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A planar shape distorted by a projective viewing transformation
can be recognized under partial occlusion if an invariant descrip-
tion of its boundary is available. Invariant boundary descriptions
should be based solely on the local properties of the boundary
curve, perhaps relying on further information on the viewing trans-
formation. Recent research in this area has provided a theory for
invariant boundary descriptions based on an interplay of differen-
tial, local, and global invariants. Differential invariants require
high-order derivatives. However, the use of global invariances and
point match information on the distorting transformations enables
the derivation of invariant signatures for planar shapes using lower
order derivatives. Trade-offs between the highest order derivatives
required and the quantity of additional information constraining
the distorting viewing transformations are made explicit. Once an
invariant is established, recognition of the equivalence of two ab-
jects requires only partial function matching. Uses of these invari-
ants include the identification of planar surfaces in varying orienta-
tions and resolving the outline of a cluster for planar objects into

individual components. < 1993 Academic Press, Inc.

1. INTRODUCTION

Several computer vision researchers [I-13] have re-
cently turned their attention to the problem of recognizing
planar shapes with smooth or piecewise smooth bound-
aries when these shapes are distorted by a projective-
type viewing transformation. Included in this work are
recognition problems in which planar shapes are only par-
tially visible. The problem can be stated as follows, see
e.g., [4): given a planar curve described by P(7) = [x(1),
y{n)] with an arbitrary parametrization and a distorting
viewing transformation T, : R*— R?described by a vector
of parameters ¢ (a continuous group of transformations),
can we efficiently test whether a curve segment Q(7) is
a portion of T,[P(¢(7))] for some ¥ and some reparametri-
zation #(f)? In the sequel we show that for the common
viewing transformations there exist signature functions
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that can be associated to suitably reparametrized versions
of planar curves, so that if Q(f) is indeed a portion of
a distorted and reparametrized P(¢) then the respective
signature functions will match over the corresponding
intervals.

This paper is organized as follows. Sections 2-5 deal
with viewing transformations of increasing complexity:
Euclidean (rigid) motion, similarity transformations, af-
fine transformations, and projective transformations.
Each section first defines the transformation T,:R* —
R?; then it deals with the issue of finding for a given curve
P(1) an invariant reparametrization P(r) so that if P(s)
and P(7) are related via P(7) = T,[P(+(}))] then P(7) =
T, (P(r + 7). Sometimes linearly scaled reparametriza-
tions are easier to find; these ensure that ¥ = (const)r + 7,
rather than 7 = 7 + 7,.

After reparametrization, signature functions are deter-
mined having the property that at corresponding points
on P(7) and P(¢) we have p(¥) = p(r + 7,). The derivation
of both reparametrizations and signature functions is
based on determining functionals of the curve I'{P(7)} that
transform under T, and reparametrizations as

r{p)} = C(w)F{P(t)}c—(%..

where C(¥) is a constant that may depend on the parame-
ters of the distorting transformation. If C(y) = 1, these
functionals are derivatives of global invariants and their
ratios are global invariants too.

To derive such functionals one needs either very precise
descriptions of the local behavior of the curves P(¢) (en-
abling the extraction of higher derivatives, see, e.g, [4,
5, 12, 13]) or some further global information on T,:
R? — R?, in the form of point matches or line matches or
explicit knowledge of some of the parameters i, see, e.g.,
(1, 2, 6-9]. If an invariant reparametrization is found we
can use it in conjunction with global invariants of the
transformation T, to obtain local signatures based not
on derivatives but rather on locally applied geometric
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invariants. This approach was used in [3] for the recogni-
tion of partially occluded objects distorted by similarity
transformations. Once invariant signature functions p(¢)
have been associated to curves P(z), their recognition
under distorting transformations is reduced to partial
function matching.

2. INVARIANT SIGNATURES FOR
EUCLIDEAN PLANE TRANSFORMATIONS

This section describes straightforward results; how-
ever, it has a pedagogical value: we shall clearly relate
the results obtained by various general methods to well
known facts. Furthermore, we introduce and fix much of
our notation. The transformation T, in this case has three
parameters: a rotation angle  and two components of a
translation vector v. The mapping T, : R* — R?is

T,;u—u=Uu+v,

where U, is a rotation matrix

cosw — sin w]
cosw |

l_f a curve P(r) = [x(¢), y(1)] is transformed into another
P(7) we have

™ .
Sin

P() = T, (Pt®)),

where () is the reparametrization implicit in having two
arbitrarily parametrized descriptions of planar curves. As-
suming that the curve P(r) is smooth we have

d 562 B d x(t(1)) dt
di | $(f) “dt| y((@)) | di

or

i

X | dt

. = - . 1
Since U, is unitary, i.e., UTU, = I, we have
(G + ¥V di = (2 + 3721 (2)

(We assume reparametrizations are orientation preserv-
ing, i.e., df/dt = 0.) This is not surprising: we know that
reparametrizing both curves by the arc length should in-
deed be the first step toward an invariant signature func-

tion. Then using (2) we can reparametrize P(¢) and P()
by

dr= |P@) | dt, di = |P()] di,

to guarantee

dr = d7 orequivalently 7 =171 + 7. (3)

Equation (2) is the differential counterpart of the invari-
ance of distances between points under Euclidean
motions. Indeed, if (x;, y;) and (x,, y,) are two points
(P, and P,) in the plane and (¥, ¥,), (%,, ¥.) are their
images (]-’l, I"z) under any T, then

3P, Py 2 [(x;, — )2 + (v, — )12 = 8(P,, P,)
2%, — 5+ (7 — 31
After reparametrizing P(¢) and P(¢) to P(r) and P(7) we

can write

d | X(T) d | x(7)

~u, L f .
di 5)(";) ® et )’(T) oralln

Therefore we have

.X;(") le) x(n) X(m)

}",(n) )71»71) = U“‘ y(n) ylm) ’
and taking determinants we obtain for all n # m (n,
mz=1),

K"'m[,\;,_)‘; l 7’;] é ,i"")j’(m) _ j(mi)—,(n) = K”""[X,)' l T]. (4)
Also note that we may use UTU, = I to obtain, for all
(m, n),

_%(”'.i”(m) + 5,(11'5,.(m) — xln)x(m) + )’("))’(m)-

Thus, computed relative to the arc length parametrization,
all forms x"x" + y"ym and K*"[x, y | 7] are invariant.
The lowest degree nontrivial one is K'’[x, v|[7] =
2y — 230 petter known as the curvature, k(7), of
P(7). The computation of the curvature requires second
derivatives of the reparametrized P(r), and it is quite
obvious that we cannot obtain an invariant signature using
lower derivatives in this way. There is, however, an alter-
native way. Using (3) we have

X7+ 5) — X(F)
FE +5) - 5

x(t + §5) — x(7)

y(r + 5) — y(1)
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Hence, for example, for a fixed s the quantity 8[P(7 +
s), P(#)] = 8[P(z(¥) + s), P(r(¥))] is a valid invariant
signature function. What we have done here is to measure
the way distances from P(z + s) to P(r) behave as a
function of 7. This is a local application of a global invari-
ant. For every predetermined s € R we obtain an invariant
signature. The parameter, s, can be regarded as a “local-
ity” parameter. The smaller s is the more “local” the
calculation of the invariant signature 8{P(r + s), P(7)]
becomes. We have presented but one way to generate
an invariant signature based on locally measured global
invariants. Others are illustrated in Fig. 1 and are based
on the invariance of angles, areas, and distances under
Euclidean motions.

We have just seen a method for deriving local invariant
signatures based on global invariants measured relative
to the moving anchor point P(r). When there are con-
straints on the transformation T, which can be exploited
there arise further alternatives. Suppose we know that a
certain point P, (not necessarily on the curve P(1)) is
mapped by T, to P,. Then we have

) - ¥, x(t() - x,
R ] I : (5)
y(t) — ¥ y((®) -y
Combining (5) with (1) yields
¥ X-—x X x—-x dt 0
PR S 078 DA I I A (O
Yy ¥y -y y Yy -y 0 1

and by taking determinants

Lo - p - . . dt

[¥(y — ) — (& — )] = [x(y — y) — yx — x.)]ﬁ
(7

Hence we can use (7) to reparametrize the curves by
dr*

d7* =

I

Xy = y) = 3 —x)) | dr
|25 = 7)) — $(& — &) | dF.

Using either this reparametrization or the classical arc
length one we can then define, for example, the distance
from P, to P(v*) (or P(7)) as an invariant signature. The
message is now clear: using one point correspondence
enables us to derive invariant signatures with lower order
derivatives. This “exchange principle™ was introduced
and discussed in [1, 2, 6~10]. Catalogues containing in-
variants derived following this principle can be found in
[6] for the affine case and in [1, 2, 7-9] for the projective
case. In this paper we use invariant reparametrizations
based on this principle, extending and partially reiterating
these catalogues. We also consider the incorporation of
global invariants into these schemes, following ideas put
forward in [3].

If we take inner products between columns in (6), rather
than determinants, we obtain

LG = 2% + (5 = 7)5) = L = 0 + (v = )i %
®)

(see Fig. 2). This relation can also be obtained by differ-
entiating

8[P(), P,] = 8(P(z(7)), P,]. )

FIG. 1.
chords, and tangent lines of the curves.

Local invariants for Euclidean transformations. These include several combinations of lengths, areas, and angles formed by points,
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§(P(1),Py)

P,

FIG. 2. Distance to a feature point P; as a signature. When one
point correspondence is known, we have this simple signature function.

We can use (9) to generate yet another invariant reparame-
trization,

dr = | (x(t) — x)x + (y(®) — y)y | dt
=} | d&(P@), P)]|

di = | (& = &)k + (5 — §)¥ | di L
=} |d[8*®(), P)] | .

If we have two point correspondences P, — P, and
P,— P, we can use the two absolute invariants to generate
a signature function by plotting 8*(P(¢), P,) versus 8*(P(¢),
P,). (Actually, if we need the reparametrization variable
to be nondecreasing we will use MI[8(P(1))] 2
J 1 (dldn)[8(P(t), P)] | dt instead of §*(P(¢), P,). No de-
rivatives will be explicitly required here.) With one point
match we can use the reparametrization M[&X(P(1),
P,)] = 7(¢) and then use as an invariant signature a local
invariant, thereby producing an invariant signature func-
tion with no explicit use of derivatives.

3. INVARIANT SIGNATURES FOR
SIMILARITY TRANSFORMATIONS

This section presents invariant signature functions for
the similarity group of transformations which is parame-
trized by four parameters: an angle of rotation w, two
components of a translation vector v, and a scale variable
a > 0. The mapping T, : R — R? in this case is

Ty:u—i=alUu +v.

A smooth planar curve P(s) is mapped into P(7) by a
reparametrization 1(f) and a T, distortion, i.e.,

P() = T, (P(1(1))).
As before we have
d 4 - d dt
Et.P(t) = aUmEP(I) -Jt:

1=1(f)

(10

Since U, is unitary we conclude that

PP = (%) B

7i (1

and, assuming the reparametrization is orientation pre-
serving, we obtain

(X + 32 di = a3 + 3)"2dr;

i.e., the arc length is scaled by the unknown parameter
a. Reparametrizing both P(7) and P(¢) via

dr* = (& + 3)"dr
N (12)
di* = (& + 7)) di

would yield 7* = al(r* + 7§). Let us look a bit further,
however. We also have

d s drld dry d&°
jﬁP(t) =aU, l:d?z (dt P(I)) + (di) 'CFP(I)],

or

.| = al, , (13)
j i || 4
df’
Putting (13) and (10) together yields
dr\
XX X x <Ei§) 0
oLl Fal,y.. . 5 (14)
y o3 y oy d’t dt
di*  df

Using the notation of (4), Eq. (14) provides the relation

125 51 7l = ol &12 dry
K*[x,ylt]—aK'[x,ylr]E;.. (15)
From (15) and (11) we obtain
K", | 8 K"2x.y | dr,
| P2 IP,: dar’
hence
1.2 12{3 o {7
df=wd,; d;=ﬂ)f_;lj_t]d; (16)
| P} | P

is an invariant, generalized arc length, reparametrization.
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Note that this reparametrization required the computa-
tion of second-order derivatives. We could have used the
reparametrization (12), in which case (15) would have
provided

Kl‘l[i,)-* \ ,7.*] — iKl.l[x, y l T*].

This is usually written in the literature as

kG) = Lk (‘ - S")
o 43

and is the well-known curvature transformation formula
under similarity.

After reparametrizing by 7 and 7 via (16), we have as
before

dr | X d" | x(7)
a5 | Cedr | v

implying
Kn,m[x"‘.')', ( »f] = aZK"""[x, Vv , T].

Hence the ratio of two K”™-forms is always an invariant.
In particular,

is an invariant signature function. Computing this function
requires the evaluation of the third-order derivatives of
P(r) and P(%). This requires, in effect, the computation
of fourth-order derivatives of P(s) and P(7). Derivatives
are very sensitive to noise. The natural question then is:
can we manage to produce signatures relying upon lower
order derivatives only?

For the group of similarity transformations the global/
geometric invariants are ratios of lengths, ratios of areas,
and angles. We can call upon these invariants and use
them locally to generate signature functions of various
types. Once the invariant reparametrization is done, the
two curves P(7) and P(r) are related by

P(7) = T,[P(F + 7).

This shows that we can compute the ratio of lengths of,
or the angle between, the segments defined by (P(r —
sg), P(7)) and (P(7), P(r + s)) for two a priori chosen
sg and sg. Thus

§(P(r), P(r — 35)]

§[P(r),P(7 + sF)]

P(r — sg) é(r

P(r + sr)

P(7)

FIG. 3. Local invariants for similarity transformations. For a given
sg and sg, the angle ¢(1) and the ratio of lengths 8[P(r), P(r+ — sp)])/
8[P(r), P(+ + sg)] are invariant.

S[P(7), P(t + sp)]
S[P(r), P(r + sp)]°

L(P(T — sz)P(T)P(T + 55))

as functions of 7 are invariant signature function candi-
dates, as illustrated in Fig. 3.

Here again we can produce several signatures based
on the local exploitation of global invariants of the trans-
formation T,. About the moving point P(r), we can mea-
sure either ratios of distances or the angies determined
by two points P(¢t — sz) and P(r + s;) whose distance
to P(r) along the curve is determined by the “locality”
parameters sz and sz. These signature functions do not
require the evaluation of derivatives higher than second
order.

We could have proceeded in another way, too: realizing
that angles and hence turns of the curve are invariant
under the similarity transformation, we could have used
the scaled reparametrization 7* provided by (12) and for
each point P(r*) determined the (scaled) arc length s, and
sp for which the tangent at P(t* + s;) turned forward a
predetermined angie ¢, and the tangent at P(r* — sg)
turned backward an angle ¢g. Clearly their ratio is an
invariant, i.e.,

sp(dg)
SB(‘t‘B)

_ 5:(6p)
* S‘B(d)B)

T=T

L}

r=7(r*)

and the ratio of their respective distances from P(r*) is
also tnvariant:

8[P(r*), P(r* + sp)]  8[P(+*), P(F* + §p)]
S[P(* — s5p), P(7%)]  8[P(F* — 5p), P(7*))

(see Fig. 4). Hence, using only first-order derivatives we
could produce a signature as a function of scaled arc
length 7*.

Suppose now that we have some additional global infor-
mation on the transformation T,,. A point match constrains
the parameters since we have T,[P,] = P, i.e.,

X X
| =au,
N Y1

+ v.
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¢s P(r")
PO —es) P(r* + s£)

§[P(7°),P(r" + sr})]
§[P(+"), P(r* — sp)]

FIG. 4. Scaled invariants for similarity transformations. Given
angles ¢y and ¢, the arc lengths sg and s are determined, and then the
ratios sg/sg and 8{P(r*), P(v* + sp)/8[P(7*), P(+* ~ sp)] are invariant.

This, in effect, allows us to set v = 0. If we {edeﬁne
coordinates by translation so that P, = 0 and P, = 0,
then together with (10) we have

=t

=
|

<

—au |t U
Yy y

e
e
<o

yielding
K%, 5 | 1] = K" [x,y | t]Z—;~

and
P> =a®|PJ. (17

Thus we get an invariant reparametrization via

_ K()'I[X,y l 1]
|P?

K™% ¥ | 1]

“ L3

dt; dr = dr,
using only first-order derivatives. A suitable signature
function in this case is

K2, y|r] _ K"lx, y|7)
K% [x,y| 7] | P(7) |2

Exploiting (17) further, we can produce invariant signa-
ture functions (with respect to the reparametrization by
7) using ratios of the type

| P(7) | _ ~] P() |
| P(r + 5) ] |P(F +5)|

Hence the information in one point match readily provides
an invariant signature with the use of only the first deriva-
tives of P(z).

Two point correspondences completely determine all
the parameters of the transformation, for we have four

independent equations relating the four unknowns. The
scale and rotation are obtained by looking at the segments
PP, and PP, and determining their length ratios and
relative rotation; then the displacement v is easily ob-
tained.

4. INVARIANT SIGNATURES FOR CURVES DISTORTED
BY AFFINE TRANSFORMATIONS

This section deals with invariant signature functions
associated with planar curves distorted by a general affine
transformation of the form

T,:u—i=Au+v,

where A is a general invertible 2 x 2 matrix. The affine
group of transformations has six parameters. Due to the
larger number of parameters, several special properties
that were exploited in the context of Euclidean and simi-
larity transformations cannot be called upon any more.
The curve P(r) here is mapped into P(7) via

P() = T,(P(«(D))).
By repeated application of the chain rule we have

drY
Vi (E) 0
=Al. ) . (18)
oyl du di

di*  di

o
=

e
-

Taking determinants we obtain

2[5 |3 = 12 dry
K28 y | 1] = (det A)K'?[x, y | 1] K

hence if we reparametrize both P(t) and P(7) using * and
7* defined by

dr* =
di*

| K" [x, y | t]|"3dt
| K'2[%, ¥ | £]]'3di,

we have
di* = |det A["dr* or 7* = |detA|"*r* + 7%.

With the curves thus reparametrized we obtain

i_(m)(,‘".*)

j‘,(m](,;.*)

x(m)(,r*)
=A | det A | =73,
ylm](7*)
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This implies
K™%, ¥ | 7%] = det A |det A | ~"=mB K x y | 7*];
hence

IK"'m[f,)-’ , ;)'.*] |3r’[3—(n+m)] — [detA]

fK"""[x, y I T*] |3:’[3—|n+m)]

for any n + m # 3. Therefore ratios of |K"-"[>B-tn+ml
for different values of m; and n; will be independent of
(det A), i.e., absolute invariants. In particular we have

| K%, 7 | 741

_ IKZ'A[X, y l T*] l—/l
[KZJ[X-, )'; l ,.;.*] l~3r'2

(Kl.,?[xy y I T*] l~3/2'

(19)

This shows how one obtains an invariant signature ver-
sus a scaled “arc length” parameter using up to fourth
derivatives with respect to v* and 7*, or fifth derivatives
with respect to ¢ and 7. If we insist on having nonscaled
arc length reparametrizations we could use the absolute
invariant functions (19) to further reparametrize the
curves via

L (R e

dr = d‘T*( [ K x, v | 75 2 dr
.| a (K5 7] ) "

dr = d7* ( (K35, y | 7] 2 dr*,

which implies that 7 will be simply a monotonized version
of the invariant function that we have found. Now, how-
ever, we must find another independent absolute invari-
ant, which should be easy since with the 7, 7 reparametri-
zation,

X" ()

y(m)(T)

X’(m)(f')

)

for all m. We could use, say

K'2[%, y | 7] _ K'[x,y | 7]
KP[E 5|7 K¥xy]7]

as a candidate for the invariant signature; see [4, 5].

Suppose that, here too, we can obtain some further
information on the transformation T,, in the form of point
matches (provided, say, via the localization of some fea-
tures in the transformed image). Having P, — f’,, we can
write

X, X
1=A + v.
Yy A4
By a translation of coordinates we can set P, = 0 and

also P, = 0, guaranteeing v = 0. This provides us with

v X PR ) L
—:-=A. drf .
y y y 0 1

Taking determinants yields

KV, 7 | 7] = @et AVKO' e,y | 15,
and together with (18) we obtain
K]'z[f,f ' ;] _ K]‘Z[x,y l I] (éf
KO£ 318 KM,y | 1) \di) "
Therefore, the reparametrization
g = K2ty (07 KA,
Kxylal & 7T KRy 0
(20)
ensures that
dr = dr.

With this parametrization we obtain

x""’('r)

y(m)(,r)

i(m)(,;)

y(m)(i.)

[}

showing that any ratio of two determinants of the form
K[+, - | -] will be an absolute invariant and, hence, a
valid signature function. Clearly the lowest derivatives
should be used, yielding

—

_K"x y|7]
K*[x, y | 7]

K%,y |7

y |
KZ,B[x,, y' ' 7

—

as an invariant signature obtainable with up to third-order
derivatives of P(r) and P(7) and hence fourth-order deriv-
atives of P(#) and P(7).

Suppose now that we have two point matches, i.e.,

Tw[PI] = Pls T,[P,] = i’z-
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In this case we may write
. . 2 - dt
det[(P ~ B) P]=(detA)det[(P - P) P]—
L . . dt
det[(P — P,) P]= (det A)det[(P - P,) P]zi—tz.

This shows that the ratios obey

det[(P -~ P,) P] det[(P—P,) P]

det[(P — P,) P] det((P - P, P] @D
i.e., we have obtained an absolute invariant. We could,
here too, first use the reparametrization provided by (20),
and then (21) would provide the complete invariant sig-
nature function through the use of derivatives no higher
than the second order. We could also have proceeded a
different way. Writing

i] - .%2 X — &
=A

¥ ¥ Y= 32

and combining this with (21}, we have

(} — %) & o —xy x||1 O
- ; | = . dr |,
Gy =3) ¥ Gie—y) ¥y 0 =
yielding
dt

det[(P, — P,) P]=det[(P, — P,) P](det AT

This could be used in exercises of the type discussed
above to provide several different signature functions with
similar complexity and functionality; see [6].

If we had three point correspondences we could deter-
mine the complete transformation (three points yield six
equations for six parameters) and A =[P, - P,,
P, - P,J[P, — P,,P, — P,]'. By the way, the result that
for P,, P,, P;, P, P,, P;,

[(Pl - Ps) (pz - P3)] = A[(P, - Py (P, — Py)],
yields the well-known fact that areas are uniformly scaled
by det A. Therefore ratios of areas of corresponding
shapes are affine invariant, a result that we shall exploit
to obtain local (nondifferential) signature functions. We

have seen that in the case of Euclidean and similarity
transformations, after reparametrization we could derive

signature functions based on locally applied global or geo-
metric invariants of the transformation T,. If we assume
that an invariant reparametrization was aiready per-
formed on the curves we can choose four values for
T! T Tp, Tr,» Tr,, and calculate at each point P(7)
(and P(7)), the ratio of areas,

Areay(Py , P(7), Pr)
Area,(Py, P(7), Pr))’

P(T - TBI) = PB]’ P(T + TF)) = PF;’

where {
P(T - TBZ) = PBE, P(T + TF:) = PF:'

This quantity, by the invariance of area ratios, is an abso-
lute invariant signature as a function of the reparametriza-
tion “arc length” r.

Another idea providing an absolute invariant based on
the global area-ratio invariance is the following: In the
neighborhood of a point P(7) of the curve, consider the
representation of the curve as a graph y = f(x) in a coordi-
nate system that defines the point P(7) as the origin and
the x-axis as the tangent to the curve at P(7) (see Fig. ).
We assume that the curve is at least twice differentiable
and thus has a Maclaurin expansion y = x* + cx* +
cx* + .. ., where the coefficient of x* has been normal-
ized to unity. Then in some neighborhood of the origin the
curve is convex and lies above the x-axis. The following is
concerned only with such neighborhoods.

A matrix A representing the affine transformation be-
tween two curves of the form described above is of the

b
form [8 d]’ and points from the xy-plane are mapped

into points on the xj-plane by the rule

a bllx
0 4|}y

-

N

i

or P = AP for short, where ¢ > 0and d > 0. (If a < 0
the transformation would be orientation-reversing, and if
d < 0 one curve would lie below the x-axis.) Applying A
to the function y = f(x) yields another function g: R —
Rgivenby y = g(x), where y has the Maclaurin expansion

=

a — 2b
%+ ——————d(‘3“a4 )¢

+ d(c4a2 - 5c2ab + sz))_(4 N

5):

t2

2

a

The coefficients of this Maclaurin expansion can be ob-
tained by direct computation, such as through the use of
the symbolic manipulation program MACSYMA [14].
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y yg) =2+ 3z’ + gzt + - -
P,
A*(Po)
A~ (Po)
P(7) /(To,o) z

FIG. 5.

Canonical representation for curves subjected to affine transformations. A distinguished point P(7) and its corresponding tangent line

are chosen to be the origin and the x-axis, respectively. Any other point P, on the curve determines the length T, and the areas A *(P,) and

AT (Py).

Let P, = (x,, ¥o) be a point on that convex part of the
graph y = f(x). Then the tangent line to the graph through
P, intersects the x-axis in some point (7, 0), where T is
between zero and x; (x, can be negative). Define A" (P,)
to be the area above the graph of y = f(x) and below the
line segment connecting the origin and P,, and define
A~ (P,) to be the area below the graph of y = f(x) and
above the line segments connecting the point (7, 0) with
the origin and with P, (see Fig. 5). If Py = (%,, ¥,) is a
point on the convex part of the graph of ¥ = g(%), then
the quantities T, A *(P,), and A~ (P,) are defined analo-
gously.

Now we can choose two numbers &, and &, so that the
points P, = P(r + 7¢) and Py = P(r — 75) will be defined
by having the area ratios A~ (P;)/A " (Pg) and A " (Py)/
A~ (Py) first equal to k. and k; (see Fig. 6). Since area

ratios are invariant the points 7 and 75 will be invariant
with respect to the affine transformation. Therefore we
can use the points (T, 0) and (75, 0) to define the invariant
ratio Tp/(— Tp) as the signature function. Alternatively
we can work with 7./73 as a function of 7 since clearly
this ratio must be invariant too. There is a case in which
this procedure breaks down: when the area ratios are
constant. This behavior should be readily detectable, and
in this case both curves are affine transformations of a
parabola. More formally, we have this result:

THeoREM 1. Let the functions y = flx)and y = g(x),
the affine transformation A, and the quantities 7, and 7,
be as above. Let k; and kg be an positive real numbers.
Let P, = (x,, y,) be the point on the graph of y = f(x)
nearest the origin such that both x; > 0 and A *(P,)/

(Tav.O)

P(7) (Tr,0)

FIG. 6. Local invariant for affine transformations. One point correspondence and two positive numbers kg and kf are given. The arc lengths
g and 7, are chosen so that they are as small as possible with kg = A *(B)/A (B) and kr = A*(F)/A~(F). Then the ratio T;/Tg can be used as

an invariant signature function.
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A (P,)) = kg, if such a point exists. Then P, =
(%, ) = A(x,, ¥,) = (ax; + by, dy,) is the point of the
graph of § = g(x) nearest the origin such that both x, > 0
and A* (P,)JA~(P,) = k. Similarly, define P, = (,, §,) to
be the point on the graph of y = f(x) nearest the origin
such that both x, < 0 and A* (P,)/A ~(P,) = kg, if such
a point exists. Then P, = (%,, §,) = A(x,, 1) = (ax, +
by,, dy,) is the point of the graph of § = g(x) nearest the
origin such that both %, < 0 and A+ (Pa)/A (Pw) = kg.
Furthermore, we have T/T, = T,/T..

Proof. The proof follows readily from the properties
of affine transformations. Such a transformation scales
areas by a factor equal to the determinant of the transfor-
mation matrix, which in this case is

dtab d
eod—a.

Also, tangent lines of the first curve are mapped into
tangent lines of the transformed curve at corresponding
points. A point (x,, 0) is mapped to (ax,. 0), so we have
T, = aT, and T, = aT,, whence T,/T, = T,/T,. We also
have A*(P,) = adA*(P)) and A~ (Pz)_—— adA™(Py), s
AY(P)A(P) = A*(P)/A(P) and A" (P,)/A"(P,) =
AT(P)/AT(P,). =

5. INVARIANT SIGNATURES FOR CURVES DISTORTED
BY PROJECTIVE TRANSFORMATIONS

The projective transformation is considerably more
problematic than the affine since it involves a nonlinear
scaling. However, even for projective transformations,
the construction of invariant signatures can still proceed
using matrix and determinant methods [1, 2, 7-10], similar
in spirit to the methods used for affine transformations
(4, 11]. In a projective transformation, a point u € R’ is
mapped according to

T,;u—u ——I—(Au + v),

z(u)

where z(u) = w - u + 1 for some w € R2. By introducing
the matrix

we can write this in the form

T,w) | ] u

1 z(w)

Work on affine invariants for the projective map, by
Halphen, Lane, and Wilczynski, is available in the mathe-
matics literature, see, e.g., [15-17]. It was through a nice
paper of Weiss [12] that the computer vision community
became acquainted with this work. He proposed to use
a pair of absolute invariants for planar curve recognition,
but this would require very high order derivatives. In [4],
Bruckstein and Netravali proposed the use of two relative
invariants in deriving a curvature-like signature function,
fitting the general philosophy described in this paper. This
required up to seventh-order derivatives, a very high num-
ber indeed, but lower than the number needed when only
absolute invariants are used. In [1, 2, 6-10], the authors
proposed the use of point matches to trade off between
the number of derivatives and additional match informa-
tion that might be available. In the spirit of the original
work of Halphen [13, 17], Weiss then proposed the use
of local graph representations of the curve to obtain some
further invariants through the expansion coefficients. In
this section we survey the approaches proposed above,
rederive some of the results from (1, 2, 4-10], and present
several new results. The invariant derived via a Wilczyn-
ski type approach using information from one point match
is new, as is the proposal of using geometric (global)
invariants locally to obtain signatures using derivatives
not higher than that required for invariant or scaled re-
parametrizations. This approach generalizes the one pre-
sented in [3] for the case of similarity transformations.

As before, let us express the derivatives of P(7) in terms
of the derivatives of P(z) and those of (7). We will let
the symbol * denote any quantity whose precise value is
not important for our purposes. We have

r 2 B
dry
(E) 0 0

¥ i X x x
y oy y|l=B|Y ¥y vy dt L
* — 0} z
0 0 1 0 0 1 df
* %]

— -t

providing the identity

3 3
K> %, ¥ | 7] = (det B) e) <dt) K>'x,y | t].

ai (22)

Unfortunately the (1/z)* factor makes this relation inade-
quate for reparametrization. To obtain invariants we re-
quire methods of greater sophistication than those used
in the affine case. We recall the approach of Wilczynski
(developed in 1905) for deriving projective differential
invariants associated to planar curves [12, 13, 15, 16]. To
any smooth R3-valued function, X(¢), we can associate a
third-order differential equation with coefficients p,(¢),
p2(1), pi(t) written as
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1
e e pi(1)
[ % x o] 00 -
ps(t)

(=T = R ]

Except in degenerate cases, the functions p,, p,, and p;
are uniquely determined by X(1). Let us denote the vector,
[1 p, p, p,]7, soobtained, as £(7). We will be specifi-
cally interested in the case where X(7) is a curve represen-
tation, X(t) = [x(t) y(z) 117, where P(¢) = [x(t) y(1)]
is a curve. In this case we obviously have p;(1) =

Moreover, using Cramer’s rule one can easily deduce that

_ KYxyld
pl(t) - Kl.Z[x, y ‘ t]
and
O K¥y |1
pa1) = K x,y |11

We consider the influence of transformations of X(7)
on £.(1). Multiplication of X by an invertible constant
matrix B does not change £(1). since (BX)*® = B(X"%).
However, scaling X(¢) by a scalar function does affect
the coefficients. Let wu(s) be a smooth function. One
readily sees that
w@X) wWX))=[X X X X]M,@1),

[(wX) (uX)

where we have introduced the notation,

w 0 0 0
3w 00
M. (1) = p 20 o n O

v
.';.

K owopop
Since ['X' X X X] has, generically, a one-dimensional
null-space we must have

M, (1) £x(1) = u(r) &(1).

Let £x(1) = [1 p, p, ps)". It can easily be seen that

M, (1) = M, (1) and, hence,

)+ 2]
24 (2]
oo [2) G @ (2]

(23)

po=afl
5

Note that in the case of the projective transformation of
a curve representation we automatically obtain p, = 0,
since 1/u(t) = z(1).

We ask the following question: Is there a form for
&x = 1 Py p; p3]" so that if we use the effects of
scaling to bring £, into that particular form the scaling
will be determined uniquely? Suppose we impose the con-
dition

(£x)-(t) = py(1) =0
to constrain . From (23) we then have

Bt
30

This implies that u is uniquely determined modulo a
multiplicative constant. Indeed, if £x = [1 0 P, P,I"
and there was some other scaling factor, ru say, such
that £ x also has this form, then from (24) we obtain
r = 0. It follows that the P,(¢) and P,(¢) so obtained are
invariant under scalings of X. For curve representations
we have

= p (). (24)

[.l,(t) = const (K“:[_x’ y ) t])* HS.

The invariants P,(t) and P,(r) can easily be computed
from (23).

But what happens under a change of variables? If we
consider X(7) as the canonically scaled representation
obeymg X X X Xx] [t 0 P, PJ = 0, then
?((t(t)) X(7) will not be canonical with respect to the
¢ parametrization. Indeed,

[X % % X]=[X X X X]T(, 1),

where we have introduced the notation

-
dr\ i
NN
di d*t (dt)2

T, ) = 3dt'dt'2 di 00
ddd
df? it di

0 0 0 1

Let A(F) be a scale factor such that £(F) = [1 0 P,(7)

Py(H)]". This requires
X X X X]T¢, DMMHEx(D =0,

where the derivatives in M, are understood to be taken
with respect to 7. From this we conclude that

&(1) = COT(, DM(D) £k (D) (25)
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for some scalar factor C(z). The relationship between C(¢),
A(?), and the function #(7) is easily determined from (25).
Taking advantage of the lower triangularity of T(¢, 7) and
M,, we have

= 0 .

U o df aMH 0

0| Jdtdn (d[)z NOERNGRIN
i‘ 2

di

Now we obtain C(z2) = (A '(Fe)NNdtidi)™> and (d*t/
diYA(F) + (dt/df)x(f) = 0, and conclude that

dr A(7) = const.

7 (26)

Substituting this into (25), we can without loss of general-
ity set

A = i

and after some algebra we obtain

1 o o ol[! !

0 A 0 offo 0
LIV U GRS S U TR I N IV S B IV %

AN A NN A A P,

Noting that d(-)/dt = Ad(-)/df and that

d TS
AE(ZAA — A) = 2A°A

d 2 _ 2y
)\di)\ = 2A°A,

we obtain the identity

1d = - lﬁi_ 2 D 3
2dtP2+P3_( 2diP2+P3>'\'
Hence we have produced a function, 6, 2 _ Ydldp

P, + P, that transforms according to

e [~ df
3®3= 3@33_1‘.

For curve representations this yields an invariant repa-
rametrization through the use of up to fifth-order deriva-

tives of P(z), since P, and P, are invariant under (nonrepa-
rametrized) projective transformations [4, 12].

By exploiting one point match we can set the value of
v in the definition of T, to zero. Indeed, if we know
that T,(P)) = P,, then by an appropriate translation of
coordinates we can effectively set P, = 0 and P, = 0,
implying that v = 0. With v = 0 we obtain

dt
Al e L
y F4

TN
=<

»

<t
‘e
~

* ]

which provides us with the valuable relation

K'®%, y | 1] = (det A)%K”’[x,y | t]%. 27)

Hence using one point correspondence we can effectively
have (27) in addition to (22). Note that with v = 0 we
have det B = det A. This enables us to write

{K>'[5,5 | OF° _ (det A)? {K>'[x, y | 1) dt
K957 11 (detA)  KO(x,y|f di’

(28)

and therefore we have a scaled reparametrization, intro-
duced and discussed in detail in [8, 9], via

B {K2.l[x,y l t]}2/3

_ {K?.][f’ }5 l i]}.‘!«':‘
= Ry 1]

dt, dr = KI5, 3 [ 7] di,
(29)
ensuring that
d7 = (det A) "3dr.

This is achieved using one point correspondence and up
to second-order derivatives of the curve description. We
need an invariant signature too, and as we cannot use
K'" and K?' any more, we shall try a Wilczynski type
approach.

The vector valued function X'(¢) 4 [x(1), y(t)]" obeys
a second-order differential equation

1
.. . 0
X' X' Xi{~t= ol
P2

where, generically, p, and p, are uniquely determined.
Let £&.(t) = [1 p, p,]". (Hereinafter primed quantities
(M’', X', ¢') correspond to the unprimed quantities used
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earlier; the primed quantities will be of one smalier dimen-
sion.) Scaling X’ to uX’ has the effect

(uX') @X) @X)]=[X X XIM©®,

where
w 0 0
M)=]20 n O
Koo

If we choose w so that £,x.(z) = [1 0 P,(¢)], then as
before, we find that u is uniquely determined modulo a
multiplicative constant, and hence P-(¢) is invariant under
scalings. Solving for P,(t) we obtain

_LKM iy ) 3 KMy )
P?_(’) - 2 Kl.()[x’ y l [] + 2 Kl.o['x' y ’ t]
4\K"x, y [ 1])°

Let us see what happens under reparametrization. As-
sume that X'(¢) is a canonically scaled representation
obeying [X' X’ X'][1 0 P,) = 0. Then

X' X X1=[X X XI]T7,

where
B d N N
N\
(d—f) 0 0
T'(t,1) = d*t dt 0
i di
| 0 0 l_j
Let A(f) be a scale factor such that &x(f) =

(1 0 Py#)]". This implies that
X' X' X]T( HM(DEx(D =0,

where the derivatives in M, are taken with respect to 7.
As before, it follows that

&(1) = COT'(t, DM (D &, 5. (7). (30)

AMD 0 1
2205 A@O||o]

In particular we have

dr}
! C(@t) (d—t) |
= C(
0 d* dt

dr di

which yields C(¢) = N (dt/di) =2 and (d*t/din + 2(dt/
dhx = 0 and hence,

dart ,
— A- = const.
77 cons

Substituting this into (30), and, without loss of generality,
setting the constant to one, we have

1 1o o1
0l=| 0 A2 o]foO
P, MA AN A P,

Thus we obtain the relation
PZZ)\SX+A4P2.

Clearly we need A = 0 to obtain an invariant. But we
already know that by reparametrizing using (29) we can
have 7 x 7 and hence A = const. Therefore, after a scaled
reparametrization, we shall have

_(d5Y ;
Py = <d7’> Pa.

and hence
VP, dr = VP, dr.

This relation can be used to obtain a nonscaled reparame-
trization, with the use of third-order derivatives with
respect to 7 and 7, and hence fourth-order derivatives
with respect to r and 1.

Suppose now that we have one additional pair of match-
ing points, i.e., that besides (0, 0) — (0, 0), we have that
T,(P,) = P,. We then have

=1
9

><

X

el
I
Il
=
<
19

where z, = z(P,), and we can write

- _
1{dt
. z(z—)‘”’
X X X X X X
. 1
y ¥y »|=Bly ¥y » *EO
11 01 1 i
0 0o —
22
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Taking determinants and recalling that det B = det A we
obtain

det[P (P — P,)] = (det A)ydet [P (P — Pp] & L
7z dif
Furthermore, we have
o T
- = A 1 :
y ¥ y »llg L
8]
yielding
det[P P,] = (det A)det [P Pz]% Zl 31)

This provides

det[P (P —Py] det[P (P—P)] | dr
det[P P,) det[P P,] z df

But from (27) and (22) we also have

_ 1KYyl (g_r)ﬁ
Tz KO,y [0 \di) - (32)

det[P P] _ K[, 7|7
det[p P} K&yl

Dividing (32) by (31) we obtain

_, [det(P_P]  det[P P,
©=Vdet[P ] det[P (P By)]

det[P P]  det[P Py (d,> . di
“Ydet[P P] det[P (P —Py]{\di)  ¥di

Hence reparametrization of the curves via

dr = Qdt, d7 = Qdi

will ensure that
dr = dr.

This invariant parametrization has also appeared in [10]
and has already been used for object recognition and sym-
metry detection, along with several projective invariants
of a similar type [7-9]. Therefore with two point corre-
spondences and using up to second-order derivatives we
can obtain a reparametrization that is absolutely invariant,

or exploiting only one point correspondence we may ob-
tain a linearly scaled reparametrization. Note that we
could use the result (28) for the reparametrized curves
P(7) and P(7) to obtain a uniformly scaled signature versus
unscaled generalized arc length since then

{Kz'][.f,)-«' l ;]}2/3
K'[%,y | 1]

_ ,,,3{K2"[x,y | []}2/3‘
(det A) mK"“[x, 11 ,

and this is quite useful for recognition under partial occlu-
sions. (One could perform a test for the constancy of the
ratio of two functions over sliding intervals!)

Once an invariant reparametrization is found we can
use locally applied global invariants for the generation of
local signatures. At each point of P(¢) one can consider
the points {P(r + s,), P(r + 5,), ..., P(r + s.)} and
compute some global invariant based on these points such
as the cross ratios defined by the intersections of a tangent
line with other tangents.

Suppose we have reparametrized the curve using a re-
parametrization including 7 = (const)r + 7,. Then we
cannot compute invariants using points with fixed separa-
tions as we did previously. We can, however, proceed in
the following way: consider the point P(r) and a corre-
sponding one P(7). Starting at P(r) consider the points
Pz + s5), P(r + 25), ..., P(r + ks)} and compute a
global invariant G(s) based on these points. As s varies
(increasing from zero) the invariant G(s) will change. Now
choose s as small as possible so that G(s) attains a prede-
termined value GF. If we do the same for P(7) we shall
attain G¥ at a different value of the argument 5, namely
at § = (const)s, where the constant is the scale factor in
the reparametrization. Now if a different invariant can be
computed based on the points {P(r + s), P(t + 2s), . . .,
P(t + ks)}, we will have a way of associating an invariant
signature to every point on a curve reparametrized with
a scaled reparametrization (see Fig. 7).

Another idea providing a local absolute invariant is
based on the global invariance of certain cross ratios and

FIG. 7. Invariants based on cross ratios for projective transforma-
tions. Suppose the arc length s is chosen so that the cross ratio
G(s) = |A, B, P(r), C] reaches a given value G'. Then a second cross
ratio |B, P(r), C, D) can be used as a signature function.
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requires three point correspondences and just one deriva-
tive. As in the affine case we will consider the representa-
tion of the curve as a graph y = f(x) in a coordinate
system that defines one of the points for which the point
correspondence is known, say P,, as the origin and the
x-axis as the tangent line at P,.

A matrix B representing the projective transformation
between two curves of the form described above is of the
form

o
o O

xR O Q8
= N

and points from the xy-plane are mapped into points on
the fy-plane by the rule

>

b2t

1
Tex+ hy + 1

a
0
g

=N
—_—a O
tet

or P = T,(P) for short, where a > 0 and ¢ > 0. (Again,
if a < 0 the transformation would be orientation-reversing,
and if ¢ < 0 one curve would lie below the x-axis.)
Applying T, to the function y = f(x) yields another func-
tion g: R — Rgiven by § = g(x).

Now P,, the corresponding point in the transformed
graph ¥ = g(%), is the origin of the xy-plane and the -
axis is the tangent line at P,. As in the previous section
we assume that y = f(x) is at least twice differentiable
with f”(0) > 0, and hence is convex and lies above the
x-axis in some neighborhood of the origin.

P,

P,

Let the other points involved in the other known point
correspondences between the two curves be P,, P,, P;,
and P,, where these points are not necessarily on the
curves. Now consider some other point P on the convex

part of the graph of y = f(x). Let EO be the tangent line
to the graph at P,. Define Q{, Qj, and Qj to be the points
of intersection of I:, with the x-axis, line (I”’,—P; and line
FTP:, respectively. Next, let P, be the intersection of line
F@% with the x-axis (see Fig. 8).

Now define x(P,) to be the cross ratio of the four collin-
ear points P,, Q}, Qi, and Q} so that x(P,) 4 (e,

Q. Q3 Q)1 = (IR, — Qill Q5 — Q[P — Qf
Q3 — Qill). If Py is a point on the convex part of the

g(¥) near the origin, then the line L, and
the points P,, Q). Q;.Q; and the quantity x(P,) are all
defined analogously.

Now we can choose real numbers &, and A5z and define
the points P = P(7 + 1) and Py = P(r — 75) by requiring
the cross ratios x(Pg) and x(Pp) to equal k- and kg, respec-
tively, with 7 > 0 and 73 > 0 as small as possible (see
Fig. 9). Since cross ratios are invariant, the quantities 7,
and 1 will be invariant with respect to the projective
transformation. Therefore we can use the points P( +
1) and P(r — 75) to define another cross ratio as the
signature function. One example out of many possible is
[QL, P, QL, P,]. We now have this result:

graph of y =

THEOREM 2. Let the functions y = f(x) and y = g(x),
the projective transformation B, the points P,, P,, P;, P,
P,, P;, and the quantity x(P_,) be as above. Let k; and
kg be any real numbers. Let P = (xg, yp) be the point
on the graph of y = f(x) nearest the origin such that both
xg > 0 and x(Py) = kg, if such a point exists. Then

FIG. 8. Canonical representation for curves subjected to projective transformations. A distinguished point P(7) = P, and its corresponding
tangent line are chosen to be the origin and the x-axis, respectively. Two more distinguished points P, and P; (not necessarily on the curve)
enable the determination of the cross ratio x(Py) 2P, Q. Q. Q{] for any other point P, on the curve.
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Py

Pg

Pr

Q

FIG. 9.

Invariant signature for projective transformations. Three point correspondences and two real numbers g and kg are given-The arc

lengths 75 and 7¢ are chosen so that they are as small as possible with k; = [Py, Q}. Q3. Q)1 and & = [Pr, QF. QF. QL] Then the cross ratio

[Q}. P, Q}, P,] can be used as an invariant signature function.

P, = (X, y5) is the point of the graph of § = g(¥) nearest
the origin such that both &, > 0 and x(Py) = k. Similarly,
define P, = (&3, ¥5) to be the point on the graph of
y = f(x) nearest the origin such that both xz; < 0 and
x(Pg) = kg, if such a point exists. Then Py = (&g, jg) is
the point of the graph of § = g(¥) nearest the origin such
that both &z < 0 and x(Pz) = kgz. Furthermore, the cross
ratios [Q), P;, Q. P,) and [Q}, P,, Q}, P,] are equal.

Proof. The proof follows readily from the properties
of projective transformations. The cross ratio of four col-
linear points is unchanged by such a transformation. Also,
a tangent line of the first curve is mapped into the tangent
line of the transformed curve at corresponding points.
Therefore the points Pg, Qk, Q%, Qf, P, are indeed
mapped to Py, QF, Q}, QF, P;, and then x(Py) = x(Pp).
The same results apply with the points P, and P,. Finally,
as the points QL P,,QL, P, are mapped into
QL, P,, Q.. P, the cross ratios of those quartets of collin-
ear points are equal to each other. =

6. CONCLUSIONS

This work is based on results reported in [3, 4] and on
some recent ideas put forward in [1, 7, 8, 13]. In [4]
the point of view stressed is that one can use classical
differential invariants, whose use in computer vision was

first proposed by Weiss [12], to obtain invariant signature
functions (generalized curvature versus arc length repre-
sentations) for curve and shape recognition under projec-
tive viewing distortions and partial occlusions. The disad-
vantage of using only differential invariants is that very
high order derivatives of (arbitrary) curve representations
are required.

The ideas of [3] for the recognition of planar curves
distorted by simpler, similarity transformations showed
that one can use various “tricks” to overcome the need
for high derivatives, tricks that use global geometric prop-
erties of the transformation employed locally on curves
for which an invariant reparametrization was first found.
The same motivation of reducing the requirement for
higher derivatives led [1, 7, 8] to suggest the use of point
matches as additional sources of information in the recog-
nition tasks. Point matches effectively reduce the parame-
ter space of projective transformations by imposing vari-
ous relationships among those parameters. This is a nice
idea indeed, since we often can obtain such additional
information through identification of various feature
points. Weiss, in [13], adopted the point of view of Hal-
phen {17] that one should use the y = f(x) representation
of curves to obtain invariants. This is an alternative to
the Wilczynski approach [15, 16, 18]. This paper shows,
in a unified way, how to integrate such ideas in order
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to carry out the program proposed in [4] of determining
invariant reparametrizations and associated signature
functions using lowest possible derivatives of curve repre-
sentations. Our paper fills several gaps left by the above-
mentioned work, and, more importantly, proposes the
use of local (nonsemidifferential) invariant signatures
based on employing locally used global invariants of the
viewing transformation. This approach generalizes the
“tricks” used in {3] for affine and projective maps.

The mathematical frameworks for such problems are
results from differential geometry [19], affine differential
geometry [19, 20], and projective differential geometry
[15-18].

The somewhat simpler problem of invariant recognition
of polygons (note that polygon vertices are readily avail-
able, ordered feature points) was treated in several recent
papers [1, 21]. Polygons are mapped into polygons by the
viewing transformations discussed, and their sequence of
vertices form a natural parametrization with respect to
which invariant sequences capturing shape can be deter-
mined.

In closing, we note that the use of algebraic and global
invariants in vision has also attracted a lot of attention
recently, as exemplified by the papers [22-30].
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