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Abstract

We consider a group of mobile robotic agents, identical and indistin-
guishable, having no memory (oblivious) and no common frame of refer-
ence (neither absolute location nor a common orientation). Furthermore,
these agents are assumed to posses only rudimentary sensing and compu-
tational capabilities (limited visibility and basic geometric sorting). We
prove that, such robots, implementing a ”Chase the farthest neighbour”
policy, preform the task of gathering to a point within a finite time or a
finite expected number of time steps.

In continuous time, preforming such a gathering task is rather straight-
forward, while in the discrete time, we prove that a randomized semi-
synchronised timing model leads to gathering within a finite expected
number of time-steps.

1 Introduction

This paper discusses the multi-agent gathering problem in continuous and dis-
crete time, showing that gathering may be achieved by applying a very simple
motion law, implementing a ”chase the farthest neighbour” policy. Suzuki and
Yamashita, in an early version of their paper [1], suggested such an algorithm
for a discrete-time multi-agent system of oblivious, anonymous and unlimited
visibility agents for point convergence in the R? plane. In their paper they
also proved that preforming this task within a finite number of time-steps is
impossible, if the agents cannot agree on a common meeting point.

We here first analyse a similar algorithm in the continuous-time framework
for the case of limited-visibility or sensing by the agents. In the discrete case, we



suggest a stochastic algorithm using the same, ”chase the farthest”, idea which
provides a solution to the task of gathering within a finite expected number of
time-steps.

This paper first discusses some basic concepts, and then proceeds with point
gathering of agents having unlimited and limited visibility in a continuous time
framework. Then, problems that arise from implementing the ”chase the far-
thest neighbour” policy in a discrete time framework are discussed, showing
that a system of agents having unlimited visibility clusters to a small region.
Gathering to a point under unlimited and limited visibility and randomized
semi-synchronized timing of the agents’ movements is then proved to occur in
finite expected time.

2 Preliminaries

We deal with a system of n identical and anonymous oblivious agents in the R?
plane specified by their time varying locations {p;(t)}i=1,2....». The agents inter-
act with each other in such a way that their position updates are determined by
their current location and by interaction with their neighbours. The neighbours
of each agent 7 at time t are defined as the set of agents located within a given
visibility range, V, form p;(t), and this set denoted by N;(¢). The neighbour-
hood relation between agents is described by a time dependent visibility-graph.
Notice that when dealing with unlimited visibility, the set N;(¢) comprises all
the agents except 7, and the visibility-graph is complete, i.e. all agents ”see”
each other.

The proofs in this paper require the use of some results from basic geometry
and facts from the theory of random-processes which can be found in Appendix
1.

3 Continuous time gathering

3.1 Unlimited visibility

The main idea of the "chase the farthest” gathering law is that each agent
continuously moves toward the position of its current farthest neighbour. If
more than one neighbour is at the farthest distance from it, the agent arbitrarily
selects one of its farthest neighbours, and moves toward its location. This
dynamic law is simple, and we shall prove that if all agents of the system act
by it, then the system eventually gathers to a point.



In order to define a formal dynamic law, we consider the set of the farthest
agents (neighbours). Let NY9"(t) c N;(t) be the set of the agents located at
the maximal distance from agent ¢ at time ¢.
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The agents’ formal dynamic law is that each agent moves with a constant
speed o > 0 toward the position of j an arbitrary agent from the set NF"(t),
unless it is collocated with j (in which case, obliviously the agents are all gath-
ered!).
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Notice that in (1) j is an arbitrary agent from the set N/%"(t). Hence, a
delicate issue here is the continuous need to select the farthest neighbour from
a set N;(t) possibly containing more than one agent (this makes it necessary
to assess the well-posedness of the velocity control rule, p;(t), since in principle
infinitely many switches in the choice of ¢ are possible. However, one can argue
that all choices yield similar effects on p;(t), and monotonicity argument can be
used to prove well-posedness of the evolution with correct bounds on the rates
of changes of distances between agents. For a discussion of a similar issue see
[2] and the discussion in Appendix 3).

Theorem 1. A system of n agents with dynamic law (1) gathers to a point
within a finite time.

Proof. Let D(P(t)) be the current diameter of the convex-hull of the system’s
agents, i.e.
D(P(t)) = max [pi(t) - p; (1)

Let us analyse the dynamics of D(P(t)). Obviously, if not all agents are
collocated, no agent stays put. The temporal change of the distance between
each pair of agents {i,j}, assuming ¢ and j move towards i’ and j’ respectively
(see Figure 1),is given by

pi(t) —p;(t)
Ipi(t) = p;i ()]

where 0,;; = 2p;(t)p;(t)pi (t) and 8, = 2p;(t)p; (t)p; (1)

) (Pi(t) = p;j(t)) = =0 (cos(0i;) + cos(6:))
(2)
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The pair of agents that define D(P(¢)) may not be unique, therefore we
shall focus on all the pairs that the distance between their agents is equal to



Figure 1: Agents ¢ and j are the farthest neighbours of each
other, but move toward other agents, i # j and j' # ¢ in their
farthest neighbours sets.

D(P(t)) at time ¢. Notice that an agent may belong to more than one of those
pairs, and then it may not move towards some of its pairs. Let ¢ be a shared
agent of two pairs {i,j} and {7, ¢} the distance between the agents in each pair
being D(P(t)). The angle between the two vectors pointing from p;(t) to p;(t)
and from p;(t) to py(t) is necessarily smaller than or equal to 7/3, otherwise
the distance between agents j and ¢ would be more than D(P(t)) (see Figure
2).

D(P(t)

pj(t)  Pilt)

Figure 2: The pairs of agents {i,j} and {i,q} both define
D(P(k)), the diameter of the system. Considering the pair
{i,j}, agent ¢ may only be located on the thick arc, i.e the
absolute value of the angle 6;; is upper bounded by 7/3. Oth-
erwise, the distance between agents j and ¢ would be greater
than D(P(k)), which contradicts the definition of D(P(k)).

By the motion rule (1), any agent that belongs to one of those pairs is moving



towards the position of one of its pairs. By (2), the rate of change of the distance
between agents of each such pair {i,5} is bounded as follows:

s %Hmw ~p; ()] £ —o(cos(/3) + cos(x/3)) = -0

Furthermore, a pair of agents which define D(P(t)) may switch the role of
defining the diameter with another pair currently not at a distance D(P(t))
from each other. In this case they must first be in a situation where they
both define the diameter, due to the intermediate value theorem for continuous
functions. Therefore, we can bound the rate of change of the system’s diameter,
considering only farthest pairs at all times ¢. Hence, the rate of change of
D(P(t)) is globally bounded as follows:

& p(P(t) <o (3)

and the diameter of the system drops to zero within a finite time D(P(0))/o,
as claimed in Theorem 1.
O

Due to the fact that in the time varying constellation of the agents both
the farthest agents to be chased and the pairs of agents defining the diameter
may abruptly change, the quantities we considered above, both in defining the
agents’ velocity and the rate of change of the diameter of their constellation
evolve in a non differentiable way. However, they are continuous by definition
and their variation rate is bounded. Hence the results presented above can be
made rigorous and well defined (see e.g [2]).

3.2 Limited visibility

In this section we apply the concept of ”chase the farthest” to agents with
limited visibility. By assumption, here each agent senses only the agents located
within a visibility range of V. We clearly cannot use the former algorithm,
since agents may lose visibility with their neighbours during their movement,
and hence cluster into disconnected groups. For example, assume an agent has
two neighbours which are both located at a distance V' from it and the angle
between the vectors pointing to them is larger than 7/2. Then, moving towards
one of them will result in losing visibility to the other (See Figure 3).

A solution for this problem is given by a slightly more complicated algorithm.
We suggest a new dynamic law which addresses the connectivity problem and
gathers the system to a point, within a finite time. This algorithm is again
based on ”chase the farthest” concept, and is similar to the former dynamic law,



Figure 3: Applying motion rule (1) on agent with limited visi-
bility may result with connections loss. The two middle agents
disconnect, since they move "away” from each other.

however in situations where an agent senses more than one farthest neighbour,
according to the motion law we consider, it will not move away from any one of
them.

The presentation of a formal dynamic law requires us to adjust some of our
definitions. Let N9 (t) c N;(t) be the subset of the farthest visible neighbours
of agent 4, i.e all the agents in N/"*"(t) are equally distanced from i, while the
other agents in the set N;(t) are located closer to i.

Each agent ¢ continuously calculates @[JiF %7 the angle of the minimal disk
sector anchored at p;(t) and containing its farthest neighbours N7 (¢). If
YFar(t) is equal to or greater than 7 (hence i is "surrounded” by its farthest
neighbours), the agent stays put. Otherwise, it moves with speed ¢ > 0 in the
direction of U%"(t) a unit vector in the direction of the bisector of the angle
YFer (see Figure 4). The motion law of agent i is therefore

oUFer () For(t) <=
pi(t) = (4)
0 pFer(t)y > n

Notice that most of the time an agent has a single farthest neighbour, then
¢Fer =0, and the agent i moves toward its only farthest neighbour (see Figure

4(a)).

Before proving convergence we show that the motion law (4) maintains the
connectivity of the system’s visibility-graph, i.e. if all the agents of the system
obey this law, they maintain visibility with all their current neighbours.

Lemma 1. The motion law (4) ensures that neighbours in the initial configu-
ration remain neighbours forever.



Figure 4: The motion law (4), in case of limited visibility.

(a) {¢pFo" =0} Agent i moves toward j its only farthest agent
within its visibility range.

(b) {wpFar < 7} Agent i moves toward the bisector of the minimal
sector containing all its farthest neighbours. j and k are the
neighbours that define the minimal angular-sector containing
all the farthest neighbours.

(c) {wFe" > 7} Agent i does not move. (Here agents j and ¢
define the sector S(t)).

Proof. Let {i,j} be a pair of neighbours. In order for this pair to disconnect in
the visibility-graph, ;;(¢), the distance between those agents, must cross V. At
that state ¢« and j are necessarily in the set of the farthest neighbours of each
other, since none of them may sense agents beyond the range of V, i.e.

sz(t) _p](t)H =V = je NZF(”(t) and i ¢ NJFar(t)

By the motion rule (4), for the agent 4, If %1% (¢) > 7, then it stays put.
Otherwise (if 19" (t) < 7), it moves with speed of ¢ in the direction of U " ().
Hence, if the agent does not stay put, its moves in a direction with an angle
smaller than or equal to 7/2 relative to the direction pointing to the agent
j € Nfo". Denote this angle by 6;;(t). Then considering a pair {i,7} where
jeNJr(t) and i € NJ'*"(t), we have that

N TR ORI
O —p o1 PO
- (I8 eos(B1,4)) + Iy ()] con(6,:(4))) < 0

showing that the distance between ¢ and j can not increase upon reaching V,
and hence can not exceed V. This proves the lemma. O

Notice that the agents of this system need not be ”aware” of their visibility
range V in order not to lose neighbours, however we need to have the same



visibility range for all the agents (and this is ensured by our assumption that
all agents are identicall).

We next show that no agent moves out of the current convex-hull of the
agents’ locations, hence the constellation’s convex-hull is non-increasing in time.

Lemma 2. Let CH(P(t)) be the convex-hull of the positions of the agents at
time t. Then
{Vt,At>0: CH(P(t+At))cCH(P(t))}

Proof. By (4), the speed of each agent is either zero or o > 0 with a direction
towards another agent or a convex combination of other agents’ locations. Since
there are no agents exterior to CH(P(t)), no agent can move out of it. O

Theorem 2. A system of n agents moving according to motion rule (4), having
a connected initial visibility-graph, will gather to a point within a finite time.

Proof. This proof is based on considering the dynamics of s, the agent located
at a (currently) sharpest corner of the system’s convex-hull. Let ¢4 be the inner
angle of this corner, which by Proposition 2, in Appendix 1, is upper bounded

by . =m(1-2/n).

Let lcg(t) be the current length of the perimeter of CH(P(t)), and let I;(t)
be the current length of the convex-hull side, connecting corners ¢ and (i + 1)
mod m (for simplicity from now one we use i + 1 instead (i+1) mod m). Then,

km@)=ihﬁ):§hmﬂﬂ—mﬁﬂ

Let ¢;(t) be the angle of corner i of CH (P(t)), let o;(t) denote the direction
of motion of the agent located at corner 4 (relative to the direction of corner
i+1), and let v;(t) = ||p;(¢)| be a scalar representing the speed of the agent
located at corner ¢ (as shown in Figure 5).

Then we have that

0= ([ onty) G0 -5

= — (0341 (t) cos(pir1(t) — aiy1 (1)) + v; () cos a; (t))

hence,

lon (t)=- i (v (t) cos a; (1) + vi41 (1) cos(pir1 (1) — aiy1(¥))) =

=- i v;(t) (cos i (t) + cos(p;(t) — a;(t))) =
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Figure 5: Convex-hull shrinkage.
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By Lemma 2 no agent may move out of the current convex-hull. Further-
more, the speed of movement of any agent v;(¢) on the perimeter of the convex-
hull may be o or 0, and since 0 < a;(t) < ¢;(t) < 7, we have that both cosines
above are not negative. Therefore we have that lcp(t) <0.

Let vs(t), ps(t) and as(t) be the relevant values associated with agent s.
Since by Lemma 1 agent s has to be connected to at least one other agent at
any time, and we know that 1s(t) < ps(t) < ., then we have that vs(t) = o.
Furthermore, since 0 < as(t) < ¢5(t) < ., we have that:

ws(t) ) cos( ws(t) = 2a,(1)

5 5 ) < =20 cos?(

ler (t) < —2v,(t) cos(

@« (t)
— )

In summary, we proved that for any initial constellation of a connected
visibility-graph the system’s constellation stays connected (Lemma 1), and the
perimeter of the convex-hull of the system continuously drops with a rate
bounded away from zero by a constant as long as its length is not zero. Hence,
the system gathers to a point within a finite time as claimed in Theorem 2.

O



3.3 Simulation results

Figure 6 presents simulation result of 10 agents starting in a constellation of a
connected visibility net, and gathers to a point. Notice that the discontinuity
of the agents’ velocity is a consequence of the dynamic law dictating sudden
switching events, due to the changes in their farthest neighbours (and/or their
selections of the farthest neighbours!).

Figure 6: Simulation result of 10 agents with dynamics (4). The
big black squares are the initial configuration of the agents, and
the dashed grey lines are the initial connections topology. The
jagged lines are the trajectories of the agents, which meet at the
black circle, i.e. gathering point.
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4 Discrete time ”Chase the farthest” gathering

In the sequel we analyse the ”chase-the-farthest” concept in the discrete-time
framework. We start by showing that a group of agents with unlimited visibility
applying a ”chase-the-farthest” algorithm with steps of length ¢ > 0, gather to a
disk of radius 0. We prove this using an unusual geometric Lyapunov function.
Then, we further prove that such a group gathers to a point within a finite
expected number of steps, in a semi-synchronous model, provided they can also
take steps less than or equal to o in length. We end this section by showing
that a simple constraint on the agents’ step size, ensures their gathering even if
the agents have limited visibility.

4.1 Unlimited visibility

We assume next that each agent ¢ jumps a step of size o towards the position
of an arbitrary agent of the set Nf"*"(k):
pilk+ 1) =pilk) + 0 @5 &)

where j is an arbitrary agent in the set N/ " (k)

The motion rule (5) does not gather the system to a point (except in some
special cases), since the agents of the system may jump over each other when
they are in close proximity. Nevertheless, we show that the system’s dynamics
brings all agents together to a small bounded region in R? within a finite number
of time steps.

Theorem 3. A system of n agents with dynamic law (5) gathers to a disk of
radius o within a finite number of time steps.

Proof. Let R(P(k)) and C(P(k)) be the radius and the center of O(P(k)) the
minimal enclosing disk of the agents constellation at time-step k, P(k).

We analyse the movement of each agent relative to the point C'(P(k)). For
each agent i, let us divide disk O(P(k)) into two halves by a line which crosses
the point C'(P(k)) and is orthogonal to the vector p;(k) - C(P(k)). We denote
the half disk containing agent ¢ by HD;, and the other by HD,.

By Proposition Al of Appendix 1, there is at least one agent located on
the curved boundary of HD.. The distance between p;(k) and the location of
this agent is at least \/R(P(k))2 +(pi(k) = C(P(k)))?, which is greater than
the distance between p;(k) and any point located in HD;. Therefore, i’, the
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current farthest neighbour of 4, is necessarily located in HD] or on its curved
boundary, and the distance between agents ¢ and ¢’ is bounded as follows (see
Figure 7):

VR(P()? + (pi(k) - C(P(K)))? < [pi(k) - pir (k)] <

<R(P(k)) + (pi(k) - C(P(k)))

R+ llp: = Cll

Figure 7: The region comprises a valid area for the location
of i/, the farthest neighbour of agent i, is marked as dashed
area. The full-line circle is the minimal enclosing circle of the
agents’ locations, and the dashed circle is the outcome of the
distance between the position of agent ¢ and the closest point
where its farthest neighbour may be located at, so that the
minimal enclosing circle will be defined properly (Proposition
Al).

Next, we analyse the rate of change of the distance between the location of
agent ¢ and the point C'(P(k)), given that it moves towards point p; (k) c HD;.

Without loss of generality, let us assume that C(P(k)) is located at the
origin.

Let the angle between the direction of movement of agent i (towards ') and
the direction pointing from p;(k) to C(P(k)) be 0; (= «C(P(k))p:(k)pi(k)).
Then, since p;: (k) ¢ HD), we have that
(7)

0<0; < arctan(

R(P(k)))
Ipi (k)

12



and the distance between the next location of agent 7 to the current center of
the circle is

Ipi(k+ D) = Vi (k)2 + 0% = 20 |pi (k)| cos(6:) (8)

Given that |p;(k)| < R(P(k)), we may write the following:

Di 1 2

For the proof of the above inequality, we refer the reader to Appendix 2.

Hence, at any time-step k, if R(P(k)) is greater than or equal to /20, at the
next time-step all agents will be confined to a circle of radius R(P(k))-o(v/2-1)
centered at C(k). Therefore, R(P(k + 1)) the radius of the enclosing disk at
time step k+1 will be less than or equal to this radius. Otherwise (if R(P(k)) is
smaller than \/2¢), R(P(k+1)) will be less than or equal to . So, we have that

R(P(O))—\/io] 1
o(v/2-1)
time-steps, and once all agents are located in this disk, they remain confined in

such a disk forever, as claimed in Theorem 3. O

the agents of the system gather to a disk of radius o within [

4.1.1 Gathering to a point

Suzuki and Yamasita in [1], proved that a multi-agent system of oblivious agents
which can not agree on a meeting point are unable to gather to a point within
a finite number of time-steps. Agents with the capability to compute their
minimal enclosing circle or their convex-hull (calculation that has a complexity
of O(nlogn)), can agree on a meeting point, and were used to prove gathering
to a point within a finite number of time steps in several previous works, see
e.g. [3,4].

Suzuki and Yamasita in [1], also suggested a ”Chase the farthest” algorithm
(a calculation that has a complexity of O(n)) which yields asymptotically point
convergence. Their algorithm is that each agent jumps towards its farthest
neighbour a step with a size equal to the distance to that neighbour multiplied
by a positive constant smaller than 1. Hence, at each time-step all agents jump
into their convex-hull, and if the initial configuration is not a point, this process
will never end, resulting in asymptotic convergence to a point.

We here suggest an alternative simple motion law for the gathering of the
oblivious agents, which also requires calculations of @(n) complexity. The con-
sequence of the simplicity is that the system gathers within a finite expected
number of time-steps instead of within a finite number of time-steps.

13



In order to achieve point-gathering, we adjust the motion law (5) as follows.
We limit the step-size of each agent to the distance to its current goal, i.e if the
relative position of the goal is within the range of o, the agent will simply move
to the goal agent’s position. We therefore define the length of the step of an
agent ¢ at time k as:

pi(k) = min{o , |p; (k) - pi(k)|}

where j is the goal agent.

This restriction is, however, not sufficient, since once all the agents are in
close proximity, they may switch locations with each other at every time-step,
rather than gather to a point. Therefore, we also adjust the timing of the motion
law (5) to a semi-synchronous model, so that at each time-step an agent ¢ may
be active with some probability p.

pi(k+1) =pi(k) +Xi(k)ui(k)%

where j is an arbitrary agent of the set N/ %" (k) (10)

1 w.p.
wmia={ o WL

We next show that a system of n agents with the motion law (10) gathers to
a point within a finite expected number of time steps, since it obeys a ”strong
asynchronicity assumption” (as defined in Gordon et. al. [5, 6]).

Definition 1. ”Strong asynchronicity assumption”: There exist a strictly
positive constant € such that for any subset A of the agents, at each time-step
k, the probability that A will be the only set of active agents is at least €.

The essence of the following proof is that by the motion law (10), the perime-
ter of the system’s convex-hull cannot increase (Lemma 3), and by the ”Strong
asynchronicity assumption”, if the agents are not confine to a o-diameter disk,
there is always a strictly positive probability that the length of the perimeter
of the convex-hull will decrease by a value bounded away from zero (Lemma 4).
Consequently, the perimeter decreases until the system gets to a state where all
the agents are confined to a o-diameter disk, and then at each time step there
is a strictly positive probability that the agents constellation will comprise less
and less points in R? until it becomes a single point (see Theorem 4).

Lemma 3. Let CH(P(k)) be the current convez-hull of the agents of the sys-
tem. Then
CH(P(k+1))<CH(P(k))

14



Proof. By (10), the step of each active agent is directed towards an other agent
and cannot exceed its position. Since there is no agent exterior to CH(P(k)),
no agent can jump out of CH(P(k)).

O

Lemma 4. At any time-step k, if the agents of the system are not contained
in a o-diameter disk, the perimeter of CH(P(k))) may decrease by a value
bounded away from zero with a probability € > 0.

Proof. Consider the agent s located at the sharpest corner of the current convex-
hull (at time-step k) CH(P(k)), and let s(k) be the interior angle of the
sharpest corner. We shall show that if all the agents in a neighbourhood of s
will be active at time-step k while all others stay put (and this occurs with a
probability of at least e > 0 under the strong asynchronicity assumption!) the
perimeter of the convex-hull will decrease by a finite positive value.

To do so, let us consider all the agents in a disk of radius r < ¢ around
ps(k), denoted by D, (ps(k)). Since all agents are located in a wedge of angle
s(k), the maximal distance between agents in this disk is limited by 2r. Hence,
selecting r to ensure that all these agents will move out of this disk will clear
the corner of the convex-hull from all its agents. What is an r that ensures this?
We know that there exist at least one agent out side of radius ¢/2 around p (k)
since all agents cannot reside in any disk of diameter . Therefore, in order for
all agents in D,.(ps(k)) to make a jump outside it, one need them to have a
neighbour farther than 2r. Let us select r so that an agent outside the disk of
radius ¢/2 around p,(k) will be located farther than 2r from any point of the
disk D,.(ps(k)). Clearly, if

g—rs2r
2

we have that any point in the disk D,.(ps(k)) will be farther from any location
outside the disk Dz (Ps(k)) (see Figure 8). Hence, taking r = 0/6, we have
that lcp(k), the perimeter of the convex-hull will decrease by at least (1 -
sin(ps(k)/2)). By Proposition A2 the angle ¢, (k) is upper bounded by ¢, =
(1 -2/n), and therefore the perimeter of the convex-hull will decrease, with
probability of al least €, as follows:

st 5 1[5
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Figure 8: When all the agents are not contained in a disk of
radius /2 around point ps(k), if the only set of active agents
are those located in the disk around p, (k) of the radius r < o/6
, then this disk remains empty after the time-step, resulting a
decrease of o (k), the perimeter of the convex hull by at least

2r(1 - sin(ps(k)/2)).

Theorem 4. A system of n agents with dynamics law (10) will gather to a
point within a finite expected number of time-steps.

Proof. By Lemmas 3 and 4, at each time-step, if the agents of the system are not
located in o-diameter disk, the perimeter of the convex-hull can never increase
and will decrease by at least (1 - sin(y./2)) with probability of at least e.
Therefore, by Proposition A3 (in Appendix 1), the expected number of time-
steps for such an event to occur is [e']. Furthermore, if loy (k) is smaller
than or equal to 20, all the agents are necessarily located in a o-diameter disk.
Hence, for any initial constellation P(0) the agents of the system will reach
a state where they are confined to a o-diameter disk, after at most M, such

events, where:
M = [ ler(0) - 20))]

Py

Therefore the expected number of time-steps for the system to gather within a
disk of diameter o is [e™!]Mp.

Next, let us analyse the situation where all the agents are located within
a o-diameter disk. In this situation, by the dynamic law (10) an active agent
jumps to the position of the agent farthest from it. Assume that the agents are
located at m points in the R? plane, where 0 < m < n. If only all the agents
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occupying one of those points are active at a time-step, then they jump out
of it, hence thereafter the agents of the system will occupy only m — 1 points
in the plane. By the ”Strong asynchronicity assumption” the probability that
this situation will occur is at least e. Hence, by Proposition A3, the expected
number of time-steps for such an event (reducing the number of points in R? at
which the agents reside) to occur is [¢7!] .

Note that, when all agents are inside a o-diameter disk, by the dynamic
law (10) the number of points on the plane occupied by agents cannot increase,
hence after the occurrence of m —1 <n -1 such steps all agents will gather to a
point. Hence, the expected number of time steps for point gathering to happen
is upper bounded by (n - 1)[e71].

To summarize, we proved that a system with any initial constellation P(0)
gathers to a o-diameter disk, and then to a point within an expected number
of time-steps upper bounded by

(Mo +n-1)[e '] = ([(m] +n - 1) [e!]

as claimed in Theorem 4.

4.2 Limited visibility

In this section we assume that the agents have limited visibility, hence the sys-
tem’s visibility-graph may break into disconnected components while the agents
move. The ”chase the farthest” motion law (4) maintains the connectivity of
the visibility-graph in a continuous-time framework, but a straightforward dis-
cretization does not work, since the agents jump steps with significant lengths,
and, as a consequence, they may lose connectivity to their neighbours.

We resolve this problem by adding constraint on the step-size of the agents,
as was also suggested by Ando et.al. in [3].

Let 6;;(k) be the angle between the two vectors pointing from p; (k) to p; (k)
and from p;(k) to the current "goal” of agent ¢, and let I;;(k) be the current
distance between the positions of agents ¢ and j. Then, the maximal step size
agent ¢ may take, in order to ensure visibility with j is given by

Limits; (k) = l”;k)cos(oij(k)) +\j (%) - (“;k)) sin? (6,5 (k))

and the maximal step size agent ¢ may take, in order to ensure visibility with

17



all its neighbours, is given by

Limit;(k) = min {Limit,;;(k 11
imit,(k) = min (Limit,;(k)) (1)

The meaning of this constraint is that each pair of agents {i,j} may not
leave a disk of diameter V centered at the average of their locations. Hence,
after they both take a step, the distance between them will not exceed V. If an
agent has more than one neighbour, it cannot leave the intersection of the disks
associated with all its neighbours (see Figure 9).

goal;(k) P

(a)

Figure 9: Limit;;(k) and Limit;(k):
(a) Limit;j(k) - Maximum distance agent ¢ can move towards
ci(k), its ?goal” position, without leaving a circle of radius V' /2
centred at m;;(k), the average position of p;(k) and p;(k) at
time-step k.
(b) Limit;(k) = min {Limit,;;(k)}

JjeNi (k)

The addition of restriction (11) to a ”chase the farthest” motion law yields
a new law which maintains the connectivity of the system’s visibility-graph. In
the sequel, we formally present this new motion law, and prove that it gathers
the agents of the system to a point.

Prior to presenting the motion law, we also need to adjust the definition of
NFar(k), the set of the farthest neighbours of an agent i, as follows:
Let liF “"(k) be the distance between agent 7 and its farthest neighbour, and let
§ < 1/2 be a small but strictly positive constant. Then, agent i’s farthest set of
neighbours is the subset of its neighbours to which the distance from i is in the
range between V(1 -0) and V, i.e.

JENTT(R) = U (R)(L=0) < Ipi(k) = s (B) | < 1 (k)
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Then, the assumed behaviour of the agents is that at any time step k, each
active agent i calculates ¥[*"(k) the angle of the current minimal angular-
sector containing the agents of the set N7 (k). If ¢F%" (k) is greater than or
equal to 7, agent 7 stays put. Otherwise, it jumps a step of size u;(k) in the
direction of UF%"(k), the unit vector defining the bisector associated with the
angle !9 (k), where p;(k) is the minimal value from the following quantities:

e 0 <V/2 - maximal step size
e Limit;(k) - connectivity maintenance restriction

e [FE (k) the projection of UF" (k) on half the sum of the vectors pointing
from p; (k) to pE=*E (k) and to pP*tL (k), the extremal right and left agents
defining the minimal angular-sector. As a consequence, the current step
of agent ¢ cannot cross the line-segment defined by the positions of these
two extremal neighbours. See Figure 10.

Figure 10: The constraint (X7 (k).

Xi(R)pa(R)UF " (k) o7 (k) <7

0 Y (k) > o

pl(k-i- 1) Zpl(k) +

where y;(k) = min{o, Limit;(k), 1L (k)} (12)

1 w.p.
i -{ o WL
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Notice that for a very small §, except in some rare cases, there is always a
single farthest neighbour, and then the minimal sector angle is zero, so that the
preformed movement is toward this single farthest neighbour’s position.

Lemma 5. By the dynamic law (12), any pair of current neighbouring agents
remain neighbours forever.

Proof. Dynamics (12) yields that if a pair of agents {7, j} are neighbours at time-
step k, then at time step k + 1 their positions are limited to a disk of diameter
V, due to (11)(one of the step size limits). Therefore, the distance between any
pair of current neighbours cannot exceed V at any future time step.

O

Lemma 6. Let CH(P(k)) be the convex-hull of the agents of the system at
time-step k. Then,
CH(P(k+1))cCH(P(k))

Proof. By (12), the step of each active agent which may jump, is directed to-
wards the location of another agent or toward a location defined by a convex
combination of the positions of two other agents, and cannot exceed these loca-
tions. By definition, there is no agent exterior to the convex-hull of the system,
therefore the agents can not jump out of CH(P(k)).

O

We next prove that the system gathers to a point by addressing two situ-
ations in the process of gathering. First, we address the situation where the
agents of the system are not contained in a o-diameter disk (Lemma 7), and
then we address the situation where the agents are contained in such a disk
(Lemma 8). Recall that by Lemma 6, once the agents are contained in such a
disk, they can not jump out of it.

Lemma 7. In a system of n agents moving according to the dynamic law
(12), staring from an initial constellation with a connected visibility-graph, if
the agents of the system are not contained in a o-diameter disk, i.e. log(k),
the perimeter of the convez-hull, has a length greater than 20, then log (k) will
decrease by a bounded away from zero value within a sequence of two time-steps
with probability of at least €.

Proof. This proof is based on considering the dynamics of s the agent located
at the sharpest corner of the system’s convex-hull. We next show that this
agent and the agents located within a close proximity to it may jump inside the
convex-hull within a sequence of two time-steps, and as a result the associated
convex-hull’s corner is effectively removed from C H(P(k)). Denote this corner’s
inner-angle by ¢, (k).
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The angle 1% (k) is necessarily smaller than or equal to ¢, (k). Hence, by
Proposition A2, we have that

UL (k) < s (k) < pu = (1= 2/n)

i.e. s clearly can not be surrounded by its farthest neighbours. Therefore, if it is
active, by dynamic law (12), it may jump a step with the length of the minimal
value of the following quantities:

e The maximal step size o.

o /LB the distance between p, (k) and a convex combination of the positions
of the two extremal strictly farthest neighbours, so that, IZ%? is bounded
from below by 1£97 (1 - §) (k) cos(p+/2).

e The connectivity maintenance restrictions Limit;(k):

1. The restrictions associates with an agent j € N9 (k).
Since ¥ (k) < ¢, and 17" <V, we have that

Y+4/1- smz(%))}

Limit,;(k) > min {K, K (cos(%'
22 2
2. The restrictions associates with the neighbours of s which are not in
the set NFor (k).
These neighbours are located at a distance smaller than or equal to
1Far(k)(1-0) < V(1-4), and therefore for any such neighbour 5, we
have that Limits;(k) > V§/2.

Therefore, the agent s preforms an insignificant step only if 1£'%" (k) has an
insignificant value. Otherwise, it jumps a significant step inside the system’s
convex-hull or along its perimeter (by Lemma 6).

Let S(k) be the set of agents located at the current sharpest corner, i.e s
and the agents located with an insignificant distance from it. Then, since the
visibility-graph is connected, and oy (k) has a significant length, necessarily
there are agents in the set S(k) with significantly distanced neighbours. Denote
the set of these agents by Q(k) € S(k).

If at time-step k the agents of the set Q(k) are the only active agents, each
agent of this set jumps a significant step inside the convex-hull. Then, if at the
next time-step the only active agents are those of the set S(k) \ Q(k), then
these agents jump significant steps, towards the new positions of the agents of
the set @Q(k), and inside the convex-hull.

Such a sequence of two consecutive time-steps results in a significant move-

ment of the sharpest corner inside the convex-hull or along its perimeter. There-
fore, if the area of the convex-hull is significant, by Proposition A4 [ (k) drops
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by a significant value. Otherwise (if the convex-hull has an insignificant area),
recall that we deal with a significant lcg(k), so that, all the agents are lying
along a 1D segment. Hence, clearly such a movement (of the segment’s edge
inside it) results with a significant decrease of lc g (k).

By the ”Strong asynchronicity assumption” a sequence of such two
steps occurs with probability of at least €2, hence lcp (k) decrease by a signifi-
cant value with this probability as claimed in Lemma 7.

O

Lemma 8. In a system of n agents with dynamic law (12), if all agents are
contained in a disk of diameter o, they gather to a point within a sequence of 5
time-steps with probability of at least €.

Proof. By assumption, all agents are located in a disk of diameter o < V//2.
Therefore the step size of each agent i is defined only by liLR(k)7 since obviously
the other limiting factors are greater.

Let {i,7} be a pair of agents currently defining the diameter of the system,
ie.
{i,j} = argmax Ipir (k) —pj (K|

let m;;(k) be the mean position of points p;(k) and p;(k), and let
Segi; = [pi(k),pj(k)] be the line-segment between points p; (k) and p;(k).

Next, we describe a sequence of five steps, which results in gathering the
system’s constellation to a point. At each time-step, we let a assume a different
set of active agents, considering their geometrical locations. Furthermore, using
the ”Strong asynchronicity assumption”, we know that the probability that this
event will occur in a sequence of five time steps is at least €”.

If all agents currently located on one side of the segment Seg;;, denoted as
the left-side, are the only active agents, then these agents will jump either to
the other side of Seg;; (the right-side), or to positions on the segment Seg;;,
leaving an empty left-side. Furthermore, if at the next time step the only active
agents are those located on the right-side, they all will jump to positions on
Segij.

From this state, if the only active agents are all the agent which are located
between points m;; (k) and p;(k), from agent ¢, then these agents will jump to
positions inside the segment Seg;; and between points m;; (k) and p;(k), leaving
the other half segment with at most two occupied locations: p;(k) and another
one possibly located at m;; (k). The first location is occupied by agent 4, and the
second may be occupied in some rare cases where an agent accidentally jumped
to the current middle point between agents ¢ and j sometime in the past, and
therefore got stuck until one of the agents (either ¢ or j) moves.
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Now, if in the above mentioned configuration all agents except those located
at p; (k) and m;; (k) are active then they all jump to the location p;(k), since the
open segment (p;(k), m;;(k)) is empty, and § < 1/2, so that agent 7 is necessarily
the (only) farthest neighbour of all of these agents.

The last described motion resulted with at most two points in the R? plane
with agents on them, and now we gather the agents by assuming that all the
agents located at one of this points are active, and therefore jump to the other
point.

Recall that by the "Strong asynchronicity assumption” the probability that
each one of the steps described above will occur is at least €, and the probability
that a sequence of five such steps, resulting in a point gathering, will occur is
at least €°, as claimed in Lemma 8.

O

Theorem 5. A system of n agents with dynamic law (12) and with an initial
configuration having a connected wvisibility-graph, gathers to a point within a
finite expected number of time steps.

Proof. By Lemma 6 the perimeter of the convex-hull cannot increase, and by
Lemma 7, if oy (k) is significant, then at any sequence of two time-steps it may
decrease by a significant value with probability of at least 2. Denote the lower
bound of this significant value by A > 0.

Hence, considering the system’s time line in batches of two time-steps, by
Proposition A3, we have that the expected number of batches for log (k) to
decrease by at least A is at most [e72]. Therefore, the expected number of
time-steps for that to occur is at most 2[€2].

Furthermore, if lcg (k) is smaller than or equal to 20, all agents are nec-
essarily located in a disk of diameter . Therefore, the expected number of
time-steps for any initial visibility-connected constellation P(0) to gather to
such a disk is at most e (0) -2

—29rCH — <0
of et =2y

From that state, by Lemma 8 the system gathers to a point within a sequence
of five time-steps with probability of at least €>. Considering the time-line with
batches of five time-steps, using Proposition A3, we may argue that it will occur
within [¢7°] expected number of batches, i.e. it will occur within 5[¢~°] expected
number of time-steps.

Hence, the system will gather to a point within a finite expected number of

23



time-steps bounded as follows

ZCH(O) -20

A 1+5[eP] <00

E(kGatheT) < 2{6_2‘”

as claimed in Theorem 5.

5 Discussion

In this work, we analysed several ”Chase the farthest” motion laws for multi-
agent systems in order to address the problem of gathering identical and obliv-
ious agents. We proved that such simple motion laws provide elegant solutions
to the gathering problem in several settings.

First, we showed that in a continuous-time framework, agents that act by
a ”Chase the farthest” motion law, whether they have unlimited visibility or
limited-visibility, gather to a point within a finite time. The suggested motion
laws and the proofs of the resulted gathering are quite simple, however even
in this case one has to carefully deal with issues of well definedness and non-
differentiability.

In the discrete time framework, the situation is different and requires more
work in order to define the motion rules and obtain meaningful convergence
results. We have proved that agents with unlimited visibility and fixed steps
sizes, gather to a disk of diameter twice their step size within a finite number of
time-steps. To do so, we used as a Lyapunov function the radius of the minimal
enclosing circle of the agents locations, and showed that it necessarily decreases
until it reaches a value below the step size of the agents.

Furthermore, we have suggested an alternative motion law to resolve the
problem of gathering within a finite number of time-steps. Solutions of this
problem demand the agents to have the ability to agree on a meeting point.
This ability requires high computational capabilities, which we try to avoid.
Our alternative, allows the agents of the system to gather without agreeing on a
meeting point, however as a consequence, the agents gather only within a finite
expected number of time steps.

We present algorithms and proofs for multi-agent systems in the R? plane,
however those can simply be adapted to multi dimensional spaces, as well.
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Appendix 1 - Geometry and Probability Results

Proposition 1. Let O(P) be the minimal enclosing circle of P a set of points
in R%. Then, any partition of O(P) in two by a line passing through its center
results in half circles with at least one point of P on each.

Proof. Let R(P) and C(P) be the radius and center of O(P) respectively. We
have that

R(P) = i i — C(P
(P)* g (=P}
and therefore for any point p; € P which not located on the perimeter of O(P)
we have that O(P) = O(P \ p;). Hence,

O(P) =0(0P) (13)
where 9P ¢ P is the subset of agents lying on O(P)’s perimeter.

Assume we may cut O(P) into two equal arcs by a line crossing point C'(P)
which orthogonal to a unit vector U, where none of the points from P lie on
one of those arcs. Let p € 9P be the closest point to this line, and let d be
the distance between p and the line (see Figure 11). Then, all the points of
set P are contained in O'(9P), a circle of the radius vV R? - d? centred at
C' = C +dU, so that O(9P) is smaller than O(P), which contradicts (13).
Hence, the assumption cannot be true, and we have that there must be at least

one point on each half circle mentioned above, proving Proposition 1.
O

Proposition 2. The sharpest corner of the convez-hull of any n points in R?
is upper bounded by p. = w(1-2/n).

Proof. For any convex polygon with m < n corners, the sum of the corners’
inner angles is m(m—2), and the average inner-angle is 7w(1 - %) Therefore, @
the interior angle of the polygon’s sharpest corner is necessarily smaller than or
equal to 7(1- 7%) Since, we deal with the convex-hull of n points, we have that

o =m(1-2/n)>27(1-2/m) > s
O

Proposition 3. Assume that, at each time-step an event occurs with probability
p < 1, then the expected number of time-steps for the first event to occur is p~'.
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Pq

Figure 11: Orientation figure for the proof of proposition 1.
The full line dividing the the minimal enclosing circle (full line
circle) into two arcs with equal length. p is the point closet to
the dividing line from the set of points lying on the minimal
enclosing circle, which by assumption are all located only on
one arc of the enclosing circle, so that all of the points of this
set are located inside the smaller and dashed circle.

Proof. The probability that the first event occurs at exactly time-step k is (1 -
p)*1p. Therefore, the expected number of time-steps for the first event to occur
is

gku_p)k_lp:—p;;iu_p)k:_p;(i(l_p)k_l):_pd1:1

k=1 k=0

Proposition 4. If a convex polygon P is ”strictly contained” in another poly-
gon G (so that the area of P is significantly smaller than the area of G), then
the length of the perimeter of P is significantly smaller than the length of the
perimeter of G.

Proof. In order to prove proposition 4 we shall analyze the lengths of some
intermediate polygons. We suggest a procedure to reach a convex polygon P
contained in another polygon G as follows: Cut polygon G into two polygons
along a straight line defined by any side of the internal polygon P, mark the new
polygon containing polygon P as an intermediate polygon and remove the other
polygon (as presented in Figure 12 by a dashed area and by C' respectively).
Repeat this cutting procedure over and over again, beginning each iteration
from the previous intermediate polygon along a straight line defined by a new
side of the original polygon P, until only polygon P remains. Since the polygon
P is convex, such a process is always doable.
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Figure 12: An intermediate polygons from G to P. Polygon P
is ”strictly contained” in polygon G. The intermediate polygon
area is dashed, and the currently removed polygon is marked by

C

Denote by C' the polygon removed obtained at an arbitrary intermediate
step from G to P. By the triangle inequality we have that the length of the
side of the intermediate polygon C defined by the current cutting line, is either
equal to the sum of lengths of all other sides of C (in case the area of C' equals
zero), or smaller than the sum of lengths of all other sides of C' (in case C' has
a positive area). Therefore the length of the perimeter of each intermediate
polygon is either equal to or smaller than the perimeter of the previous inter-
mediate polygon. But since the area of P is smaller than the area of G (being
"strictly contained” in it), at least one intermediate C' must have a significant
area, hence the length of the perimeter of the intermediate polygon associated
with that intermediate C' will be smaller than its previous polygon. Therefore
the length of the perimeter of polygon P is strictly smaller than the length of
the perimeter of polygon G.

O

Appendix 2 - Mathematical supplement

This section provides an upper bound for ||p;(k + 1)|| in (8),

Ipi(k+ D) = Vi (k)2 + 0% = 20 |pi (k) | cos(6:)

given the bounds of §; in (7), and that 0 < |p;(k)| < R(P(k)).

For simplicity, we refer R(P(k)) as R, |p:(k)| as r, |[pi(k+1)| as rpeqt and
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rewrite cos(6;) as follows:

cos(0;) = cos (arctan(R)) = ;2
" 1+ ( )

where 0 < R < R according to (7).
Thereby, we may rewrite (8) as follows

S =

Tnewt = | T2+ 02 =207

It is now clear that the maximal value of 7,,¢,¢, is given when taking R to be
R, i.e the maximal value 7,.,¢ may get, for a constant r, is given when taking
0; to be arctan ( R). We denote this value by 8, and we have that

T

Tnewt < \/r2 +02-20rcos(6) (14)

In the sequel, we will find the maximal value r,.,; may reach. Using Figure
13, we consider the angle oo = m — /2 — 6;, which by (7) is bounded as follows:
0 < a<w/4, and then we have that

2

Tnest = /2% +Y =\l( 1 —0) sin?(a) + o cos?(a) =

cos(a)

= /(R2tan(a) - 2Rosin(a)) tan(a) + o

Clearly, if we have that (R2 tan(a) - 2Rosin(a)) > 0, i.e R > V20, then
we get the maximal value of rye., taking « to be 7/4. Otherwise, we get the
maximal value by taking a to zero. Hence, we have that

VR2+02-+2Rs if R>\20

Tnext < (15)
o if R<\20

Appendix 3 - Monotonicity agument and well-
posedness

In the Continuous time gathering section, we used a model controlling the veloc-
ity of agents, that involves sudden changes due to the neighbourhood geometries.
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Figure 13: Orientation figure for the analysis of equation (8).
Tnert 18 the maximal distance, from C, an agent may reach,
given r its current distance.

As a consequence the location ”derivatives” are discontinuous, and may even
involve unbounded number of discontinuities. However, while locations and dis-
tances between agents are non-differentiable due to discontinuities in velocities,
in our proofs, we only used the control law for an agent to show the monotonic
variation of some quantities, such as the diameter of the agents’ constellation.
We here further clarify this point, by demonstrating an elementary monotonic-
ity argument in a model involving random switching between possible velocity
vectors.

Consider an agent initially located at the origin, which moves with the speed
of ¢ > 0 in the direction of either U; or Us, two fixed unit vectors of different
directions. Suppose the agent instantaneously switches its direction of move-
ments with an arbitrary schedule.Assume U; # -Us (i.e. the vectors U; and U,
are not pointing in opposite directions). Let p(t) be the position of the agent
at time ¢, and let us formally write that:

d
2P = A=xO) U1 +x(V2; p(0) =0
where x(t) is a random switching function taking the values 0 and 1.

Define U, as the unit vector bisecting the small angle 8 between U; and U,
(0 < ).
_ U1 + U2
U1 + Us|
Project the vector p(t) on U, i.e. consider UTp(¢) and its temporal evolution.
We have formally:

SUTH) = U7 (1= X(U)U1 + U (D -
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(1- X(t))cos(g) +x(t) cos(g) = cos(g) >0

hence the projection of p(¢) on U is a monotonically increasing function, inde-
pendent of x(¢)! Therefore in spite of the non-differentiability of p(t), we can
show that its projection on the direction U is a monotonically increasing func-
tion, independent of the switching schedule x (). From this we can conclude
that, since ||p(t)| > UTp(t), the distance of the agent from the origin will be a
function bounded below by a monotonically increasing quantity cos(6/2).
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