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the theory is restricted to cases where structural information enables
efficient short cuts or acceptable approximations are available.

The results here provide a simple and efficient method to make
decisions with Pl even though the values of that function are only
determined to within a multiplicative constant. However, that is
sufficient to enable the theory to be used in many applications.
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On Navigating Between Friends and Foes

N. Kiryati and A. M. Bruckstein

Abstract—A problem of determining the optimal straight path between
a planar set of points is considered. Each point contributes to the cost
of a path a value that depends on the dist between the path and the
point. The cost function, quantifying this dependence, can be arbitrary
and may be different for different points. An algorithm to solve this
problem, via an extension of the Hough transform, is described. The
range of applications includes straight-line fitting to a set of points in
the presence of outliers, navigation, and path planning. The suggested
extended Hough transform can be tuned to be equivalent to well-known
robust least squares techniques, and allows, in particular, to efficiently
carry out approximate M-estimation.

Index Terms—Hough transform, line fitting, M-estimators, path plan-
ning, robust least squares techniques.
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Fig. 1. Friends and foes in the “arena.”

1. INTRODUCTION

Consider the problem of designing a straight path for traversing
an “arena.” A certain number of arbitrarily placed points in the arena
represent friends, and the path is required to pass near as many of
them as possible. Some other arbitrarily placed points represent “foes”
whose vicinity should be avoided. To fully define the problem, the
cost of passing near a foe—usually a function of the distance between
the path and the foe—and the reward for passing near a friend, also
a function of the distance, must be given. Assume, for example, that
the cost of passing at a distance of less than 0.15 units from a foe is
20, and the reward for passing at a distance of less than 0.1 unit from
a friend is 1. A typical arrangement is shown in Fig. 1. Even for this
relatively simple situation a straightforward algorithm for designing
the best path(s) is not apparent. The problem is harder if complicated
functions of the distance are used as cost functions, each friend or foe
possibly having a specific cost function to reflect its “personality.”
Only for very special cost functions are analytic solutions possible.
For example, if cost equals distance squared, the problem is reduced
to fitting a straight line to a set of points by the (perpendicular) least
squares criterion.

In this correspondence, a parameter plane approach to the problem
in its general form is described. It can be regarded as an extension to
the Hough transform [1]—[4], a well known technique for detecting
large collinear subsets of a set of points. This is indeed a special case
of our problem, the cost function for every point assuming the value
—1 just for paths through the point and 0 for all other paths.

References [9] and [10}] are early versions of this paper. In [11]
a generalization of this approach to path planning between moving
objects is described. Reference [12] focuses on the close relation
between the Hough transform and various techniques for robust linear
regression.

II. THE HOUGH TRANSFORM
Straight lines can be described by two parameters, e.g., (m, b) <
y=mz+b,or (p,0) « p= zcosd + ysinf (normal parameters).
The correspondence between a straight line and a point in a parameter

“plane is the basis of the Hough transform [1]-[4]. It is well known

[1] that the set of straight lines that pass through a point T; whose
polar coordinates are (p;, ;) corresponds to a sinusoid in the (p, §)
parameter plane

p=pi(0) £ picos(6; —6),  6€[0,2m). ¢y

To illustrate how a collinear subset of a set of points
{Tiji=1,---,N} can be detected, assume that the respective
sinusoids are drawn in the (p,9) plane. An intersection of (say) M
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Fig. 2. Target and path representation.

sinusoids at (po,6o) means that the line whose normal parameters are
(po. 6o) passes through M points.
Formally, let us define an indicator function

Iip.0) = { 0, otherwise &

and the Hough transform
N
H(p.0) 2> I(p.9). ®
=1

Thus H(p, §) is the number of points through which the line whose
normal parameters are (p, §) passes. The parameters (p, #) for which
H(p.6) is maximum correspond to a line passing through the largest
collinear subset.

In typical implementations (a bounded subset of ) the (p, 6) plane is
represented by an array of N, X Np accumulators, each representing
a cell, or a sampling point, in the (p,8) plane. In the accumulation
stage, for every point T; and for every (discrete) value of 8, p(6)
is evaluated and quantized, and the appropriate accumulator is
incremented by 1. This means that discretization of the indicator
functions is carried out prior to the accumulation of the Hough
transform. In the search stage that follows, the accumulator array
is searched for peaks, the highest corresponding to the largest
subset of collinear points in {7;}. Theoretical and practical design
considerations for discrete computation of the Hough transform are
presented in [4].

III. PROBLEM STATEMENT

Let {I;|i=1,---,N} be a set of N points (“targets”) inside a
circle A of unit radius (“arena”). Let L be the set of straight lines
(“paths”) that traverse the arena A. Around each target T; there exists
a circularly symmetric scalar cost field Ci(r). This means that the
cost of a path [ € L is increased by Ci(r) if the Euclidean distance
from the path to the target T; is 7. The problem is to find the optimal
path(s) {°°T € L whose cost is minimal.

Conventions: The origin of a polar coordinate system is located
at the center of the arena A. Every target T; is characterized by its
polar coordinates (p;.0;),0 < p; < 1, 0 < #; < 2m. A path lis
represented by its normal parameters (pr, 6:),0 < pr < 1,0< 6 <
2m, as shown in Fig. 2.

IV. IS AN ANALYTIC SOLUTION POSSIBLE?

The Euclidean distance between a target whose coordinates are
(pi.0:) and the path ! whose normal parameters are (pi, 81) is

i = |p1 = picos(f: — 1)}, C)]
The contribution of this target to the total cost of the path is

Ci(ri) = Ci(lpt — picos(8; — 61)|)- )

The total cost of the path is

N

Clont) = 3 Cullpe — pi cos(l = 1)) ©)

i=1

The problem is to determine 0 < pr <1 and 0 < §; < 2r that
minimize C(p1, 6:). In most interesting situations the global minimum
is not expected on the boundaries of the domain; hence, it must be
searched for among local minima of C'(pu, 61). This approach can be
feasible only if the number of local minima is not too large.

The necessary conditions for C(p1, 61) to be a local minimum are

aC
— =0 Ta
3o (7a)
ac
—_— = . 7b
59, 0 (70)
They lead to
N
aC;: Or;
L2 = 8
; B oo (82)
Y a0, or
L. =0 8b
; or, 06 0 (80)

The nondifferentiability of #; at 7; = 0 is just a technical difficulty
that can be bypassed by redefining Cii(r;) as a symmetrical function,
i.e., by admitting negative values of r; and avoiding the absolute value
operator. Significant problems arise, however, if some of the cost
functions C; themselves are badly behaved so that (8a) and (8b) do
not admit an analytic solution. In such cases only numerical solution
might be possible.

An important problem that does admit an analytic solution is to fit
a straight line to a set of measurement points such that the sum of the
squared normal distances from the points to the line is minimized:
Ci(r) = r? Vi. It should be noted that this line-fitting criterion differs
from conventional linear regression, where distances are measured in
parallel to a fixed axis, e.g., the y axis in the (x,) plane [8], [12].

V. PARAMETER SPACE APPROACH

The basic idea is to find the optimal path by a Hough-like parameter
space approach, in which an extended Hough transform function
C(p.8) represents for a pair of normal parameters (p, ) the cost
of the respective path.

The main difference between this extended Hough approach and
the conventional Hough transform is that in our path-planning prob-
lem a path is generally influenced by a target even if it does not pass
through it. This means that for every target T: and for every value
of the normal parameter §, C'(p, #) must generally be incremented at
many values of p, differently at each p, according to the cost of the
respective path. Hence, the key to the success of the extended Hough
approach is a simple, systematic accumulation law, to perform the
same role that (1)—(3) play in the conventional Hough transform.

Proposition: The set of straight lines whose distance to a point T;
is r corresponds to the following pair of “dc-biased” sinusoids in the
(p,8) parameter plane:

p=r1+p08) =7+ picos(8i —8) 8 €[0,2m) (9a)
p=—r+p(6)=—r+picos(8; —8) 8 €[0,2m) (%)

or
lo~pi®)=r €027 10

See Figs. 3 and 4.
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Fig. 3. The geometric interpretation of the proposition: typical lines at
distance r from T;.

r+p(6)
p;

-
-r+p2(6)

Fig. 4. The pair of dc-biased sinusoids in the parameter plane.

The paths at distance r from a target 7; must have their cost
increased by Ci(r). Generalizing the indicator function

Li(p,8) = Ci(r) = Ci(lp — p?(8)]) (11

the total cost field is
N
C(p,6) =D ILi(p,6). (12)
=1

Note that for every fixed 6, I;(p, ) is the convolution of C;(|p|)
with an impulse &(p — picos(f; — 6)) [4]. Using an appropriate
(impulsive) cost function, the extended Hough transform is reduced
to the conventional Hough transform.

The extended Hough transform is closely related to a variation
of the Hough transform that was employed in [7] to detect line
segments in noisy images. The extended Hough transform can be
tuned to fit lines to data points according to various optimality criteria
by employing suitable cost functions, which, in particular, need not
necessarily be monotonic, positive, or even common to all data
points. This observation significantly broadens the range of possible
applications of the extended Hough transform with respect to [7].

VI. DISCRETIZATION AND COMPUTATIONAL COMPLEXITY

The normal parameters (p;, 6;) of any path that traverses the arena
A satisfy 0 < py < 1, 0 < 6; < 2m. Thus, the accumulator array
for the extended Hough transform must represent just a rectangular
subset R = {(p,0)|0 < p <1, 0 <6 < 2r} of the (p,#) plane.

Consider the accumulation stage of the algorithm, in which for
each target T; many accumulators need to be incremented. It is easily
observed that for each (discrete) value of 4, a vector that is the
discretization of C;(|p — p?(6)|) has to be added to the respective
column of the accumulator array. This can be done in one step by an
array processor. Furthermore, moving to the next value of 8 requires
just a shift of the values in the vector according to p?(6), e.g., by
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Fig. 5. Example: path design 1. The line passes at a distance of less than 0.1
from as many friends as possible, without getting closer than 0.15 to any foe.

relative indexing. The search mechanism of the conventional Hough
transform can be readily applied in the extended Hough transform.

The computational complexity of the accumulation stage of the
conventional Hough transform is O(N - Ny) where N is the number
of points in the image plane and N, is the number of discrete 6 values.
It is essentially independent of NN, since for each discrete value
of § just one accumulator is usually incremented. In the extended
Hough transform several accumulators are usually incremented at
any discrete 8 value; the exact number is directly proportional to the
“range of influence” of the targets and to N,. Hence, the complexity
of the accumulation stage of the extended Hough transform (on a
purely serial machine) is O(N - No - N,). It is, however, clear that
thanks to the systematic structure of the algorithm, very efficient
parallel implementation is possible. The computational complexity
of the search stage in both the conventional Hough transform and
the extended Hough transform is O(Ny - N,). The storage require-
ment for both algorithms is O(N, - Ny). Design considerations for
the dimensions of the accumulator array and their relation to the
smoothness of the cost functions are discussed in [4].

VII. EXAMPLES

The extended Hough transform has been implemented and executed
on a VAX785 computer. Using a 256 x 256 accumulator array,
execution CPU time was less than 0.2 s in each of the following
examples. Since no attempt has been made to optimize the code, it
is reasonable to assume that execution times could be considerably
reduced.

Path Design I: Fig. 5 shows how the problem that was presented in
the introduction is solved by the algorithm. Here the cost functions
are:

-1, r < 0.1
Cfriend(r) = { (133)
0, r>0.1
20, r < 0.15
Cloo(r) = { (13b)
0, r > 0.15.

The output of the algorithm is a path that passes at distance of less
than 0.1 to as many friends as possible, without getting closer than
0.15 to foes. The optimal path in this case is not unique.

Path Design II: In some circumstances the value contributed by
a target to the cost of a path should reflect the length of the chord
resulting from the intersection of the path with the circular influence
region of the target, as shown in Fig. 6.

The corresponding cost function is of the form

i 2 —p2, < R;
Ci(r) = aud = {" YR =T "= (14)

0, r > Ri.
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Fig. 6. The chord resulting from the intersection of a path with the circular
influence region of a target.

Fig. 7. Example: path design IL The shown path maximizes the total length
of the chords resulting with its intersections with the circular influence regions

of the targets.

Fig. 8. Example: line fitting. Line 1 results from the application of cost
function (15); line 2 corresponds to (16). This example demonstrates that,
by specifying appropriate cost functions, the extended Hough transform can
simulate the method of least squares (line 1) and can efficiently approximate
M-estimators for robust linear regression (line 2). See [12].

Fig. 7 shows a certain arrangement of targets (with R; = 0.15, s =
—1 V %) and the optimal path that was determined by the algorithm.
Line fitting: Consider the problem of fitting a straight line to a set of
measurement points such that the sum of squared (normal) distances
between the line and the points is minimized.
In many cases, a few gross errors might occur, resulting in a
number of outlying measurement points, as shown in Fig. 8.
Assigning the cost function

Cpoint(r) =17 (15)
to all points, the least (perpendicular) squares line was obtained
(marked “1”). This is usually not the line sought by the experimenter,
who would often wish to disregard gross outliers. Modifying the cost
function to

2

Coom(r) = {

r<a
r>a

(16)

(here a = 0.12) yielded line “2,” a pleasing result. While line “1” can
be determined using alternative (even analytic) techniques, finding

Fig. 9. Example: Hough transform. By specifying a narrow cost function,
the suggested algorithm is reduced to the conventional Hough transform (line
1). By using a wider cost function, error tolerances are increased (line 2).

line “2” in an alternative manner is not easy. See [5] and [6]. It can
be shown that, in this application, the extended Hough transform is
equivalent to the well known M-estimation method for robust linear
regression, and that the cost function used in the extended Hough
transform corresponds to the so-called p-function of the M-estimator
[12]. The extended Hough transform is thus a systematic and efficient
algorithm for approximate M-estimation.

Hough Transform: In Fig. 9 it is demonstrated that, by using a
narrow “impulsive” cost function, the extended Hough transform
is teduced to the conventional Hough transform for straight-line
detection. Here

CPOinﬁ(T) = {0’1’ :, § Z - g'gi (17)
results with line “1.”

The largest “collinear” subset of a set of points may depend on
the acceptable tolerance. To demonstrate this, ¢ was increased from
0.01 to 0.05. The optimal path for this case is line “2” in Fig. 9 and
is clearly different from line “17.
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