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Abstract 

In this paper we discuss a new approach to invariant signatures for recognizing curves under viewing distortions and partial 
occlusion. The approach is intended to overcome the ill-posed problem of finding derivatives, on which local invariants usually 
depend. The basic idea is to use invariant finite differences, with a scale parameter that determines the size of the differencing interval. 
The scale parameter is allowed to vary so that we obtain a ‘scale space’-like invariant representation of the curve, with larger 
difference intervals corresponding to larger, coarser scales. In this new representation, each traditional local invariant is replaced 
by a scale-dependent range of invariants. Thus, instead of invariant signature curves we obtain invariant signature surfaces in a 3-D 
Invariant ‘scale space’. 

Ke~wort/.c: Local invariants: Object recognition: Scale space 

I. Introduction 

One of the major problems of object recognition is the 
fact that, on the one hand, an object can be seen from 
different points of view, producing different images. On 

the other hand, we would like to store only one image in 
a database and match any other image of the object to 
it, regardless of the point of view. A good way to over- 

come this problem is to use viewpoint invariants, namely 
descriptors of the shape that are independent of the point 
of view, and use them for matching. 

The subject of viewpoint invariants in vision has 
developed rapidly in recent years. A simple projective, 

or viewpoint, invariant, namely the cross ratio of four 
points on a line, was introduced in vision by Duda and 
Hart [l]. However, its domain of applicability was very 
limited. More general invariants were studied in the 
nineteenth century, and were introduced in the field of 
computer vision by Weiss [2]. They are of two main types 

(1) Algebruic invariants. These are based on a global 
description of the shapes by algebraic entities such 
as line, tonics and polynomials. Details of these 
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methods can be found in Grace and Young [3] and 

Springer [4]. 
(2) D@rential invariunts. These are based on describing 

the shape by arbitrary differentiable functions. These 
methods were developed by Halphen [5]. Wilczynski 
[6], Cartan [7] and Lane [8]. 

These methods have been applied to various vision 
problems. The algebraic approach was used by Forsyth 

et al. [9] and Taubin [IO], while differential invariants 
were used by Weiss [2,1 I] and Bruckstein and Netravali 
[12]. Both methods proved to have advantages and 

disadvantages. The algebraic method, while simple 
and easy to implement, is quite limited in the kinds of 

shapes that it can handle because most shapes are not 
representable by simple low order polynomials. The 
differential method is more general because it can handle 
arbitrary curves, but it relies on the use of local infor- 
mation such as derivatives (of quite high orders). 

This situation has led to the introduction of various 

kinds of intermediate, or hybrid methods, that try to 
combine the advantages of the algebraic and differential 
methods, and hopefully not their disadvantages. Van 
Go01 et al. [13], Brill et al. [14] and others introduced 
invariants that contain both derivatives and reference 
points. Each reference point reduces the number of deri- 
vatives that one needs in order to obtain invariants. 
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Weiss [15] used a ‘canonical’ coordinate system without 
curve parameterization to obtain the same goal. This 
resulted in fewer derivatives and in the capability of 
using feature lines in addition to points. However, in 
all these methods, the correspondence must be estab- 
lished between the reference points of the two images 
that are being matched. Finding the correspondence 
is a very difficult problem that requires searches in 
high dimensional spaces, and we need a method that 
avoids this. 

In this paper we reduce the number of derivatives by 
using a scale space approach. It is well known [16,17] 
that such an approach can turn the ill-posed problem 
of finding derivatives into a well-posed one. The scale 
space has to be invariant, so we cannot use simple 
Gaussian-like smoothing. Instead, we rely on some refer- 
ence points as a function of the given curve and a vari- 
able scale parameter. These reference points are not 
assumed to be readily available in the image, as in pre- 
vious methods [18,19,21], but are determined from 
the curve in an invariant way. Thus, no correspond- 
ence is needed. Using low-order derivatives and our 
variable reference points, we build invariant scale 
space representations of the given curves. 

There are various ways to derive invariants in accor- 
dance with the above scheme. Here we extend a method 
originally introduced by Bruckstein et al. [20,22]. It con- 
sists of defining an invariant arclength (using the lowest 
possible order of derivatives in given schemes), and then 
defining invariant finite differences using this arclength. 
These differences replace the higher order derivative in 
the traditional invariants. The differences are not neces- 
sarily small and do not tend to zero. Rather, their vari- 
able size creates the ‘scale space’. 

We briefly describe here an illustrative example of the 
method. Given a curve, we want to find invariants at 
each point of the curve so that we can obtain a local 
invariant signature. With Euclidean invariance in mind, 
we can plot the curvature vs. the arclength T to obtain 
a Euclidean invariant signature. Invariant signature 
plots of two curves are then compared to detect matches 
rather than the curves themselves. This is an example of 
a local method, in which no correspondence between 
points is needed. However, curvature involves a second 
derivative which we wish to avoid. 

In our new method, the second derivative is replaced 
by a finite difference. We start from a point P(T) on the 
curve, and we want to find invariants there. We choose 
an interval size AT and find two points on the curve, 
P(~+AT), P(-r- Ar), 1 ocated at distances +Ar and 
-AT (measured on the curve) from the point P(r) at 
which we want to calculate the invariants. Given these 
three points, we can calculate any Euclidean invariant 
involving them, such as the area A(r) of the triangle 
formed by them. A(T) is then a new type of invariant 
signature. This is much more robust than a derivative, 

if AT is not too small. In this way, we reduce the number 
of derivatives needed without needing any fixed reference 
points or their correspondence. The scale parameter AT 
can now be varied to obtain a whole range of scale 
dependent invariants. 

Similar difference-based methods have been used 
earlier in various contexts. Euclidean variants have 
been used for detecting inflection points and other 
features on boundaries [23]. A surface description using 
a ‘tripod’, or a triangle with a known side h which is 
superimposed on the surface, was used by Pipitone 
[24], and proved to be quite robust. 

In summary, the semi-local, or finite difference method 
elaborated upon in Bruckstein, Holt et al. [22] is exten- 
ded here as follows. As in [22], we consider general 
transformations such as similarity, affine, or even 
projective viewing distortion and use similarity, affine 
or projective invariant arclength to reparametrize the 
curve, exploiting all the information available. We then 

let the diferencing interval size or sizes be free parameters 

rather than setting them in advance. In this way we obtain 
whole ranges of invariants at each point rather than 
single values. The signature functions for the curves 
then become signature vectors or even continua of 
values, i.e. surfaces or hypersurfaces. Matching them 
will be slightly more complicated but will certainly be 
robust because it will be less sensitive to peculiarities 
that may exist at some fixed pre-set value of the locality 
(scale) parameters. 

2. Theory of scale dependent local invariants 

Here we describe in detail the basic ideas of the semi- 
local method. Its main advantage over the global method 
is its ability to deal with partially occluded shape. We 
deal here with planar curves, such as boundaries of 
planar objects. 

To obtain an invariant representation of a curve, we 
associate with each point of the curve a set of invariants. 
The collection of independent invariants from all points 
is the invariant ‘signature’. This approach maps the 
problem into a problem of detecting partial matches 
between the signatures of the ‘library’ of possible objects 
and the signature functions extracted from the (compo- 
site) objects appearing in the scene to be analysed. 

We treat here two variants of such signatures: 

l A signature with an arclength as an independent 
variable. We first derive an invariant arclength T and 
use it to reparametrize the curve. After that another 
invariant I is determined at each point (for example, 
curvature in the Euclidean case), and we represent the 
signature as a function Z(T). 

l A signature with two independent absolute invariants 
as coordinates. Here we find two local invariants I,, I, 
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at each curve point, and then plot Z2 against I,. The 

functions II, Z2 may or may not be represented as func- 

tions of an invariant arclength 7, but they are local 

quantities in any case. 

In both cases. recognition is based on detecting 
portions of invariant traces in the ‘transform plane’. 

The simple Euclidean example will again be used to 
clarify the above discussion. Suppose we wish to detect 

the presence of partially occluded planar objects whose 

instances may undergo planar rotations and translations 
(i.e. Euclidean transformations). Here the well-known 

invariant signature approach describes object bound- 
aries via curvature versus arclength functions, invariant 
under Euclidean transformation, and recognition is 
possible by partial matching. This method of finding a 
signature is based on using an invariant metric on the 
curve (the arclength) and on finding a differential 
invariant at each point on the curve (the curvature). 

The second approach above was used in Refs. [15,3 11, 
without a scale space. No curve parametrization was 
used there. The method is based on the fact [29] that a 

general curve has two independent invariants at each 
point, and these can determine the curve uniquely up 
to the relevant transformation. Here we describe various 
ways of using the method in scale space. We deal with 
the case of Euclidean invariance. One way to proceed is 
to use a Euclidean arclength 7. Associate with points on 

the arbitrarily parametrized curve P(r) = [_u(r)%y(~)] 
two numbers I, (7) and Z?(T) invariant under Euclidean 
transformation. Here, Z,(T) could be the curvature at 
P(T) and I?( T) could be the area of the triangle formed 

by the points {P(T). P(T - TV), P(T + r,)}, where 
P(T - rh) is located at an urclength distance of rh (chosen 

a priori) ‘before’ P(T) and P(T + r/ ) at a distance of rf 
‘following’ P(r) in the traversal of the curve (see Fig. 1). 

A more appealing way to use the second method is 
to avoid the curve parameter altogether. We can avoid 
it by a variety of methods. For example, we can define 
the first invariant at Z’(T) to be the area between the 
curve and a parallel to the tangent at P(T) at a distance 
of D (set beforehand) toward the center of the osculating 

circle C(r) (see Fig. 2). 
To summarize our message: the first, metric-based 

approach to finding a signature, calls for the arclength 
reparametrization of the curve. i.e. P(t) + P(T), and the 

Fig. I. P(t) + [/j(t) = l/R(r). I,(f) = A(t)]. 

Fig. 2. Using the area between the curve and a parallel to the tangent. 

association of one invariant quantity with each point of 
the reparametrized curve (in the above example ~--~ the 
curvature). The second, invariant coordinate approach, 
associates different invariant quantities with each point 
of the curve without necessarily referring to a curve 
parametrization. 

Note that both approaches are based on our ability to 
analyse the neighborhood of a point on a planar curve 
and calculate some quantity that remains the same when 

we consider the image CI/’ the point and the image of’ its 

neighborhood under the viewing transformation. 
In this paper we concentrate on the first method 

discussed above. i.e. we assume that we can always deter- 
mine an invariant metric on the curve. With this metric. 
moving to the left and right along the curve from a point 
P(T) to points at ‘distances’ far,, iAr,. ~-AT;. ., etc., 

is a well-defined process. This process can be used to 
generate point sets anchored at P(T) that are invariant 
under the distorting viewing transformation. Based on 
these point sets, we are able to use the global invariants 
of the viewing transformation to calculate a wide variety 
of invariants. 

More importantly, notice that the point sets are 
parametrized by the sequence of positive numbers 
AT, < AT: < A-r, < ‘. and hence the invariant quanti- 

ties that we generate are likewise parametrized. We can 
use this freedom to associate with each point Pi-r) on the 
curve a whole range of invariants rather than a single 

one. Hence we can define multi-wluerl or patxmetrired 

signatures (or coordinates in the second approach dis- 
cussed above). These have the potential of enabling 

more robust matching in the presence of noise and 
other disturbances. 

To illustrate this let us again consider the Euclidean 
case. Once the curve P( 1) is reparametrized to P(T) where 

r is Euclidean arclength we can proceed as follows: 
at each point P(T), consider the point set {P(, - AT). 

P(T), P(T + AT)} an compute the radius of the circle d 
passing through these points. denoting it by R(T. AT). 
Clearly, as AT --) O.R(r,A7) + l/k(~) where k(r) is 
the curvature. However, we can use the whole range of 
values of Ar from Ar = 0 to some (AT)*,~~ to associate 
with P(T) a multi-valued curvature function of the form 
li(7, AT) = l/R(r, AT). At AT = 0 we obtain li(~), but 
k(r,A~) clearly carries more information on the local 
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behavior of the curves around P(r) than k(r), in the complexity of the (possibly nonlinear) viewing trans- 
neighborhood of any value of r. formation T$. 

Furthermore, we can use other Euclidean invariant 
quantities, like the areas of the triangles {P(T), 
P(r - AT), P(r + AT)}, i.e. A(r, Ar) =Area {P(r), 
P(r - AT), P(r + AT)}, the angles (~(7, AT) = i P(T- 
Ar)P(r)p(~ + AT), etc. All these are valid ‘generalized 
parametrized signature’ functions that can be associated 
with a planar curve. (There are clearly relationships 
between the various quantities, but this will not concern 
us here.) In case we need to recognize occluded planar 
shapes under a Euclidean viewing transformation these 
generalized signatures will enable us .to perform more 
robust partial matching for detection. 

Suppose that, in spite of such difficulties, we can pro- 
duce some functionals R[.] associating numbers with 
points on the curve such that 

QRto)l = w@o)l (1) 
i.e. the numbers are invariant under the transformation 
T,{ .} and the necessarily arbitrary parametrizations. 
If two such functions s1i [] and R,[] are available and 
are not trivially related (for example we don’t have 
0, [] = f{R,[]}), then we can base a recognition proce- 
dure on them via an invariant coordinate method. 

Indeed, we can simply associate 
Note that the same approach can also be used in con- 

junction with the invariant coordinate method. One of 
the invariant quantities can be chosen as the independent 
variable T = I,(t), and the other can be a parametrized 
continuum of values Z2 ( T, AT). 

P(t) + VI (4 = 01 P(t)17 MO = fl,P(t)ll 

and the traversal of P(r) yields an invariant trace in the 

[II, 121 plane. 

Note also the important point that we do not neces- 
sarily advocate the computation of the limit values for 
AT ---f 0. If AT takes only a finite set of positive values we 
base our invariants on a form offinite difSerences in the 
invariant metric, rather than on the differential behavior 
of the curve about P(T). 

Furthermore, by differentiation of (1) n[P(t)] = 
C![P(t(t))] w.r.t. to t we obtain 

g n[x(t)] = -$ R[P(i)] .g 

3. Scale space of invariants under similarity, affine and 
projective maps 

and defining I?[P(t)] e d/dtR[P(t)] we can write 

I’[P(t)] dt = l?[p(i)] di (2) 

This enables us to reparametrize the curves P(t) and P( i!) 
using an invariant metric, since defining dT A /lY [P(t)] Id? 
yields 

So far we have illustrated our approach with examples 
based on the simplest case of Euclidean transformations 
affecting planar objects. If more complex viewing trans- 
formations are assumed we must deal with such prob- 
lems using transformation-invariant metrics on curves 
and using the arsenal of geometric invariants available 
for the specific transformations. 

d? = II? [@)]ld? = II’ [P(t)] Idt = dT 

This is just like in the formula for arclength reparamet- 
rization 

Much mathematical research was devoted to the 
famous Klein program in the 19th century (e.g. see 
Buchin [25], Lane [26], Wilczinsky [6,27,28] and 
Guggenheimer [29]), who show how to compute invari- 
ant reparametrizations under various continuous groups 
of transformations. The affine and projective groups 
have received special attention in this context, and we 
have almost ‘off-the-shelf’ results available from affine 
and projective differential geometry. 

d? = (g’(t))* + (j’(t))* di 

= Jmdl=dr 

for the Euclidean group of transformations. 
Note that T, like the Euclidean arclength, is a ‘mono- 

tonized’ version of 0, and that it depends on an arbitrary 
parameter: the initial value, or the starting point of the 
integration along the planar curve. 

Given a planar curve P(t), with arbitrary parametriza- 
tion, the local behavior of this curve at a point P(to) is 
described by the vector of derivatives {P(t), P’(t), 
P”(t). . P(“)(t). . .}l=t,. Suppose now that we are given 
a transformed image of P(t) - arbitrarily parametrized 
by f, i.e. I’(t) = T${P(l(t))}. The local behavior of P(7) 
at the image of P(ro), i.e. I’(tl(ts)) = P(t,), will clearly 
be related to the local behavior of P(t) at to. However, 
the relationship is quite difficult to describe analytically 
due to the arbitrariness of the parametrizations and the 

Thus, the question is: how can we obtain nontrivial 
functions R[.] (or IY [.I) obeying Eqs. (1) or (2)? Note 
that these functions should reflect the geometry of the 
curve around a point of interest, and here ‘around’ 
means an infinitesimal neighborhood (i.e. the differential 
geometry at the point of interest.) 

In Bruckstein and Netravali [12], Weiss [30], 
Bruckstein, Katzir et al. [20] and Bruckstein, Holt et al. 
[22], several such functions are exhibited for all the 
viewing transformations. It is also pointed out there 
that the requirement for R[] or I [ ] to be based on 
infinitesimal behavior can be relaxed, and that the use 
of non-local properties of the viewing transformation 
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Fig. 3. An invariant parametrization using the area ratios 

could be used to define such functions over ‘invariantly 
defined’ finite neighborhoods of points on planar curves. 
As an example, let us consider curves distorted by affine 
transformations. 

First we find an invariant parametrization of the 

curve. This can be done by several methods. In one 

method, depicted in Fig. 3, we can consider the area 
ratios A’ (P(t))/,4 -(C’(r)) for P(t) around P(to), i.e. for 
t > to and t < fo. In Bruckstein. Holt et al. [22]. it was 
proposed to look for P(t) at t > r,, such that AI/A- first 

equals some constant liF. and for P(t) at t < to such that 
A ‘/A- first equals some constant k,. Then the ratio of 
the corresponding areas is an affine invariant quantity 
dependent on the two parameters kF and kB. 

A,. (1~~) 
11, (x(10)) = ___ 

An(kn) 
(We denote A = A’ + A-- .) As a generalization of 
this work, we can ilet kF = kB take a whole OZ~~P 
of values, associating a range of invariants with the 
point P(t,). We can also consider another invariant 

Fig. 4. Obtaining projective invariants 

Fig. 5. A conic transformed by scaling and rotation. The multi-valued 

signature for each of the tonics is presented below it The \--~KI\I 

represents position along the reparametrized curve. Signatures for 20 

different parameter values are displayed along the I.-axis. The starting 

position for each curve ia marked by ;I whltc square. A match I\ 

achieved when one of the signatures IS shlfted. 

Q?. the ratio of the area of (P(r”)P(t,.-)P(tH)) to the 
area AF + A,. 

Another method for affine invariant parametrization 
is to use a differential formula. after appropriate smooth- 
ing of the curve. We have the invariant arclength [29] 

with the subscripts denoting derivatives with respect to 

t. We perform the smoothing by a spline interpolation 
over some interval At. From this, using the above 
formula. it is easy to calculate the corresponding invari- 
ant parameter AT. 

For each AT as calculated in any of the methods above. 
we have a set of points P(T), P(T + Ar), P(r - Ar). For 
such a set we can define affine invariants as ratios ot 

areas defined by these points, the tangents and the curve 
itself. Since AT is a free scale parameter. we obtain a 
whole range of invariants associated with the point P(r). 

We turn to the projective case. Here too we can find a 
projective arclength using a differential formula, again 
with appropriately smoothing with splines. This is done 

following Wilczynski [6]. A projective transformation 

Fig. 6. Three logos from the logo da~ahaac. 
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Fig. 7. A logo before and after transformation (scaling and rotation). 

The logo was processed as five different curves. 

can be written in homogeneous coordinates as 

r;: = X(x)Tx 

with X(x) being an arbitrary factor, which can be differ- 
ent at each point x. To find invariants, one can proceed 
in stages. First find invariants to the linear part T of the 
transformation, and from those derive invariants to X, 
and also to change in the curve parameter t. 

Given a plane curve x(t), invariants to T can be 
obtained by solving the linear algebraic system of 
equations 

x”’ + 3p,x” + 3p*x’ + p3x = 0 

for the three unknowns, pI ,p2,p3, at each point t, where 
the primes indicate derivatives with respect to t. It is 
easy to show, by multiplying the equation through by 
T, that these solutions pi are invariant to T. However, 
they are not invariant to change in the arbitrary factor 
x(x(t)) nor to change in the curve parameter t. We can 

Fig. 9. A second curve from the logo, taken from the first four letters 

KeII). Again, a match is achieved after a shift. 

obtain functions of these pi which are invariant to the 
additional possible transformation. We have the ‘semi- 
invariants’ 

P2=P2-P?-P11 

P3 = ~3 - 3~1~2 + 2~: -PI 

These remain unchanged under multiplication of the 
coordinates by a factor X(x), but not under change of 
the parameter t. 

An invariant arclength can be defined as dr = 
I( p3 - 2 pi)“3jdt. This is an absolute invariant with 
respect to changing the parameter as well as the projec- 
tion, except for a starting point. We can now reparamet- 
rize the curve to obtain P(r). Then, we generate a range 
of invariants around each P(r), varying according to a 
scale parameter AT. An example is shown in Fig. 4. We 
draw points on the curve separated by intervals AT, and 
draw the tangents at these points. The tangents produce 
a set of points on a straight line from which we calculate 
the cross ratio: 

CR = (x2 - Xl)bP - x3) 

(XP - x,)(x2 - x3) 

Fig. 8. The last two letters of the logo (gs) constitute a curve to be 
processed. The multi-valued signatures are presented below. Shifting 

the top signature to the right by approximately half the strip’s length 
will achieve a match. 
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conic, and we try to obtain its scale-space invariants 
under the similarity group of transformations. The 
conic before and after it went through scaling and rota- 
tion is presented in Fig. 5. 

To obtain an invariant arclength under similarity we 
proceed as in Bruckstein, Katzir et al. [20]. The similarity 
invariant arclength parameter is given in this case by 

Fig. I I The lower curve and its signature. One can see the symmetry 

of the shape from the structure of the signature. 

Fig. I?. The lower curve after scaling and rotation. 

This invariant depends on the point P(r), and also on the 
scale parameter AT. 

4. Experiments: invariant scale space signatures 

We present a series of experiments to illustrate the 
above-outlined theory. We start by considering a simple 

& = -~‘W’W - -~“WY’(4 dr 

(s’(t))2 + (.v’(t))’ 

After the curve is reparametrized by the invariant 
arclength we can call upon several types of scale- 
dependent similarity invariants. In this example (and 
in the ones that follow), we plot the angle 
[P(, - AT)P(T)P(~ + AT)] = ~(7, Ar) as a function of 
r. However, a wealth of other possibilities are avail- 
able. We could also compute various length or area 
ratio that are also known to be similarity invariants. 

The multi-valued signature for each of the tonics is 
presented in Fig. 5. The invariant arc length is repre- 
sented by the s-axis, which represents position along 
the reparametrized curve. The y-axis represents the 
values of the scale parameters AT. In our experiments 
each image contains 20 different signatures for 20 differ- 
ent parameter values. For each signature different Ars 
were used. For a constant Y value one gets single-valued 
signatures for the curve. The grey level encodes the simi- 
larity invariant for a particular arclength and parameter 
value. The full display represents an ‘invariant signature 
surface’. For each curve the starting position is marked 
by a white square. Due to the different starting position 

Fig. 14. Tne multi-valued signature from Fig. I I (top) is compared with the multi-valued signature from Fig. 9. No match is achieved. 
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Fig. 15. An occluded logo and its multi-valued signature. The signature 

of the complete logo from the database is presented below. The 

presented relative position of the two signatures is the one which 

gives the best match. 

one multi-valued signature is shifted relative to the other. 
To check for a match between two signatures one should 
match one multi-valued signature to the other while 
shifting it in a cyclic manner. This is done automatically, 
scoring each match, trying to solve for the maximum. In 
this example, one can see that a match is achieved when 
one of the signatures is shifted. The symmetric nature of 
the curve is evident in the signature structure. 

For the following experiments we used images of 
different logos. We regard logo recognition as a good 
application, where similarity invariants are sufficient 
for recognition. We used the logo database of the Docu- 
ment Processing Group at the University of Maryland. 
Examples of the input images for the process are pres- 
ented in Fig. 6. Each logo is processed to an edge 
image. Curves are processed by length, and a B-spline 
is matched to each of the curves. We use a matching 
technique similar to the one presented in Pauwels et al. 
[32]. Using the B-spline, derivatives are computed, and 
invariant arclength is obtained. 

In Figs. 7- 14 we show the results of the processing on 
two images of logos going under similarity transforma- 
tion. In Fig. 7, a familiar logo was processed and mapped 
into five different curves. The scale-space signatures 
for two curves out of the five are shown in Figs. 8 and 
9. Each position on the base signature was-checked 

Fig. 16. The logo was processed as four different curves. On top the 

multi-valued signature for the letter P under occlusion, and below it 

the signature for the complete curve of the letter P. The signatures 

below belong to the sign &. The third signature from the top for the 

occluded curve, and the complete curve below it. The presented relative 

position of the two signatures is the one which gives the best match. 

Fig. 17. An input logo under affine transformation 

against the compared signature in a circular process. 
Difference values for each position were calculated. 
In both cases a good match is achieved modulo a (circu- 
lar) shift in the invariant arclength. The signatures 
as presented in the figures are showed in the position 
that gave the best value for the match (minimum of 
differences between the signatures). The computation 
time on a Spare IPX station took an average of three 
minutes per logo. 

The results for a second logo (Fig. 10) are presented 
in Figs. 11 and 12. The shape is symmetric and only one 
of the two curves comprising it (the lower) was pro- 
cessed. The processed curve was itself symmetric. One 
can see the symmetry in the shape from the structure 
of the signature. Again a good match is achieved when 
one of the signatures is shifted. 

In the following, we show results of experiments that 
handle occlusion. The processing stage is similar. When 
we produce signatures for open curves using different 
parameters we have different domain for each parameter. 
Hence, extracting multi-valued signatures from occluded 
curves forces us to further reduce the common domain. 
As a result we are restricted with the amount of occlusion 
we can handle without difficulty. Still occlusion of 30% 
of the shape can be handled without any problem. The 
automatic matching is done in the same manner as 
before, comparing the multi-valued signature in each 
step in a simple cyclic move. The best score achieved is 
the result of the comparison. In this experiment each 
multi-valued signature contains only five different signa- 
tures for five different parameter values. 

Figs. 15 and 16 show two logos under occlusion. The 
multi-valued signatures of the occluded curves are 
presented below the images of the logos. One can see 
that a good match is obtained for the two logos. 

We shall next deal with affine transformations. In this 
case, as noted before, the invariant arclength parameter 
can be obtained from any arbitrary parameter s by 

dT = I&Y,, - x,,Y,)“~ I dt 

with the subscripts denoting derivatives with respect to t. 

Fig. 18. The multi-valued signature for the letter F. On top the signa- 

ture for the database logo, below the signature for the logo after the 

transformation. The presented relative position of the two signatures 

is the one which gives the best match. 
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Fig. 19. An input logo under affine transformation 

This expression is an equi-affine invariant. If a full affine 
transformation is applied. this expression is invariant up 
to a factor equal to l-he determinant of the transforma- 
tion. To make the arclength fully invariant in this case 
too, we could normalize the expression above by the 

total arclength ,[dr of the curve segment we deal with, 
provided it is not pa.rtially occluded. Alternatively, we 

could use higher derivatives or point matching methods 
to obtain similar types of invariant arclength. 

After the curve is, reparametrized by the invariant 
arclength we can call upon several types of affine invar- 

iants. In the examples shown (Figs. 17-20), we plot areas 
ratio similar to the one presented in Section 3 against the 
invariant arclength parameter. In this experiment too, 
each multi-valued signature contains five different signa- 
tures for five different parameter values. 

5. Discussion 

We have developed a way of improving the reliability 
of object recognition by the method of local invariants. 
The advantage of local invariants relative to global ones 

is their ability to handle occlusion. The difficulty in using 
them lies in the need to use derivatives. Derivatives are 
not very robust to noise, and even in the noiseless case 
they can depend upon the scale at which we look at the 
image, namely the degree of smoothing. We have pro- 
posed solving this problem by looking at the shape at 
many scales rather than trying to choose one particular 
scale factor, which is not invariant. 

Instead of derivatives. we use a finite difference 

method in an invariant form. The differences depend 
on a scale factor which we allow to vary continuously, 
thereby obtaining a description of the shape in an 
invariant scale space. Scale space methods have been 
extensively used, but mostly not in an invariant way. 
The treatment here is quite general; several forms of 
difference-based invariants have been treated here for 

Fig. 20. The multi-valed signature for the Apple logo. On top the 

signature for the database logo. below the signature for the logo after 

the transformation. The presented relative position of the two signa- 

tures is the one which gives the best match. 

projective, affine and similarity transformations. We 

have shown experimentally that the method can easily 
recognize various complicated shapes. 
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