prescribed by
theory, practically rendering the resulting steady states in Corollaries 3.1.3
and 3.1.6 highly improbable, being replaced in real world scenarios by the
steady states described in Lemma 3.1.9 and Corollary 3.1.5. On the other
hand, robots in the real world have dimension, as opposed to the simulated
agents in this chapter, introducing the opposite problem to that of simulated
π being inaccurate, since this problem causes the agents to over-detect other
agents instead of under-detecting them as they do in the simulations presented
here. Fortunately, as seen in experiments conducted on real robots such as
the one shown in Figure 2.1, the control protocol in (2.2) is able to bring the
robot agents to the desired formation despite the inherent differences between
theory and practice.

5.1 A Single Agent and A Beacon

This section serves to validate the theoretical results obtained in Section 3.1
by simulation. Three simulation experiments were conducted and are de-
scribed here. In Section 5.1.1, an illustrative simulation is shown to validate
the existence of the different states described in the proof for Lemma 3.1.9.
In Section 5.1.2, the upper bound on convergence time obtained in Theorem

1https://ccl.northwestern.edu/netlogo/
2https://www.python.org/
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3.1.1 is validated. In Section 5.1.3, the relationship between initial conditions
and the time it takes for the system to converge to a periodic orbit is veri-
fied by multiple simulations with preset constant system parameters, a set of
distances between the agent’s initial center of rotation and the beacon, and
otherwise random initial conditions.

5.1.1 Evolution of Distance to Beacon

An example python simulation for a system comprised of an agent and a
beacon is presented here. The beacon was set at (0, 0) and an agent with

parameters R = 6[m], r = 4[m], α = π
3 , v = 1 [m]

[Sec] and random initial θa
had its center of rotation planted at (100, 0). Figure 5.1 shows the evolution
of both ‖pa(t)‖ and ‖ca(t)‖ through simulation time. The different colors of
the plot represent the different states the agent is in, according to Lemma
3.1.9. The simulated agent starts at state E, goes through states D, A, C,
until reaching state B and converging to ‖ca(t)‖ = 3.46 ± 0.01. The agent’s
state transitions, as well as the convergence of ‖ca(t)‖ are in agreement with
Lemma 3.1.9, where we have

‖ca(t→∞)‖ ≤ r cos
(α

2

)
.

By plugging in the simulation parameters we get

r cos
(α

2

)
= 4 cos

(π
6

)
≈ 3.464.

In addition, two periodic behaviors can be clearly seen in this simulation. One
corresponds with state E in Lemma 3.1.9, described in Lemma 3.1.5, where
the cycle period was obtained as

T =
2πr + α (R− r)

v
.

Assigning the simulation parameters we get Tt = 26
3 π ≈ 27.227, in compliance

with the value measured in the simulation Ts = 27.23 ± 0.01. The other
periodic behavior corresponds with the steady ”sink” state in Lemma 3.1.9,
described in Lemma 3.1.1, Section 3.1, where Tt = 2πr

v . In the simulation, the
time period for the steady state is measured at Ts = 25.13 ± 0.01, and is in
accord with the theoretic result using the simulation parameters, Tt ≈ 25.133.

5.1.2 Convergence Time is Linearly Bounded as a
function of the Beacon’s Initial Distance to Agent’s
Center of Rotation

In order to verify the validity of the convergence time upper bound in Theorem
3.1.1, over a thousand simulations were conducted with initial conditions and
parameters randomly selected over a uniform distribution such that for each
simulation: R ∈ [2, 10), r ∈ [1, R), α ∈ [0.1, π − 0.1), ca (tinitial) ∈ [R, 100).
Figure 5.2 shows a plot of the results, where each data point has coordinates
(x, y), with x being the calculated theoretical upper bound for the simulation’s
initial conditions and parameters and y being the actual time it took the
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Figure 5.1: A simulation for a beacon and an agent with parameters R = 6[m],

r = 4[m], α = π
3

and v = 1 [m]
[Sec]

. Evolution of both ‖pa(t)‖ and ‖ca(t)‖ is shown, the
different colors represent the different states the agent is in.

simulation to reach the point where ca(t) ≤ r cos α2 . For convenience, the line
y = x is also plotted on the same graph to show that all data points fall
under it, indicating that the theoretical upper bound is never broken in all
the simulations conducted.

Figure 5.2: Each data point on the graph is one simulation result out of over one
thousand. The data point coordinates are the theoretical upper bound on conver-
gence time as X and the convergence time reached by the simulation as Y. Two
trend lines are also shown, the upper one is y = x, showing that the theoretical
upper bound is verified in these simulation results.

5.1.3 Convergence Time is Affine over Beacon Ini-
tial Distance to Agent’s Center of Rotation

For each initial center of rotation in the range [10, 20, .., 100] meters, 100
python simulations were initialized with preset parameters R = 6[m], r =

4[m], α = π
3 , v = 1 [m]

[Sec] and random initial θa. For this set of parameters, the
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ca(t0)[m] 10 20 30
mean convergence time [Sec] 118.553 259.0467 395.0646
standard deviation [Sec] 7.3607479994 7.5403591607 7.7186442809
max convergence time [Sec] 130.1 272.2 408.78
min convergence time [Sec] 104.5 246.94 383.42
theoretical bound [Sec] 376.051423867 512.187105522 648.322787178

ca(t0)[m] 40 50 60
mean convergence time [Sec] 530.6733 668.8577 804.6137
standard deviation [Sec] 7.1806059021 7.2219569601 6.9680382375
max convergence time [Sec] 544.75 681.57 817.53
min convergence time [Sec] 519.67 655.62 792.13
theoretical bound [Sec] 784.458468833 920.594150489 1056.72983214

ca(t0)[m] 70 80 90
mean convergence time [Sec] 938.7692 1076.6386 1213.0104
standard deviation [Sec] 7.1392699284 7.4628384423 6.7324358718
max convergence time [Sec] 953.03 1089.65 1225.33
min convergence time [Sec] 928.29 1064.02 1200.21
theoretical bound [Sec] 1192.8655138 1329.00119546 1465.13687711

ca(t0)[m] 100
mean convergence time [Sec] 1348.0998
standard deviation [Sec] 7.632927471
max convergence time [Sec] 1361.62
min convergence time [Sec] 1336.35
theoretical bound [Sec] 1601.27255877

Table 5.1

upper bound on convergence time becomes

Ttotal =
2πr + α (R− r)

2v(R− r) sin
(
α
2

) ‖ca (tinitial)‖+
R− r
v

tan
(α

2

)

+
3αR+ (6π + α) r

v
+

(2π + α) r2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

)
=

13π

3
‖ca (tinitial)‖+ 76π +

2√
3
≈ 13.614 ‖ca (tinitial)‖+ 239.916.

Table 5.1 shows the simulation results obtained, plotted in Figure 5.3.
The results indicate that the actual convergence time as a function of the

initial distance between the beacon and the agent’s center of rotation is indeed
linear, with a slope corresponding to the theoretical analysis.
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Figure 5.3: Simulation results for a system composed of an Agent and a Beacon.
Theoretical upper bound on convergence time juxtaposed the mean, maximal and
minimal convergence times for 100 simulations for each initial distance of the agent’s
center of rotation from the beacon.

5.2 Two Agents

This section serves to validate the theoretical results obtained in Section 3.2
by simulation. Four simulation experiments were conducted and are described
here. In Section 5.2.1, an illustrative simulation is presented in order to show
the parallelism between the evolution of distances between the agents in a
2-agent system and the different states of the beacon-agent system described
in the proof for Lemma 3.1.9. In Section 5.2.2, the evolution of the agents’
orientation is measured through simulation and some observations supporting
Conjecture 3.2.1 are made. In Section 5.2.3, the relationship between initial
conditions and the time it takes for the system to converge to a periodic orbit
is explored by multiple simulations with preset constant system parameters, a
set of distances between the agent’s initial center of rotation and the beacon,
and otherwise random initial conditions. The results obtained support both
Theorem 3.2.1 and Conjecture 3.2.1. The results obtained in Section 5.2.3 are
further investigated in Section 5.2.4, further fortifying Conjecture 3.2.1.

5.2.1 Evolution of Distance between the Agents

An example python simulation for a 2-agent system is presented here. Both
agents were initialized with parameters R = 6[m], r = 4[m], α = π

3 , v = 1 [m]
[Sec]

and random initial θa. One agent had its center of rotation set at (0, 0) and
the other agent had its center of rotation set at (100, 0). Figure 5.4 shows
the evolution of both ‖p2(t)− p1(t)‖ and ‖c2(t)− c1(t)‖ through simulation
time. The different colors of the plot represent the different states the agent
would have been in, according to Lemma 3.1.9, had there been a ”moving
beacon” present at p1(t)+p2(t)

2 . The states, though not applicable here, are
presented in order to show the resemblance to the results shown in Figure 5.1.
A convergence to a steady state is clearly seen from about t = 670 onward,
where ‖c2(t)− c1(t)‖ = 6.92±0.02. This is well within the bounds of Theorem
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3.2.1, where stated:

‖cj − ci‖ (t→∞) <

√√√√√√
R

(
1 + 2 cos

(α
2

))
− r

(
1− 2 cos2

α

2

)
2 sin

(α
2

)
2

+
(
R+ r cos

α

2

)2
≈ 20.684,

and even within the bounds of Theorem 3.2.2, where stated:

‖cj − ci‖ (t > t0 + Ttotal) ≤ 2r cos
(α

2

)
≈ 6.93,

and
Ttotal ≈ 920.594.

This result is surprising, since the initial conditions for this simulation were
not such that cos (θ2 − θ1) = −1, as required by Theorem 3.2.2. Since it seems
that the results obtained in this simulation adhere to the bounds presented
in Theorem 3.2.2 without meeting the requirements of the theorem, further
investigation seems necessary, and is presented at Section 5.2.2.

(a)

Figure 5.4: A simulation for a 2-agent system with parameters R = 6[m], r = 4[m],

α = π
3

and v = 1 [m]
[Sec]

. Evolution of both ‖p2(t)− p1(t)‖ and ‖c2(t)− c1(t)‖ is shown,
the different colors represent the different states the agent is in with regards to a
point half way towards the other agent.

5.2.2 Evolution of Orientation

Analyzing the results obtained from the experiment held in Section 5.2.1,
we notice that the difference in the agents’ orientations approach π as the
simulation approaches its converged state. Figure 5.5 shows the evolution
of both agents’ orientation, along with the difference in orientation, through
time.

68

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

IS
-2

01
7-

02
 -

 2
01

7



Figure 5.5: A simulation for a 2-agent system with parameters R = 6[m], r = 4[m],

α = π
3

and v = 1 [m]
[Sec]

. Evolution of θ1, θ2 and |θ2 − θ1| is shown.

5.2.3 Upper Bound on Convergence Time

Given the results in Sections 5.2.1 and 5.2.2, a series of tests were conducted
in order to verify Theorem 3.2.1, as well as Conjecture 3.2.1. As no upper
bound for time is provided in these statements, and having observed the
evolution of orientation in Section 5.2.2, we set the simulations to terminate
either when a time period of T = 2πR

v lapsed without any switching and with
no change to ∆θ, implying an orbit, or when the upper bound on time in
Theorem 3.2.2 elapsed. For each initial distance between centers of rotation
in the range [10, 20, .., 100] meters, 100 python simulations were initialized

with preset parameters R = 6[m], r = 4[m], α = π
3 , v = 1 [m]

[Sec] and random
initial θa. For this set of parameters, the upper bound on convergence time
becomes

Ttotal =(
2πr + α (R− r)

2v(R− r) sin
(
α
2

)) ‖c2(t0)− c1(t0)‖
2

+
R− r
v

tan
(α

2

)
+

3αR+ (6π + α) r

v
+

(2π + α) r2

v(R− r)
+
αR+ 2πr

2v sin
(
α
2

) +
πr2

v(R− r) sin
(
α
2

)
=

13

6
π ‖c2(t0)− c1(t0)‖+76π+2 tan

(π
6

)
≈ 6.807 ‖c2(t0)− c1(t0)‖+239.916.

Table 5.2 shows the simulation results obtained, plotted in Figure 5.6.
Notice that no convergence time exceeds or even comes close to the upper
bound, meaning that a steady state was achieved in each of the simulations
before reaching the time upper bound. This result, along with that in Sections
5.2.2 and 5.2.4 support reasonable grounds for Conjecture 3.2.1.
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‖c1(t0)− c2(t0)‖ [m] 10 20 30
mean convergence time [Sec] 96.3233 166.4391 231.9716
standard deviation [Sec] 16.830511798 14.2570158589 12.2491573588
max convergence time [Sec] 158.76 186.24 263.82
min convergence time [Sec] 96.3233 166.4391 216.32
theoretical bound [Sec] 307.983583039 376.051423867 444.119264695

‖c1(t0)− c2(t0)‖ [m] 40 50 60
mean convergence time [Sec] 304.5203 369.5082 442.1633
standard deviation [Sec] 12.804248305 13.2689676229 9.4976772338
max convergence time [Sec] 320.04 397.69 470.22
min convergence time [Sec] 270.98 352.67 412.25
theoretical bound [Sec] 512.187105522 580.25494635 648.322787178

‖c1(t0)− c2(t0)‖ [m] 70 80 90
mean convergence time [Sec] 508.4133 577.9575 642.7951
standard deviation [Sec] 15.3977590561 9.1886678534 13.8263284561
max convergence time [Sec] 535.98 591.87 672.04
min convergence time [Sec] 488.71 546.68 624.33
theoretical bound [Sec] 716.390628006 784.458468833 852.526309661

‖c1(t0)− c2(t0)‖ [m] 100
mean convergence time [Sec] 714.9467
standard deviation [Sec] 10.0881046113
max convergence time [Sec] 728.9
min convergence time [Sec] 683.2
theoretical bound [Sec] 920.594150489

Table 5.2
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Figure 5.6: Simulation results for a 2-agent system. A suggested linear upper bound
on convergence time based on Theorem 3.2.2 juxtaposed the mean, maximal and
minimal convergence times for 100 simulations for each initial distance between the
agents’ centers of rotation.

5.2.4 Upper Bound on Distances

To further investigate the results obtained in Section 5.2.3, as well as the
configurations reached by the end of time elapsed, over a thousand simulations
were conducted with initial conditions and parameters randomly selected over
a uniform distribution such that for each simulation: R ∈ [2, 10), r ∈ [1, R),
α ∈ [0.1, π − 0.1), ‖c2 − c1‖ (tinitial) ∈ [R, 100). The simulations terminate
either by reaching a steady state where no switching occurred and |θ1 − θ2|
remained constant for more than 2πR

v time, or by reaching the time bound
as prescribed by Theorem 3.2.2. At the end of each simulation the distance
between the centers of rotation was recorded. Figure 5.7 shows the results of
this experiment. Three data series are presented at each plot - the theoretical
bound from Theorem 3.2.1, dcritical, and 2r cos

(
α
2

)
corresponding the random

parameters set for the simulation, along with the distance between centers
of rotation at the end of the simulation. In Figure 5.7a, the data series are
plotted against the theoretical bound from Theorem 3.2.1, and in Figure 5.7b
the data series are plotted against 2r cos

(
α
2

)
. These results verify Theorem

3.2.1, as no result ever reached the theoretical distance upper bound by the end
of simulation time. These results also strongly suggest 2r cos

(
α
2

)
as an upper

bound, implying a synchronization of orientations as seen in Section 5.2.2,
leading to the conditions required for Theorem 3.2.2 to manifest, ultimately
fortifying Conjecture 3.2.1.
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(a) The data series vs dcritical

(b) The data series vs 2r cos
(
α
2

)
Figure 5.7: The distances between centers of rotation at the end of over a thousand
simulations are presented here as the ‖c2(tend)− c1(tend)‖ data series, along with
2r cos

(
α
2

)
and dcritical from Theorem 3.2.1.
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Chapter 6

Discussion

The model presented is a decentralized, scalable, self organizing swarm of
anonymous unicycle type agents which solves a formation problem by evolving
to either a regular polygon formation or to a set of regular polygons in some
particular cases described here. The model requires the agents to have only
limited sensing abilities which enable the agents to make a crude judgment
on how many other agents are in a sector in front of them utilizing limited
computation power and with no knowledge of the global frame. The simplicity
of the agents allow for a cost effective implementation of the model, since the
use of sophisticated equipment is rendered unnecessary. This work contains
a full analysis of a beacon-agent system, as well as convergence theorems for
a 2-agent system and equilibrium analysis for a N -agent system. Gathering
in the N -agent case and orientation synchronization in the 2-agent case were
demonstrated in simulation. Methods of controlling the location of the swarm
were presented and demonstrated in simulation as well.

Current research efforts are aimed at fully understanding the orientation
synchronizing mechanism which was observed in the 2-agent and N -agent
cases. The understanding of this mechanism is key to a full analytic solution
to the formation of regular polygons in the N -agent case, and may prove useful
in the analysis of future models based on the model presented here. Obstacle
avoidance hasn’t been covered in this work, yet the ”Turtle Bale” project has
incorporated obstacle avoidance by adding range sensors, without hindering
the gathering nature of the swarm.
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