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Abstract

We present two probabilistic patrolling strategies for a single agent

patrolling an undirected graph. A single ant-like agent with very low

capabilities is considered, the agent have small memory and he can sense

only its neighborhood. However, he may mark the graph vertices with

pheromone stamps which can later be sensed. These markings are used

as a primitive form of distributed memory. The first algorithm presented

is designed to patrol Hamiltonian graphs. By executing the proposed

algorithm, the agent finds a Hamilton cycle and follows it. By following

the cycle, the agent performs an optimal patrol. The second algorithm

we present aims to patrol graphs whose square is Hamiltonian. Using the

algorithm, the agent finds a cycle of length at most 2 |G| and follows it.

The maximum time lag between two successive visits to any vertex using

the proposed strategy is at most twice the optimal so the patrol quality

is at least half the optimal.

1 Introduction and Related Work

To patrol is to continuously travel through an area. The purpose of patrolling
is to visit every point in the area as often as possible. "Informally, a good
(patrol) strategy is one that minimizes the time lag between two passages to
the same place and for all places" as described by [Machado et al., 2002]. It
is convenient to model the area being patrolled as an undirected graph. In
this model, time is discrete and is represented in cycles. The patrolling task
is defined as continuously visit all the vertices of the graph. Formally, the
idleness of a vertex is defined as the time since the last visit to this vertex by an
agent. The most common evaluation criteria for a patrol strategy is the worst
idleness defined as the highest idleness of any vertex in the graph, defined by
[Almeida et al., 2004].

∗This research was supported by the Technion Goldstein UAV and Satellite Center.

1

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t  
C

IS
-2

00
9-

02
 -

 2
00

9



Algorithm 1: VAW

go to the neighbor vertex with the lowest σ value (brake ties randomly)1

mark current vertex σ with t2

t← t + 13

A single ant-like agent with very low capabilities is considered. The agent
has little memory (a finite number of registers with O (log2n) bits where n is
an upper bound on the graph size) and he can sense only its neighborhood.
However, the agent can mark his close surroundings with pheromone stamps
which can later be sensed. These markings are used as a primitive form of
distributed memory. In our work, the pheromone markings are very simple,
including only one time stamp per vertex.

The first algorithm we propose is based on the Vertex-Ant-Walk algorithm
(VAW. see Algorithm 1). VAW is a simple patrolling procedure in which at
every time cycle the agent takes a step to the neighbor vertex with the high-
est idleness. We prove that an agent performing VAW will eventually follow a
cycle which covers the graph. However, this end-cycle is not necessarily sim-
ple thus not optimal. It was shown by [Wagner and Bruckstein, 1999] that a
Hamilton cycle is a possible end-cycle of the VAW process. However, VAW
sometimes converge to non-Hamiltonian end-cycles (see Figure 7 in the work of
[Wagner et al., 1998]). We propose the probabilistic-VAW (PVAW) algorithm
as an expansion of VAW. An agent performing PVAW acts most of the time
according to VAW. However, using only the time stamps, the agent knows when
his end-cycle is not Hamiltonian so he performs random steps in order to find
a better end-cycle. We prove that an agent performing PVAW on a Hamilto-
nian graph will reach a Hamiltonian end-cycle and will continue to follow it
indefinitely thus patrolling the graph optimally.

Using a Hamilton cycle to efficiently patrol a graph is not a new idea.
Finding a Hamilton cycle in a graph is NP-hard. Many approximation al-
gorithms have been proposed[Angluin and Valiant, 1977; Bollobás et al., 1987;
Broder et al., 1991]. Given a random Hamiltonian graph, these algorithms al-
most surely returns a Hamilton cycle within an average polynomial time. How-
ever, the polynomial time is achieved by assuming some distribution of the input
graphs. The cycle based patrolling algorithms suggested so far are composed of
two stages: first, using some approximation algorithms to find a good patrolling
cycle. Second, sending the agent to follow that cycle[Chevaleyre et al., 2004].
The first stage is complex and requires to know the whole graph in advance. Fur-
thermore, if the graph changes, both stages must be repeated. In PVAW there
is not such a separation to stages. The Hamilton cycle is found "on the run" so
no preliminary knowledge is needed and whenever the graph changes, the agent
finds a new Hamilton cycle (if one exists) without any outside intervention.

A single agent can use an Euler cycle to patrol a graph. It was shown by
[Yanovski et al., 2003] that an ant-like agent using time stamps on the graph
edges (instead of the vertices) finds an Euler cycle, if such a cycle exist, and
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uses it to patrol the graph. However, in this case, the worst idleness can only
be bounded by |G|

2
.

The second algorithm we propose (PVAW2) is a simple expansion of PVAW
designed to patrol graphs whose square is Hamiltonian. The square of G (de-
noted by G2) is the graph on the vertices of G in which two vertices are adjacent
if and only if they have distance of at most 2 in G. Note that many of the graphs
being patrolled are two-connected and "the square of every two-connected graph
is Hamiltonian"[Fleischner, 1974]. The PVAW2 algorithm can be intuitively un-
derstood by considering an agent who can sense its surrounding to a distance of
two edges (instead of one) and can travel two edges in a single time step (again,
instead of one). Such an agent performing PVAW on G, while choosing his next
step from a 2-neighborhood, is practically performing PVAW on G2. Since G2 is
Hamiltonian, the resulting end-cycle will necessarily be Hamiltonian. Consider
a more reasonable agent model who can sense its surrounding to a distance of
two edges but can only travel one edge in a time step. We prove that such an
agent performing PWAV2 on a graph which its square is Hamiltonian will find
an end-cycle of length of at most 2 |G| and will continue to follow it indefinitely
thus yielding an approximation ratio of 2 regarding the worst idleness achieved.

Achieving an approximation ratio of 2 on the worst idleness is trivial using
DFS. However, DFS is more complex and requires more pheromone marks. DFS
is less robust and special attention is required if the graph might change (see
a resilience DFS algorithm by [Wagner et al., 1999]). Furthermore, while DFS
approximation ratio is always 2, PVAW2 usually yields a shorter cycle hence a
better approximation ratio on average (see Figure 3(b)).

2 Patrolling Hamiltonian Graphs

PVAW is a single-agent patrolling algorithm designed to patrol Hamiltonian
graphs. An agent performing PVAW operates most of the time according to
VAW. However it sometimes performs random steps in order to escape non-
Hamiltonian end-cycles. An informal description of PVAW is the following:
During the patrol, using only the time stamps, the agent knows if the current
vertex and the previous visited vertex were visited consecutively and in the same
order in the previous time they were visited. If its true, the agent performs the
regular VAW i.e. goes to the neighbor with the lowest time stamp. Otherwise,
with a small probability p the agents goes to a random neighbor or makes a
regular VAW step with probability 1 − p. When the agent follows a Hamilton
cycle, the vertices are always visited in the same order so the agent continues to
follow the cycle indefinitely. When the agent is not following a Hamilton cycle,
there will be infinitely many events of a small probability to change the agent
route. Hence the agent will eventually change its route.

PVAW is presented here as Algorithm 2. σ(v) are the time stamps on the
graph vertices; 0 < p < 1 is a constant parameter; x is a random variable chosen
uniformly in [0, 1]; σmem and PrevDiff are variables in the agent’s memory.
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Algorithm 2: Probabilistic VAW.

/* the agent is on vertex u */

if PrevDiff 6= 1 and x ≤ p then1

go to a random neighbor of u2

else3

go to the neighbor of u with the lowest σ value (brake ties randomly)4

/* the agent is on vertex v */

PrevDiff ← σ(v)− σmem5

σmem ← σ(v)6

σ(v)← t7

t← t + 18

2.1 PVAW Convergence Proof

Let v1...vn be G vertices. The system comprises the agent patrolling the graph
and the graph itself. The system’s degrees of freedom are the time stamps on the
graph vertices, the agent location and the agent’s internal variables. Observe
that the agent location is on the vertex with the highest time stamp and the
current time equals to the highest time stamp plus one. So the values σ(vi),
σmem and PrevDiff fully describes a system state.

Using the notation σ(v0) , σmem, a “full” system configuration comprises the
values of σ(vi) and PrevDiff . However, sometimes it will be more convenient
to use another configuration representation - a “squeezed” one. Consider the
following squeezed configuration representation: The graph vertices (including
v0) are sorted in a non-decreasing order of their time stamps values, formally
vl0vl1 ...vln where ∀li, σ(vli) ≤ σ(vli+1

). Additionally, let ∆i , σ(vli+1
)− σ(vli ).

However, if ∆i ≥ 2, the exact value of ∆i does not effect the agent behavior, so
in the squeezed representation ∆i takes only three values: {0, 1,≥ 2}. Further-
more, an agent performing the algorithm distinguishes between only two states
of PrevDiff : PrevDiff = 1 and PrevDiff 6= 1, hence in the squeezed repre-
sentation PrevDiff ∈ {1, 6= 1}. Since there is a finite number of permutations
of li and the squeezed ∆i and PrevDiff take a finite number of values, there
is a finite number of squeezed configurations denoted by M .

Full configurations are denoted by c0, c1, ... and squeezed configurations by
s0...sM . Every full configuration can be mapped to a squeezed one by sorting
the vertices by their markings and “squeezing” ∆i and PrevDiff . Let sq (ci) be
the squeezed configuration mapped to ci. If c2 is the configuration succeeding
c1 then sq (c2) succeeds sq (c1).

The agent marks one vertex in every time cycle so after the graph is covered
every two vertices will be marked with different time stamps. When there are no
two vertices with the same time stamp VAW becomes a deterministic traversal
of the graph. From now on it is assumed that the graph is already covered so
VAW is deterministic.

Given a system in configuration s0, we set x > p for the next M time cycles so
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for the next M time cycles the agent acts according to VAW. Recall that VAW
is deterministic so we can predict the next M system configurations, denote
them by s1...sM . There are only M distinct configurations hence there are i, j
such as 0 ≤ i < j ≤ M and si = sj . Assuming we set x > p indefinitely, the
system chain of configurations will be of the form s0...si−1(si...sj−1)

∞. While
the system carries out the configuration loop si...sj−1, the agent follows the
cycle ui...uj−1 where ul is the vertex with the highest σ value in configuration
sl. ui...uj−1 is the resulting end-cycle of VAW when initiated from s0.

Denoting by r(s0) the shortest configuration loop in the set s0...sM+1 (the
configuration loops in s0...sM+1 are cyclic permutations of r (s0) and some of
their powers). We will use sl ∈ r(s0) to imply that configuration sl is in the
configuration loop and ul ∈ r (s0) to imply that in configuration sl the agent is
on vertex ul. Let ul, up ∈ r(s), we will use the notion ul = up to imply that
in configurations sl and sp the agent is on the same vertex. The end-cycle is
not necessarily simple i.e. l 6= p does not imply ul 6= up (however it does imply

sl 6= sp). Let r (c) , r (sq (c)).

Lemma 1. r(c) includes all the vertices of G.

Proof. Assume on the contrary that there are some vertices which are not in r(c).
Let V ⊂ G be the subset containing all those vertices. Since G is connected,
there is a vertex u ∈ r(c) with a neighbor in V . Let t0 be the time the agent
enters the end-cycle . The vertices of V are not visited after t0 hence ∀v ∈ V ,
σ(v) < t0. After the agent have followed the end-cycle for the first time, ∀u ∈
r(c), σ(u) ≥ t0. The next time the agent will reach vertex u, he will go to the
neighbor with the lowest σ value which is in V - a contradiction.

Corollary 1. n ≤ |r(c)| ≤M .

Lemma 2. If |r(c)| > n, there is a pair (ui, uj) where ui, uj ∈ r(c) such as:

1. i < j.

2. ui = uj.

3. ∀i < l < j, ul 6= ui.

4. ui+1 6= uj+1

Proof. Let r(c) = u1, ..., uk. Since k > n, there is a pair (ui, uj) fulfilling
conditions 1-3. Assume on the contrary that for any such a pair condition 4 is
false i.e. ui+1 = uj+1. Without losing generality assume that i = 1, then r(c)
is of the following form:

r(c) = u1u2...ujuj+1, ...

u1 = uj u2 = uj+1
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The pair (u2, uj+1) fulfills conditions 1-3 so we can apply the assumption that
condition 4 is false and write:

r(c) = u1u2u3...ujuj+1uj+2...

u1 = uj , u2 = uj+1, u3 = uj+2

The process can be repeated until for some vertex up, up = uj. Then r(c) is
of the form (u1...up−1)

m for m > 1, in contradiction to the definition of r(c) as
the shortest configuration loop (since u1...up−1 is a shorter loop).

It is convenient to define σold(v) as the second to last time stamp assigned
to vertex v i.e. upon marking vertex v with a time stamp, the previous value
is written to σold(v). In case the agent have just taken a step from u to v but
have not marked σ (v) yet, the new PrefDiff value is given by σ(v)− σold(u).
After the agent have marked v, PrefDiff is given by σold(v)−σold(u). In each
time cycle the agent marks one vertex, so any two markings of any two different
vertices (σ or σold) are different.

Lemma 3. From any configuration c where |r (c) | > n, within M time steps
the system will reach a configuration in which PrevDiff 6= 1.

Proof. Let (u1, uj) be a pair fulfilling the conditions of Lemma 2. So r (c) is of
the form u1u2...ujuj+1... where u1 = uj and u2 6= uj+1. For simplicity, let the
time the system is in configuration c1 be t = 1. So the agent marks vertex u1

at time t = 1 and u2 at time t = 2 i.e. σ(u2) − σ (u1) = 1. At time t = j the
agent visits uj so σold(uj)← σ(uj) = σ(u1). Let s′ ∈ r (c) be the configuration
at time t = j +1. Since uj+1 6= u2, σ(uj+1) 6= σ(u2). In s′, the agent calculates:

PrevDiffs′

← σ(uj+1)− σold(uj)

6= σ(u2)− σ(u1) = 1

Assume on the contrary that in the next M configurations following c,
PrevDiff = 1. In this case the agent acts according to VAW so we can predict
the next M configurations denoted by s1...sM . As mentioned before, the config-
urations si...sj−1 form the configuration loop r(c). So there is a configuration

s′ ∈ r(c) ⊆ s0...sM such as PrevDiffs′

6= 1, a contradiction.

Let p0 ,
p

∆ where ∆ is the maximum vertex degree.

Lemma 4. Let u1u2u3u4 be a simple path in G and c1 a configuration such as:

1. The agent is on vertex u1.

2. σc1(u1) > σc1

old(u1) > σc1(u2) > σc1(u3).

3. PrevDiff c1 6= 1.
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Table 1: The walk r from Lemma 4.

Agent σ σold σ σold σ σold

Location (u1) (u1) (u2) (u2) (u3) (u3)
u1 1 0 -1 ? -2 ?
u2 1 0 2 -1 -2 ?
u3 1 0 2 -1 3 -2
u2 1 0 4 2 3 -2
u1 5 1 4 2 3 -2
u2 5 1 6 4 3 -2

There is a probability of at least p5
0 that the system will reach configuration c2

within 5 time cycles. Configuration c2 fulfills:

1. The agent is on vertex u2.

2. σc2(u2) > σc2

old(u2) > σc2(u3) > σc2(u4).

3. PrevDiff c2 6= 1.

Proof. Consider the walk r = u1u2u3u2u1u2 described in Table 1. During this
walk, PrevDiff 6= 1, so every step probability is at least p0 and the probability
of the whole walk is at least p5

0. Denote the configuration after the walk r by
c2. According to table 1, σc2(u2) > σc2

old(u2) > σc2(u3) and PrevDiff c2 6= 1.
u3 have been visited after u4 hence σc2(u3) > σc2(u4) and c2 fulfills all the
conditions of the lemma.

The resulting configuration of Lemma 4 fulfills the preconditions of the
lemma with the simple path u2u3u4u5 (where u5 6= u1) so the lemma can be
applied again with the path u2u3u4u5.

Definition 1 (semi-final configuration). A semi-final configuration is a config-
uration in which there is a vertex ordering u1...un such as ∀i, σ(ui) < σ(ui+1)
and u1...un is a Hamilton cycle. The next two lemmas discuss semi-final con-
figurations.

Lemma 5. From any configuration there is a probability P ≥ ε > 0 that the
system will reach a semi-final configuration within a finite time T .

Proof. The case |r(c)| = n is trivial since any of the loop configurations is semi-
final and the loop is reachable with a probability of at least (1− p)M within M
time steps. Assuming |r(c)| > n, withing M time steps the system will reach
a configuration in which PrevDiff 6= 1 (Lemma 3). Let c′ be the first such
configuration and denote the agent location in c′ by u1. Let C = u1u2...un be
a Hamilton cycle in G such as σ(u2)− σold(u1) 6= 1. Such a cycle exist since for
any Hamilton cycle C0, C−1

0 is also a Hamilton cycle. Consider the following
scenario:
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1. From configuration c, take steps until reaching c′.

2. Consider the walk u1u2u1. PrevDiff c′ 6= 1 so the first step probability
is at least p0. After taking the step, PrefDiff ← σ(u2) − σold(u1) 6= 1
hence the second step probability is also at least p0.

3. Go to the neighbor with the lowest time stamp (with probability at least
min{p0, 1 − p}). Denote this neighbor by v. Since v 6= u2 and σ(v) <
σold(u1), upon reaching v, PrevDiff 6= 1. So there is a probability of at
least p0 to return to u1. Consider the walk u1vu1 and denote the resulting
configuration by c1.

4. c1 fulfills the preconditions of Lemma 4 with the path u1u2u3u4. So there
is a configuration c2 reachable within 5 steps and with probability p5

0. c2

fulfills the preconditions of Lemma 4 with the path u2u3u4u5 so the lemma
can be applied again. We will apply the lemma n − 3 times, every time
adding the next vertex of the Hamilton cycle C. The last use of the lemma
is on the path un−3un−2un−1un.

5. Consider the walk un−2un−1un which is possible with probability p2
0 ac-

cording to the proof of Lemma 4.

All the vertices ui where 1 ≤ i ≤ n−3 were last visited in configuration ci (stage
4). The vertices un−2, un−1, un were last visited in stage 5 in that order. So
the resulting configuration after stage 5 is semi-final with the Hamilton cycle
C. The described scenario probability is at least ε = p5n−9

0 > 0. The scenario
length is bounded from above by M + 5n− 9 hence T ≤M + 5n− 9.

Lemma 6. Starting from any semi-final configuration c, after n+1 consecutive
steps in which x > p, the agent will follow a Hamilton cycle indefinitely.

Proof. The final configurations s′1, ..., s
′

n are defined by:

l
s′

j

0 = 0

∀1 ≤ i ≤ n, l
s′

j

i = (i− j − 1)modn + 1

∀0 ≤ i ≤ n− 1, ∆
s′

j

i = 1

PrevDiffs′

j = 1

In configuration s′j the agent is on vertex uj and the vertex with the low-
est σ value is uj+1. u1...un is a Hamilton cycle so there is an edge ujuj+1.

PrevDiffs′

j = 1, so independent of x, the agent will go to uj+1 and the re-
sulting configuration is s′j+1. Upon reaching one of the states s′1, ..., s

′

n, the
system will follow this configuration loop indefinitely and the agent will follow
the Hamilton cycle u1...un.
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Let the agent location at the semi-final configuration c be vertex uk. After
performing n + 1 steps in which x > p the resulting system configuration is the
final configuration s′(k+1)mod n

concluding the proof.

Theorem 1 (PVAW Convergence). For any Hamiltonian graph G an agent
performing PVAW on G will eventually patrol the graph using a Hamilton cycle.

Proof. Assuming the agent starts the algorithm at time t = 0, let P (t) be the
probability that the agent will reach a Hamilton end-cycle by the time t + T .
We are required to show that limt→∞ P (t) = 1.

From any configuration, with probability P ≥ ε1 = p5n−9
0 , the system will

reach a semi-final configuration within a finite time T (Lemma 5). Upon reach-

ing the semi-final configuration, with probability P ≥ ε2 = (1− p)
n+1

, the
agent will patrol the graph using a Hamilton cycle indefinitely (Lemma 6). We
conclude that starting from any configuration, with probability P ≥ ε1 · ε2 > 0,
after a finite time T the agent will patrol the graph using a Hamilton cycle
indefinitely.

Let P̄ (t) = 1−P (t) i.e. P̄ (t) is the probability that the agent will not reach
a Hamilton end-cycle by the time t + T . P̄ (t) can be bounded from above by
(1− ε1ε2)

t.

lim
t→∞

P (t) = 1− lim
t→∞

P̄ (t) ≥ 1− lim
t→∞

(1− ε1ε2)
t = 1

3 Patrolling Two-Connected Graphs

We denote by G2 (the square of G) the graph on the vertices of G in which
two vertices are adjacent if and only if they have distance of at most 2 in G.
A slightly stronger agent enables the use of PVAW to efficiently patrol graphs
whose square is Hamiltonian. The intuition behind the algorithm can be found
in section 1.

In the patrolling problem it is usually assumed that an agent can travel
only one edge per time cycle. So an agent who can sense to a distance of two
edges, but can travel only a single edge per time cycle is considered here. This
agent can perform the algorithm PVAW2 (presented here as Algorithm 3). Note
that t in PVAW2 does not necessarily complies to real time because moving from
vertex to vertex might take one or two time cycles. Whenever the agent “jumps”
from u to v where d(u, v) = 2, the agent real path is u, w, v where w is a vertex
connecting u and v. The d-neighborhood of u includes all the vertices of distance
d or less from u and is denoted by Nd(u).

3.1 PVAW2 Convergence Proof

The convergence proof of PWAV2 is based on PVAW convergence proof. We
will define two systems and will show that they are similar in some sense. The
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Algorithm 3: Probabilistic VAW2.

/* the agent is on vertex u */

if PrevDiff 6= 1 and x ≤ p then1

go to a random vertex v ∈ N2(u) (might take two time cycles)2

else3

go to the vertex v ∈ N2(u) with the lowest σ value (brake ties4

randomly. might take two time cycles)

/* the agent is on vertex v */

PrevDiff ← σ(v)− σmem5

σmem ← σ(v)6

σ(v)← t7

t← t + 18

system A1 is comprised of an agent performing PVAW2 on G and A2 of an agent
performing PVAW on G2. A configuration, as defined in section 2.1, consists of
the values σ(vi) and PrevDiff . Because G and G2 have the same vertex set,
any configuration can be ascribed to both A1 and A2. The next lemma shows
that when a chain of system configurations is examined, these two systems are
equivalent.

Lemma 7. Given two configurations c1 and c2, the transition probability be-
tween the configurations is equal in A1 and A2.

Proof. The crucial observation is that the 1-neighborhood of any vertex u in
A2 is identical to the 2-neighborhood of u in A1. The agents are performing
the same operations on the same vertices sets hence the transition probabilities
between configurations are equal.

Theorem 2 (PVAW2 Convergence). For any graph G such as G2 is Hamil-
tonian, an agent performing PVAW2 on G will eventually patrol the graph using
a cycle of length at most 2n.

Proof. According to Theorem 1, A2 will eventually follow a configuration loop
in which the agent performs a Hamilton cycle. So A1 will also eventually follow
such a configuration loop (Lemma 7). However, the circuit the agent performs in
A1 is of the form u1w1u2w2...unwn where u1..un is a Hamilton cycle in G2 and
wi is the vertex connecting ui to ui+1. Since some u-vertices may be connected
without requiring a w-vertex between them, the cycle used by the agent is of
length of at most 2n.

The optimal patrol strategy is finding a Hamilton cycle in G (if such a cycle
exist) and following it. The optimal patrol yields a worst idleness of n − 1.
PVAW2 finds a cycle of length at most 2n hence the worst idleness achieved is
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a

cb

e

d

Figure 1: A simple convergence example.

at most 2n−1. Hence PVAW2 yields an approximation ratio of 2 regarding the
worst idleness.

4 Discussion and Simulations

The convergence proof might give the impression that the scenario leading to
convergence is highly improbable and as a result convergence takes a lot of
time. However, simulations on random Hamiltonian graphs reveal that this
is rarely the case. There are simpler and more probable scenarios leading to
convergence. For example, consider the graph in Figure 1. A possible end-cycle
of the VAW process is r(c) = abcedc. The vertex c is visited twice in each cycle
so upon hitting c, PrevDiff 6= 1. Every time the agent reach vertex c there
is a probability p that it will choose a neighbor randomly. If the agent will
randomly go to either b or d the resulting configuration is semi-final. So every
time the agent hits vertex c there is a probability of p/2 to reach a semi-final
configuration. Upon reaching the semi-final configuration, there is a probability
of (1−p)n+1 to follow a Hamilton cycle indefinitely. These probabilities are much
higher than the probabilities in the proof (ε1and ε2).

Our experiments were done on random Hamiltonian graphs Hn(r), where n
is the number of vertices and r-the probability of additional edges beyond the
basic cycle u1u2...un. Thus we start with an n-cycle and draw additional edges
at random with probability r for each possible edge. The expected number of

edges is n + rn(n−3)
2 .

Since PVAW always finds a Hamilton cycle, the interesting question is how
fast? The average time to find a Hamilton cycle is presented in Figure 2. Our
simulations revealed that convergence is slower on low edge-density graphs. The
lower the density, the longer the convergence time. However, above the density
threshold of r ' 0.2, adding more edges does not improve the convergence time
significantly. The explanation is simple, the denser the graph, there are more
Hamilton cycles in it and more ways to improve the agent route so convergence
is faster. The average convergence time for dense enough graphs was found to
be about 2n i.e. linear with the graph size.

Recall that PVAW2 end-cycle is of length between n and 2n. So when exper-
imenting with PVAW2 we ask two questions: how fast the algorithm converges
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(b) High edge-density graphs.

Figure 2: PVAW simulation results.

to an end-cycle? and what is the solution quality? The solution quality is the
end-cycle length divided by the optimal end-cycle length. Our experiments were
done on Hamiltonian graphs so the optimal end-cycle length is n. Observe Fig-
ure 3(b) for the average solution quality. For very sparse graph the end-cycle
length is about 1.8n. The denser the graph the solution quality is higher. Note
that in the PVAW2 algorithm there is not any built-in mechanism preferring
shorter end-cycles. When the agent takes a random step, it chooses uniformly
from its 2-neighborhood. Consider the following variation of PVAW2: When-
ever taking a random step, go to vertices in the 1-neighborhood with higher
probability than the farther vertices. An agent performing this variation will
probably find a shorter end-cycle however the convergence time might increase.

In contradiction to PVAW, PVAW2 converges in linear time even on very
sparse graphs (observe Figure 3(a)). Since an agent performing PVAW2 on
G is equivalent to an agent performing PVAW on G2, even when G is sparse,
G2 is quite dense. Hence the convergence time of PVAW2 on sparse graphs is
proportional to the convergence time of PVAW on dense graphs which is linear
with the graph size.

5 Conclusion

In this paper we have presented two single-agent probabilistic patrolling al-
gorithms. The first algorithm (PVAW) optimally patrols Hamiltonian graphs
using a Hamilton cycle. We have proved that an agent performing PVAW finds
Hamilton cycle and uses it to patrol the graph. Simulations on random Hamil-
tonian graphs showed that the average time to find such a cycle is about 2n for
dense enough graphs. The second algorithm (PVAW2) aims to patrol graphs
whose square is Hamiltonian. We have proved that an agent performing PVAW2
on such a graph finds a cycle of length at most 2n and uses it to patrol the graph.
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(a) Average time to find an end-cycle.
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Figure 3: PVAW2 simulation results.

This strategy yields an approximation ratio of 2 to the optimal patrol strategy
regarding the worst idleness achieved. Experiments on random Hamiltonian
graphs showed that the average time to find such a cycle is about 3n and the
length of the cycle found decreases with the graph edge-density, the denser the
graph the shorter the cycle and the better the patrol.
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