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Abstract

We introduce a variational approach for simultaneous op-
tical flow computation and video denoising. The proposed
functional includes optical flow terms that depend on the
restored sequence and an image sequence restoration term
that depends on the optical flow. Our functional results in
coupled Euler-Lagrange equations that are solved simulta-
neously for both the optical flow and the image sequence.
The main novelty is the bidirectional coupling of the two
problems. Traditional optical flow methods usually pre-
filter the sequence, an operation which does not depend
on the computed flow. At the other end, in image restora-
tion, most methodologies compute the optical flow as a pre-
processing stage which is independent of the restoration
procedure. Here, we formulate the dependency of the op-
tical flow and image restoration problems for the denoising
and deconvolution problems. Our experiments demonstrate
that the new method achieves better optical flow estimation
under substantial noise levels compared to previously re-
ported results.

1. Introduction
Optical flow computation is probably as old as computer vi-
sion. It is useful for various applications like stereo match-
ing, video compression, object tracking, and object seg-
mentation. Several approaches have been proposed for its
computation. Lucas and Kanade [13] tackled the aperture
problem by solving for the parameters of a constant motion
model over image patches. Horn and Schunck [11] were
the first to use functional minimization for solving optical
flow problems employing mathematical tools from calculus
of variations. Their pioneering work offered the basic idea
for solving dense optical flow fields for the whole image by
using a functional with two terms: A data term penalizing
for deviations from the optical flow equation, and a smooth-
ness term penalizing for variations in the flow field. Several
important modifications have been proposed following their
work. Nagel [16, 17] proposed an oriented smoothness term

that penalizes anisotropically variations in the flow field ac-
cording to the direction of the intensity gradients. Replacing
quadratic penalty by robust statistics integral measures was
proposed in [6, 8] in order to allow sharp discontinuities
in the optical flow solution along motion boundaries. Us-
ing multi-frame formulations instead of the two-frames for-
mulation allowed to use a spatio-temporal smoothness in-
stead of the original spatial smoothness term [5, 10, 16, 23].
Brox-Bruhn-Papenberg-Weickert [7] demonstrated the im-
portance of using the exact optical flow equation instead of
its linearized version and added gradient constancy to the
data term which is important in the presence of scene illu-
mination changes. [24] is the first to propose changing the
image sequence along with the computation of the optical
flow using optimal control methodologies. Here, we pro-
pose to tackle the optical flow and image restoration prob-
lems in a unified approach within a variational framework.
The basic idea comes from looking at the errors in the data
term. These errors can be roughly classified into two main
categories, errors in the computed flow field, and errors in
the image itself caused by noise, optical blur, lossy com-
pression, interlacing, etc. We propose a variational formu-
lation of the problem that solves simultaneously for both the
optical flow and the restored image sequence. In traditional
optical flow computation, the images are pre-filtered. This
pre-filtering is independent of the computed flow. While
in image restoration, some methodologies first compute the
optical flow (see for example [9]) as a pre-processing stage
which is independent of the restored images.

The paper is organized as follows: In Section 2 we in-
troduce our framework for combined denoising and optical
flow computation. Section 3, discusses parameter settings
and implementation considerations. Section 4 describes the
experiments conducted to evaluate our method. Finally,
Section 5 concludes the paper.

2. Problem Formulation
Given an image sequenceI0 : Ω ∈ R2 × [0, T ] → [0, 1],
which is a sum ofIc, an (unknown) clean image sequence,
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andn that represents noise, so that at each point in space-
timeI0(x, y, t) = Ic(x, y, t)+n(x, y, t), we wish to find the
dense optical flow field{u(x, y, t), v(x, y, t)} and an image
sequenceI, so thatI approximatesIc andI(x, y, t) is ap-
proximated in the best possible way byI(x+u(x, y, t), y+
v(x, y, t), t+1). Here we discretizedt to be the frame index
and without loss of generality assumedt = 1. Again, the
given noisy image sequence will be denoted byI0, while I
will be used as an argument for our optimization procedure
and represent the denoised video which we would like to
push as close as possible toIc.

2.1. Traditional optical flow functionals

Traditional optical flow functionals usually include two
terms: a data termED(u, v), that measures the deviation
from the optical flow equation, and a regularization smooth-
ness termES(u, v) that quantifies the smoothness of the
flow field. Overall, the flow field solution should minimize
the sum of the data and smoothness terms.

E(u, v) = ED(u, v) + ES(u, v) (1)

The main difference between the various variational meth-
ods is in the choice for the data and smoothness terms, and
the numerical methods used for solving the minimizing flow
field {u(x, y, t), v(x, y, t)}.

2.2. Joint optic-flow and video restoration

The functional given in Equation (5) is minimized with re-
spect to the optical flow{u, v}. In fact, almost all optical
flow integral measures in the literature are minimized with
respect to the optical flow functions{u, v} alone. Let us
note that there are two sources for errors in the data term,

1. errors in the flow field, and

2. errors in the image sequence due to noise, blur, inter-
lacing, and lossy compression.

Writing the functional as depending only on the optical flow
is appropriate mainly for ideal sequences generated by com-
puter graphics procedures. In presence of errors in the im-
age sequence, we should minimized with respect to the op-
tical flow {u, v} as well as the image sequence. Although,
in later sections we make specific choices for the data and
smoothness terms, one could employ our approach on any
of the optical flow functionals suggested in the literature.
The general structure of the proposed functional is

E(u, v, I) = ED(u, v, I) + ES(u, v) + EF (I, I0). (2)

The functionalE(u, v, I) is minimized with respect to
the flow field and the image sequence. Here,ED(u, v, I)

is the gray level time-constancy data term and is treated ex-
plicitly as a function of the image sequence.ES(u, v) is
the flow field smoothness term. The additional fidelity term
EF (I, I0) penalizes for deviations from the measured se-
quence. It is vital for keeping the sequence close to the
given input video. Ignoring this term, one can produce
many image sequences for which the data and smoothness
terms both vanish, yet, have little in common with the orig-
inal sequence and flow field. For example, the trivial so-
lution I(x, y, t) = 0, u(x, y, t) = 0, v(x, y, t) = 0, is a
global minimum for a functional without the fidelity term.

2.3. Specific choice of the functional

We choose to use the functional proposed in [7] excluding
only the gradient constancy element from the data term. The
data term is

ED(u, v) =

∫
Ψ((I(x + w) − I(x))2)dx (3)

Where,x = (x, y, t)T andw = (u, v, 1)T . The function
Ψ(s2) =

√
s2 + ε2 induces anL1 metric on the data term

asε approaches zero.
The smoothness term is given by

ES(u, v) = α

∫
Ψ(‖∇3u‖2 + ‖∇3v‖2)dx. (4)

Where∇3 denotes the spatio-temporal gradient. Coupling
these two terms, the integral measure we would like to min-
imize is

E(u, v) = ED(u, v) + ES(u, v). (5)

Finally, we add the fidelity term, treat the data term as a
function of u,v,I and rewrite the functional as

E(u, v, I) = ED(u, v, I) + ES(u, v) + EF (I). (6)

The data term is the same as in Equation (3), the only differ-
ence is that now the image sequence is treated as a variable
in the minimization process. The smoothness term of the
flow field remains the same and depends only on the flow.
The fidelity term penalizes for deviations from the initial
given noisy sequence. We choose a quadratic term similar
to the total variation denoising methodology [18],

EF (I) = λ

∫
(I − I0)

2dx. (7)

The above fidelity term is appropriate for denoising.
However, if in addition to noise, the images were degraded
by a linear shift invariant filter with a given kernelh, then,
the fidelity term can be modified to

EF (I) = λ

∫
(h ∗ I − I0)

2dx. (8)
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In this case, the restored sequence filtered byh should be
close to the initial given sequenceI0 while the optical flow
is calculated with respect to the restored sequenceI.

We combined the two integral measures,

• the optical flow computation, and

• the sequence restoration.

The optical flow module receives as an input an image
sequenceI and computes its{u, v} flow. The sequence
restoration module operates on the measured image se-
quenceI0 and an optical flow field{u, v}, and computes
the restored sequenceI. Coupling the two modules is per-
formed by feeding the optical flow from the first module to
the second one. The resulting restored sequence is supplied
as an input for the optical flow module. We iterate between
these two procedures several times in order to refine the so-
lution.

The optical flow module solves the Euler-Lagrange
equations with respect tou andv, that is,

Ψ′(I2

z )IxIz − α · div(Ψ′(‖∇3u‖2 + ‖∇3v‖2)∇3u) = 0

Ψ′(I2

z )IyIz − α · div(Ψ′(‖∇3u‖2 + ‖∇3v‖2)∇3v) = 0

The numerical solution of the Euler-Lagrange equations is
similar to the one described in [7], see next section for more
details.

The denoising restoration scheme is derived in the fol-
lowing way. First, we approximate the integral by a dis-
crete summation. Next, we use bilinear approximation in
each term in the summation when required. Finally, each
term in the summation is differentiated with respect to the
sequence elements on which it depends. The result of the
last step is used in a gradient descent scheme as an opti-
mization process to iteratively refine the sequence volume
elements.

Next, consider,
∫

λ(I − I0)
2 + Ψ((I(x + w) − I(x))2)dx. (9)

The discrete approximation of this integral is given by

∑
λ(I − I0)

2 + Ψ((I(x + w) − I(x))2). (10)

Let us use bilinear approximation forI(x + w) in the
summation of Equation (10). We have that,

λ(I − I0)
2 + Ψ((A · I1 + B · I2 + C · I3 + D · I4 − I)2) (11)

where,

I = I(x, y, t)
I1 = I(x1, y1, t + 1)

I2 = I(x1 + 1, y1, t + 1)
I3 = I(x1, y1 + 1, t + 1)
I4 = I(x1 + 1, y1 + 1, t + 1)
x1 = ⌊x + u⌋
y1 = ⌊y + v⌋

Again, note that here we assume w.l.o.g.dx = dy = dt =
1.

Differentiating Equation (11) with respect to each of the
five image variables is straightforward. Each element in the
summation of (10) depends on one image entry at framet
and four image entries att + 1.

Note that each pixel value in the sequence volume may
influence several optical flow paths and therefore collect
several contributions from different terms in the summation
of equation (10).

A,B,C,D are the bilinear interpolation coefficients and
depend only on the optical flow atx, y, t. Therefore,
A,B,C,D do not change during the image restoration it-
erations, as the optical flow solution is numerically freezed
during these iterations.

A = 1 − dy − dx + dx · dy; B = dx − dx · dy
C = dy − dx · dy; D = dx · dy
dx = x + u − x1; dy = y + v − y1.

Note that in the restoration phase, the data term yields
smoothing of the image sequence along the optical flow tra-
jectories.

3. Implementation details
We implemented the optical flow methodology of [7], with
the following exceptions.

1. We excluded the gradient constancy from the data
term.

2. In the multi-resolution we used an image reduction
factor of 0.5 instead of 0.95.

3. We used one loop of iterations instead of dividing the
loops into three levels of iterations. We used 600 iter-
ations for each optical flow calculation.

As for the denoising module, if we chooseλ → ∞, then
the sequence is forced to be identical to the original one
which is equivalent to all existing optic flow calculation. If
we chooseλ = 0, then the sequence can be modified with
no penalty (equivalent to no fidelity term). As explained
earlier, such a selection might produce the trivial solution
to I, v, u = 0 as an optimal solution.

When assuming no knowledge of the noise level, we em-
pirically foundλ = 0.01 suitable for most Gaussian noise
conditions. If we have some knowledge of the noise, like an
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approximation of the standard deviation, thenλ should de-
crease as the noise level increases. The sequence is thereby
allowed to drift further apart from the given noisyI0. we
modified the value ofλ according toλ ∼ 1/NoiseSTD
and according toλ ∼ 1/NoiseSTD2. We empirically
found thatλ ∼ 1/NoiseSTD gives better results, forλ =
0.4/NoiseSTD. In order to avoid singularities, we bounded
the value ofλ ≤ 1.

A more academic approach to consider the noise level
would be to enforce the constraint on the standard devia-
tion of the restored sequence distance from the original to
match the noise level standard deviation, and solve for the
correspondingλ. Alternatives for estimatingλ based on the
noise characteristics would be explored elsewhere.

We used a gradient descent on the sequence values with a
numerical step size of0.1, and400 iterations at each denois-
ing phase. The iterations between the optical flow and the
denoising modules is performed12 times. For the optical
flow we used central derivatives and the image derivatives
were computed as recommended in [4].

4. Experimental Results
In this section we compare the results of the optical flow
module alone to the results of the coupled optical flow and
denoising modules. In all the experiments, the optical flow
code and parameters are identical in both cases and the same
number of optical flow iterations is performed. We also
compare the optical flow for noisy data results to the best
known results in the literature. In our evaluations we adopt
the standard measures of Average Angular Errors (AAE)
and Standard Deviation (STD). All our results are measured
on all the pixels of the flow field (100% dense).

4.1 Yosemite sequence

In this section we applied our method to the Yosemite se-
quence without clouds, we used three resolution levels. Ta-
ble 1 shows the noise sensitivity results for our optic flow
code. Comparing to the results in table 2, we see that the
optical flow estimation for noisy images improves signif-
icantly when applying the denoising part. The results re-
ported by [7] are somewhat better than our results for the
pure optic flow solution, partly due the missing gradient
constancy term in our data term, and probably since the
code in [7] is not yet publicly available. However, our cou-
pled solution achieves better results with respect to the AAE
measure in the presence of significant noise levels, see Fig-
ure 1 for comparison. Figure 3 shows the calculated flow
field of the coupled approach under heavy noise of 40. No-
tice that changingλ according to the noise level improves
the results for low noise levels compared to a constantλ. It
is yet interesting to note that although the sequence is syn-
thetic, when we changedλ, the results improved by a small

amount relative to working with the original sequence. We
assume that the small amount of smoothing along the op-
tical flow trajectories reduced the effects of the rendering
algorithm used in producing the sequence. This result is
also valid for other sequences we tried like the office se-
quence. Figure 2 shows the denoising results of the coupled
solution, the noise standard deviation is reduced from40 in
the original sequence to18 in the denoised sequence. Note
that the denoising is less effective at boundary pixels at the
lower left/right image since the optical flow there is fast and
moves out of the image plane. Therefore, there are fewer
pixels to work with in the smoothing process.

Table 1: Yosemite without clouds. Optical flow alone.
σn AAE STD
0 1.22o 1.25o

10 1.60o 1.50o

20 2.02o 1.73o

30 2.45o 2.01o

40 2.92o 2.27o

Table 2: Yosemite without clouds. Coupled solution of opti-
cal flow and sequence denoising. Left:λ = 0.4/STDNoise.
Right: constantλ = 0.01

σn AAE STD
0 1.20o, 1.42o 1.25o, 1.50o

10 1.29o, 1.44o 1.38o, 1.53o

20 1.55o, 1.57o 1.51o, 1.56o

30 1.86o, 1.85o 1.69o, 1.69o

40 2.17o, 2.17o 1.88o, 1.88o

Table 3: Yosemite without clouds. Results reported in [7].
σn AAE STD
0 0.98o 1.17o

10 1.26o 1.29o

20 1.63o 1.39o

30 2.03o 1.53o

40 2.40o 1.71o

4.2 Office sequence

Next we applied our method to the office sequence. For
this, we used the coupled modules with varyingλ and four
resolution levels. Table 5 shows a significant improvement
achieved by the whole scheme relative to the optic flow so-
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Table 4: Yosemite without clouds. Results reported in [21].

σn AAE
0 1.79o

10 2.53o

20 3.47o

40 5.34o

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

Noise STD

A
A

E
 [d

eg
]

Optic flow only
Coupled optic flow and denoising
Results reported in [7]

Figure 1: Yosemite sequence - noise sensitivity results.

Figure 2: Frame 8. Left-original. Middle-image with noise
STD of 40. Right-denoised image.

Figure 3: Optical flow of the Yosemite sequence. Upper
- Ground truth. Lower - results obtained by the coupled
solution with noise standard deviation of 40.
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lution as a stand alone procedure. The result is46% bet-
ter in AAE for noise level40. The improvement here is
more significant than in the Yosemite sequence for two rea-
sons: It contains more frames (higher temporal sampling
rate) which provides the denoising algorithm a better sup-
port while smoothing along the optic flow trajectories. Due
to the same reason, the motion field in the Yosemite se-
quence is larger and therefore some optic flow trajectories
are shorter because they point out of the image domain.
Our results for noisy sequences are significantly better than
those reported in the literature (see table 6). Under heavy
noise (STD= 40) our results are78% better than the best
result reported in the literature for this sequence. Figure4
shows the denoising results obtained by our method. The
noise STD in the image is reduced from40 to 17.

Table 5: Our results on the office sequence. Left - coupled
solution. Right - optic flow alone.

σn AAE STD
0 3.24o, 3.25o 3.79o, 3.79o

10 3.63o, 4.08o 3.95o, 4.14o

20 4.09o, 5.01o 4.09o, 4.52o

30 4.82o, 6.51o 4.27o, 5.13o

40 6.04o, 8.81o 4.89o, 6.48o

Table 6: Office sequence. AAE Results from the literature
LK=Lucas and Kanade. HS=Horn and Schunck. CLG=
Combined local global approach [21].

σn LK HS CLG-2D CLG-3D
0 5.75o 4.36o 4.32o 3.24o

10 6.79o 6.17o 5.89o -
20 8.43o 8.30o 7.75o -
40 11.47o 11.76o 10.73o -

Figure 4: Frame10 of the office sequence. From left to
right: Original, with noise STD=40, and Denoised.

5. Summary and future work
In this paper we introduced the concept of simultaneously
solving the optical flow and the video denoising by mini-

mizing a single functional. The results demonstrated a sig-
nificant improvement of the optical flow results under noise
compared to optical flow implementation without the cou-
pled image denoising. The optical flow provides a vital
information for the denoising algorithm: The knowledge
about trajectories along which the image brightness should
be constant. While the denoising part provides the optical
flow with an improved image sequence with lower noise
levels. It might be interesting in future work to test dif-
ferent functionals. For example, one may incorporate the
gradient constancy into the data term. It would change both
the optical flow as well as the denoising scheme. That is, a
denoising that also tries to improve the match of the image
gradients along the optical flow trajectories.
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