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What’s in a Set of Points?

N. Kiryati and A. M. Bruckstein

Abstract—The problem of fitting a straight line to a planar set of points
is reconsidered. A parameter space computational approach capable of
fitting one or more lines to a set of points is presented. The suggested
algorithm handles errors in both coordinates of the data points, even
when the error variances vary between coordinates and among points
and can be readily made robust to outliers. The algorithm is quite general
and allows line fitting according to several useful optimality criteria to
be performed within a single computational framework. It is observed
that certain extensions of the Hough transform can be tuned to be
equivalent to well-known M estimators, thus allowing computationally
efficient approximate M estimation.

Index Terms— Hough transform, least squares, line fitting, linear re-
gression, M estimators, robust regression

I. INTRODUCTION

Fitting a straight line to a planar set of points is a routine scientific
and engineering task. The most popular method employed is probably
still fitting the straight line “by eye”; surprisingly, little is known
about its performance [14]. The method of least squares is the most
common mathematical approach; its estimates of the line parameters
are usually chosen to minimize the sum of squared “vertical” fitting
errors (residuals).

The conventional least squares technique fails when outliers, i.e.,
“wild” points, contaminate the data. These tend to produce large
residuals that lead to inadequate line fitting by the method of least
squares. Since the early 1970’s, considerable statistical research effort
has been aimed at devising alternative techniques that would be robust
to “influential points” in general and outliers in particular. A concise
introduction to these techniques can be found in [11]. The texts [6],
[12], [17] provide comprehensive treatment and many references to
relevant statistical literature.

The so-called “errors in the variables” problem of fitting a straight
line in the presence of observation errors in the independent variable
(“carrier”), in addition to those in the dependent variable, has received
relatively little attention; a classical reference is [13]. It is well known
that if the problem can be scaled such that the error variances are
equal in both the independent and dependent variables and among all
points, then a modified least squares technique, in which fitting errors
are measured in the normal direction to the line, should be employed.
This specific line fitting problem admits an analytic solution.

The solution of the general problem, in which error variances vary
among points and between the dependent and independent variables,
is based on minimizing the sum

S = Z (W, (2 = X2 + Wy, (5 — 1)) )

where (r;,y;) are the observed points, W, and W,, are “weights”
that correspond to the reciprocals of the respective error variances,
and (X,,Y;) are the collinear “adjusted” coordinates. This problem

Manuscript received February 13, 1990; revised May 2, 1991. Recom-
mended for acceptance by G.T. Toussaint.

N. Kiryati is with the Department of Electrical Engineering, Technion-
Israel Institute of Technology, Haifa, Israel.

A.M. Bruckstein is with the Department of Computer Science, Technion-
Israel Institute of Technology, Haifa, Israel.

IEEE Log Number 9102098.

0162-8828/92$03.00 © 1992 IEEE




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 4, APRIL 1992 497

does not admit an analytic solution, hence, numerical techniques have
been suggested [20], [16]. Robust line fitting procedures for the “error
in the variables” problem are scarce, e.g., [2], and to our knowledge
are limited to degenerate cases.

In computer vision, straight line fitting problems arise in the context
of feature extraction; roughly collinear patterns in an edge map
correspond to straight edges in the digital image from which the
edge map was produced. There are several special challenges in this
problem. First, just a small fraction of the edge points are associated
with the straight line, whereas all others, which are due to noise and
to other features, should be treated as outliers. Second, since near
real time processing of sequences of images is an important goal,
algorithms must be efficient and suitable for parallel implementation.
Third, the simultaneous fitting of several straight lines to a single
data set is often required.

Although several approaches have been taken, e.g., [10], [19], the
mainstream computer vision approach to the line fitting problem is
based on the Hough transform [3], [7], which is a computational
algorithm for finding large collinear subsets within a planar set
of points. The main purpose of this paper is to present a related
procedure that is capable of robust or conventional approximate line
fitting in the presence of errors in both coordinates, even if the
error variances differ between the coordinates and among the data
points. Approximate M estimation is obtained as a special case.
The dependence of the number of operations on the number of
data points is linear, and inherent parallelism enables fast parallel
implementation.

The organization of this paper is as follows: in Section II the Hough
transform and a few relevant variants are briefly presented. Section III
focuses on the theoretical foundation of the suggested algorithm, and
technical issues are considered in Section IV. Examples are provided
in Section V.

II. PARAMETER SPACE APPROACHES TO LINE FITTING

The well-known Hough transform [7] is an efficient computational
method for the detection of predefined features in digital images.
Consider the Hough transform for straight line detection using
normal parameters (which are the distance from the line to the
origin and the angle between its normal and the horizontal axis),
as suggested by Duda and Hart [3]. Aiming to detect lines through
large collinear subsets within a planar set of edge points P £
{(xi,yi), i =1,---, M}, each point is regarded as a constraint

pi(@) = ricosf + y;sin 2)

on the normal parameters (p. ) of any line through that point. The
intersection of a large number of sinusoids in the (p,#) normal
parameters plane corresponds to the normal parameters of a straight
line through a large collinear subset of P.

In the standard implementation, (a subset of) the (p,8) plane
is divided into N, X Ny rectangular cells and represented by an
accumulator array. The algorithm is performed in two stages; the
first is an incrementation (“voting”) stage, in which for every ¢ €
(1,---.Af], the accumulators corresponding to cells that the sinusoid
(2) intersects are incremented. The second stage is an exhaustive
search for maxima in the accumulator array. These represent the
normal parameters of straight lines through large collinear subsets
of points. The execution of the Duda and Hart algorithm requires
O(M - Ny) operations in the incrementation stage and O(N,, - Ny)
operations in the search stage.

Unless special interpolation techniques are employed, the resolu-
tion of the parameters of lines detected (fitted) by the Duda and Hart
algorithm depends on the quantization of the “continuous” parameter
plane. It is clear, however, that several sinusoids intersect at a single

point in the continuous parameter plane only if the corresponding
edge points are truly collinear in the image plane. Thus, in the limiting
case in which the number of accumulators is very large and each
accumulator corresponds to an infinitesimal patch of the parameter
plane, the Duda and Hart algorithm would fit lines only through truly
collinear subsets of points. Formally, the Duda and Hart algorithm
computes

M
I[ri(p,8 3
arg max ; [ri(p, 8)] 3
where

ri(p,6) £ |p = pi(6)] @

and the indicator function I(r;) is defined by

afl r;=0

o2 {5 750 )

The Duda and Hart algorithm can fit several lines simultaneously
to a given data set; furthermore, it is extremely robust to outliers
in the data. Yet, since in principle it cannot tolerate small errors
in the coordinates of the data points, the Duda and Hart algorithm
as described above is quite inadequate for many image analysis
problems, where errors in the coordinates of edge points, due to
digitization and noise, are usually present. Employing coarse param-
eter plane quantization was regarded as a solution to the problem,
but fundamental theoretical difficulties [9] manifest themselves in
significantly degraded performance.

Thrift and Dunn (18] suggested a modification in the Duda and
Hart algorithm to make it tolerant to small errors in the coordinates of
the data points without giving up its robustness against outliers. The
essential improvement is the replacement of the “impulsive” indicator
function I(r;) in (3) by a smooth, positive, decreasing function
g(r:) of finite support on r; > 0 that for some C'; > 0 satisfies
g(r:) = 0 for all r; > Cy. The only change in implementation
with respect to the conventional Duda and Hart algorithm is that
sinusoidal bands whose vertical profile is everywhere the symmetric
extension of g(r;) are accumulated, rather than simple sinusoids.
The robustness of the Thrift and Dunn algorithm against outliers
follows from the finite support of g(r;) on r;. It is easily seen [8]
that r; represents the distance between a point and a straight line
in a direction perpendicular to the line. Thus, the Thrift and Dunn
algorithm can be regarded as a useful robust algorithm for fitting lines
to a set of points in the presence of errors in both coordinates for the
special case in which error variances are equal in both coordinates
and among all points.

Kiryati and Bruckstein [8] have pointed out that the Thrift and
Dunn mechanism can be extended to approximately solve the general
problem

M
arg g}i‘gzci[ﬂ(ﬂﬁ» ©)
0D

By specifying appropriate cost functions {C;(r;)}, which in par-
ticular need not be monotonic or similar among all data points, the
algorithm of [8] and [18] can be used to solve diverse problems. In
the context of fitting a straight line to a data set, specifying

Cilri)=7r% Vi @

tunes the algorithm to compute the least squares line with fitting
errors measured in the direction perpendicular to the line. Choosing

Ci(r:) :min{r?,az} Vi ()
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yields a robust least squares solution to the same problem. With
Citri)=ri/o? ©)
or, to obtain robustness

Cilry) = min{r?/a?.a?} (10)
different error variances among the different points can be handled.

An illuminating observation is that by specifying appropriate cost
functions, the algorithm of [8] and [18] approximates the well-known
robust A estimators [6], [12] (with fitting errors measured in the
direction perpendicular to the line rather than vertically). In particular,
when using the cost function (8), the algorithm approximates the so-
called skipped mean M estimator [5) (also known as trimmed mean
[1]) and is a degenerate form of Hampel’s three-part redescending M
estimator [4].

The algorithm of [8] and [18] is executed in two stages. In the
incrementation stage, a discrete approximation of the function

A
Clp.) =Y Cilri(p.8)] (11a)
=1

is constructed. In the context of line fitting, C'(p.#) represents the
total error of fit as a function of the normal parameters of lines. In
the final stage

arg minC'(p.6) (11b)
(p.8)

is determined by exhaustive search. The major advantage of using
normal parameters and measuring fitting errors in the direction
perpendicular to the line is that a very systematic incrementation law
results. For a given data point, the incrementation procedure reduces
to storing a discrete approximation of C';(-) in a linear array, and then,
for every discrete value of 6, shifting the linear array by p; () and
adding it to the 6o column of the accumulator array. These operations
can be very efficiently implemented and can readily utilize parallel
hardware if available.

III. LINE FITTING WITH ERRORS IN BOTH COORDINATES

Fitting a straight line to a set of points in the presence of ob-
servation errors in both coordinates requires, when error variances
may differ between the two coordinates and among the data points,
the solution of

arg minC'(p.8) (12a)
(p.0)

where

Al
_ TR I
Cp.0) = Z‘{nm [ — (X, — )" + p

o2
il o, Yi

(v, —yi)z} (12b)
i=1
and minimization in (12b) is subject to the constraint that the
“adjusted” points {(X;.Y;)} satisfy

p=2X.cosf+Y;sin0 i=1,--- M. (12¢)

Note that in the special case of equal error variances in both
coordinates, ie., 0¥, = o) = o}, (12) reduces to (11) with C;
specified by (9). Furthermore, if these variances are also equal among
all points, i.e., 07 = o* V i, then (9) reduces to (7).

In this section, a computational solution of (12) via an extension
of the algorithm of [8] and [18] is developed. The key to successful
implementation remains a systematic incrementation law. A simple
modification in the suggested algorithm makes it robust against
outliers.

Consider any single term in the summation (12b):

Ci(p,8) = min 12 (Xi_-l'i)2+iz()yi*yi)2 . (13)
X;.Y; |0 o

Ty Yi

Subject to (12¢), (13) is the contribution of a specific data point to
the total fitting error as a function of (p,#). The minimization of
(13) subject to (12c) can be carried out using Lagrange multipliers.
Defining

1 . 1 ., ;
¢i = —(Xi —2:) + (Vi = y:)’
o7, 7%,
+ Ap— X, cosf —Y;sinf) (14)
a solution to the following set of equations is required:
g% =2(X; —&:)/02, — Acosf =0 (15)
g;’: = 2Y, - yi)/02, — Asinf = 0 (16)
g—f =p—Xicosf —Y;sinf = 0. an
Using straightforward algebra, it is easy to show that
ri(p.6)
Ci(p.0) = UL 18
(p-8) 0% cos?2f 402, sin” @ as
where 7;(p.6) was defined in (4). Defining
Vi(8) £ 0% cos’ 8 + oy, sin® 0 (19)
yields
Cilp.8) = ri(p.6)/Vi(6). (20)

In the suggested algorithm, (20) guides, for each data point, the
incrementation of the accumulator array. It is pleasing to note that
in the special case ofl = 031 = o2, it turns out that Vi(8) = o?
is independent of ¢, and the suggested algorithm reduces to that of
[8], with C;(r;) defined by (9).

Since even in the general case V;(6) is independent of p, (20)
represents a very systematic incrementation law. For a given data
point, the incrementation procedure reduces to storing a discrete
approximation of C';(r;) in a linear array, and then, for every discrete
value of 6o, shifting the array by p;(fo), dividing it by V;(6,), and
adding it to the fy column of the accumulator array. Robustness
against outliers merely requires the replacement of (20) by

Cf(p.8) = min{r}(p.6)/Vi(6).a?} @

which has the effect of limiting the contribution of any data point to
the total cost to a preset maximum. The additional computation due
to the replacement of (20) by (21) is relatively small.

IV. DISCRETIZATION, RESOLUTION, AND COMPLEXITY

In the previous section, a parameter space approach for line fitting
by the computational solution of (12) was presented. In the suggested
procedure, C'(p, 8) is approximated by an accumulator array. First, for
each data point, accumulation is systematically carried out according
to (20) or (21); minima of C'(p, §) are then determined by searching
the array.

Since the line that best fits a set of points obviously intersects the
convex hull of the set of points, it is clear that only the subset of
the parameter plane that represents the lines that intersect the convex
hull need to be approximated by the accumulator array. For improved
accuracy given a fixed number of accumulators, the problem should
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be translated such that the origin coincides with, say, the center of
mass of the data points.

Assume, without loss of generality, that the data points all lie within
a circle of unit radius centered at the origin. The relevant subset of
the accumulator array is then

A={(p.0):

The N, x Ny accumulator array will contain the values of
C(p.#) at N, x Ng sampling points within A. As described,
the execution of the algorithm on a conventional serial machine
requires O(M - Ny - N,,) operations in the incrementation stage and
O(Ns - N,) operations in the search stage. If parallel processing
of vector elements is supported by the hardware, the number of
operations in the incrementation stage can be reduced to O(M - Np),
which is similar to that of the conventional Duda and Hart algorithm.

If robust operation of the algorithm is desired, it is of computational
advantage to modify (21) to

C;”(p.ﬁ) = max {a? -

—1<p<1.0<b <7} (22)

ri(p.8)/Vi(8),0}

and search for the maximum, rather than the minimum, of C'(p.#).
The limited support of (23) implies that less than N, accumulators
need to be incremented at every value of 8 for each data point. This
feature is inherent in the Duda and Hart algorithm and has been
observed and incorporated in the algorithm of Thrift and Dunn.

In [9], it has been shown that in the Duda and Hart algorithm, there
exists no finite number N, x Ny of sampling points that provides
sufficient representation of the parameter plane in the Nyquist sense,
i.e., that meets the requirements of the sampling theorem. In principle,
the same holds for the algorithm just presented. However, since (20),
(21), and (23) are “better behaved” than the impulsive indicator
function (5), the suggested algorithm is less problematic in this
respect than the Duda and Hart algorithm. In practice, reasonable
approximation of C'(p.#) is possible if the number of availabie
accumulators is large with respect to the reciprocals of the error
variances.

The available number of accumulators determines the distances
between sampling points of C'(p.#). Unless careful interpolation (as
suggested in [15]) is employed, the intersample distances determine
the resolution of the parameters of the fitted lines. Assuming that a
reasonable preliminary approximation of the parameters of the line
can be obtained using the available number of accumulators, focusing
coarse-to-fine techniques [7] can yield superresolution. These are
based on allocation of all accumulators to represent a small subset of
A (the neighborhood of the peak) and reexecution of the algorithm.

(23)

V. EXAMPLES

The general line fitting algorithm suggested in this paper has been
implemented and executed on a VAX 785 computer. A coarse-to-fine
focusing technique using a 256 x 256 accumulator array has been
employed.

Consider the planar set of points shown in Fig. 1, to which a
straight line should be fitted. Error variances that are equal among
all points (but not necessarily in both coordinates) are assumed.
Specifying o, = 0 and ¢, = 0.1 for all points (i.e., assuming
errors only in the y coordinate) and using the incrementation rule (20)
resulted in line 1 shown in Fig. 2. This is the line that would have
been found by the line fitting function available in certain pocket
calculators.

If isotropic errors are assumed, e.g., ¢, = o, = 0.05 for all points
and accumulation is again guided by (20), line 2 is found. This is
the line that would have been determined by modified least squares
procedures in which fitting errors are measured in the direction
perpendicular to the line. The effect of the “outlying” data point on the

o ¢ o o o afs s 8 0 0 o

Fig. 1. Planar set of points to which a straight line should be fitted.

Line 2
Line 3

Line 4

LI MRS S )

Line 1

Fig. 2. Straight lines fitted to the data set by the suggested algorithm using
different optimality criteria, i.e., different assumptions on the errors. Line 1:
o, = 0, oy = 0.1 for all points (errors only in the y coordinate) and
unbounded influence; line 2: o, = 0, = 0.05 for all points (isotropic errors)
and unbounded influence; line 3: 0, = oy = 0.05 and maximum influence
a? = 10; line 4: o, = o, = 0.01 and maximum influence a® = 10.

fitted line is clear. The algorithm can be made robust against outliers
by replacing (20) by (21) and specifying a maximum influence
a? = 10. This results in line 3, which is a pleasing nontrivial result.

By specifying very small errors (0. = ¢, = 0.01) without increas-
ing a?, line 4 is obtained. This is the line that would have been fitted
to the given set of points by the Duda and Hart algorithm, regarding
points that are not precisely on the line as outliers. In this case, a
second significant peak exists in the parameter plane, corresponding
to the second largest truly collinear subset within the given set of
points.

For clarity, examples that involve error variances that are different
among the data points have been avoided; such problems, however,
can readily be solved by the algorithm.
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