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Abstract

An autostereogram is a single image that has the capability to convey depth
information in the same manner as a stereo pair. Given a depth profile, the
autostereogram is completely characterized by a two-dimensional basic pattern
(a vertical sirip.) Some autostereograms are more easily perceived than others
depending on the basic pattern chosen to produce them. In this paper we discuss
this dependence in terms of the spectrum of the basic pattern. We conclude that
samples of 1/f noise yield excellent basic patterns, making it easy for the viewer
to lock-into the desired depth profiles and to perceive depth in a stable way.

1: Introduction - On Seeing Depth

The world around us is three dimensional, but eyes and cameras can only see planar
projections of spatial scenes. Nevertheless, the third dimension can often be inferred from
two dimensional images. Occlusion and prior information on object shapes provide depth
information even in single images, and so do shadows and shading. Stereo vision provides
a stronger effect enabling us to perceive depth: in stereo, depth is inferred locally from the
slight differences in the images of the same scene produced by two horizontally displaced
sensors (the eyes). Stereo vision is quantitative, in the sense that the binocular observer
is able to evaluate the relative depth of almost all visible objects in a scene, a capability
extensively exploited in geodesy. This quantitative depth perception depends on binocular
disparity, and disappears when one of our eyes is closed; the visual system always fuses the
available images so that a single image is perceived, with or without a sense of depth.

Depth evaluation in stereo vision is independent of the other visual cues that are usually
present when viewing the world around us. This fact was shown by Julesz a long time ago,
[Julesz,64], via a series of landmark experiments with random dot stereograms, i.e., pairs
of similar images consisting of randomly placed dots in the plane, one of them having part
of the dots displaced to encode depth. Depth is perceived when such image pairs are (si-
multaneously) presented to the two eyes of an observer. Independence of the stereo depth
perception from other common depth cues was indeed to be expected from the observation
that camouflaged objects, invisible in single images often become readily apparent in stereo

pairs of images. It is the aim of camouflage to cover objects with a pattern that makes them
appear to fuse with the background, their outlines or edges being completely obscured in
monocular, or distant views. As in the case of camouflage, a random dot stereogram cor-
responds to a special (conceptual) colori ng of the (imaginary) height profile/object surface
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Figure 1. Stereo projection

design for easy interpretation seems to have never been raised and discussed.

2: Interpretation and Design of Autostereograms

A.s we have seen, an autostereogram is the image that would be obtained as two different
pro_lectror'ls of a suitably colored depth profile. From Equation (1) it becomes clear that
the equality of Ir(z) and Ig(z) forces a coloring that obeys

A(z) = A(z + ¢(z)) forall =z. (2)

Referring to Figure 2, where again the projections are taken to be parallel at 90 and
45 degrees, and a single horizontal line of the image and depth profile are considered,
we readily recover geometrically, that the image I(z) = Igp/r(z) has to obey the basic
functional equation inherited from A(z) ,

I(z) = I(z + ¢(z)) forall z. (3)

If the depth profile obeys the slope-limiting condition |dp(z)/dz| < 1,! then it is easy
to see that I(z) is determined everywhere from its values on z € [t,¢ + (1)) for any value

’!t is possih!e to ‘hsve perceivable discomin‘uities in depth in autostereograms but depth information is
lost in the portion viewed by only one eye. This complicates the situation in a way which has little bearing
on the subject of this paper.
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Figure 2. Auto-stereo projection

of t. Indeed, all forward and backward iterations of the transformation T:z — z+¢(z),
for any starting point zo have exactly one representative inside any interval of the type
[t,1+ ¢(t)) . Thus, we are free to choose I(x) over an arbitrary such interval and the rest
of the stereogram (line) is then completely determined. We shall refer to I(z) restricted
to this (arbitrary) basic interval, as the basic patiern of the autostereogram. Note that
the full autosterogram image will comprise a set of such parallel profiles (for various y’s)-
representing horizontal lines in the image.

The freedom to choose the basic pattern can obviously be exploited to get a variety of
visual effects and this freedom was indeed exploited, quite amazingly, in commercializing
the autostereographic images. Interestingly however, depth is much more easily perceived
in some autostereograms than in others. In fact there are autostereograms that satisfy
the rules outlined above, and uniquely determine ¢, and yet do not produce any depth
perception at all. Hence, the following pair of questions arises naturally:

1. What is the underlying mechanism by which we perceive depth in such images?
2. How should we design basic patterns to make it easy for the viewer to perceive the
third dimension?

As with almost any question about how biological mechanisms work, we cannot provide
definite answers to the first question above. Unfortunately we can not answer Question
2. quantitatively without at least inferring a partial answer to Question 1. In Section 3
we develop a simple model for stereo vision, consistent with the available psychophysical
evidence, which can be applied to autostereograms. Researchers studying human vision
have proposed various models for stereo vision. The “squared differences” model we consider
here was discussed by Sperling [Sperling,81] and Arndt et. al. [ArndtMallotBiilthoff,95].
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The combined use of this model with scale space arguments appears to be novel.

Recovery of the 3D (usually, depth) information from an autostereogram involves tran-
scending the immediate, obvious and “planar” interpretation of the image seen. The Magie-
Eye books, and the many similar books and posters now available, try to help viewers by
guiding them to focus beyond the surface of the image (e.g.: “look at your own reflection
in the window” on the other side of which an autostereogram image was posted, or “try to
merge two feature points provided on the margins”). All of these are attempts to lead the
human visual system toward a consistent, second peak of some locally defined matching
process. To perceive the autostereogram, what we need to do is to correlate I{z) with
I(z + A(z)) where A(z) ~ (), rather than being satisfied with the the perfect match
obtained when correlating the image with itself at the same point in space, i.e. at A(z) =0,
a match that fully supports the planar interpretation. Therefore, we can safely assume that
a local correlation and matching process is at work, and that depth is inferred from the
displacements at which matches were detected.

Let I(z) be an autostereographic image. Let us construct a bivariate function (in fact
trivariate, but remember that for the time being we work on a line-by-line basis!), Az, &)
that indicates how well I{2) locally matches I (#).2 This, clearly symmetric, bivariate func-
tion will have a high ridge along the diagonal corresponding to the flat image interpreta-
tion, since I(#) obviously matches I(z) for # = =z, but it should also have a very high
ridge along the curve & = z + (z). Similazly, we should have ridges along the curves
& = z+@(x)+ p(z + @(z)), ete... The behavior of the ‘surface’ represented by A(z,#)
clearly depends on how we define the local matching of images and on the particular choice
of the autostereogram’s basic pattern. Suppose that an oracle provided us with the phys-
iologically correct matching function and the process used by the brain to find the best
matching. Then, for a given depth profile, it would make sense to ask for the optimal
autostereogram for a given depth profile. ‘Optimal’ here shall be interpreted in the sense
that the basic pattern chosen yields sharp and high ridges along the curves # = z and
& = 2 + ¢(z), (and, inevitably, its iterates) and that the “domain of attraction” of the
second interpretation should be as large as possible.

As a first exercise, suppose we are told that the depth interpretation is based on a
pointwise grey-level match indicator function computed by the brain, “disparity” curves
of the type # = f(z) being evaluated by integrating (accumulating) A(z,#) along them.
Clearly, with

i d oo § iy I AR =1(E)
A2,3) = {I(z) = I(3)} = { s 0

the “correct” disparity curves carry a constant distributed weight along them ( A(z, )=
A(z,z+ ¢(z)),...etc ) but, depending on how I(z) was designed, we might have other such
ridges too. Furthermore, if the basic pattern of I(z) is one-to-one then no additional ridges
will exist, so, from the point of view of this matching function, all stereograms with one-
to-one basic patterns will be equally good. However, a glance at the examples of Figure 3
clearly indicate that this matching function fails to capture some important features of
the visual system’s interpretation of autostereograms. Both basic patterns appearing in
Figure 3 are one-to-one: The first is a ramp while the second is obtained by randomly
permuting block-wise the ordinate of the ramp function. 3D interpretation turns out to be
greatly facilitated by richness of detail and edginess in the basic pattern. One-to-one-ness,

*In reality the eye does not process horizontal lines independently: this dependence will be discussed - ; ermutation of ramp function
and incorporated into our model in Section 3. Figure 3. Ramp function and random p P
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ensuring no spurious grey-level matches, is clearly less important than some measure of vari-
ability in the basic pattern. Stereo interpretation certainly involves not only local gray-level
correspondences but also, more importantly, matches of regions with similar gray-level gra-
dients, and similar average grey levels, matches of edges, of points and blobs, and, perhaps,
even matches of complex 2D shapes, standing out as local features or tokens. Stereograms
and autostereograms work over a wide range of input image types, from complex images
requiring the matching of intricate, colored shapes, to very simple binary input images
(and Tyler’s first autostereograms were indeed black-and-white images.) These facts are
also reflected in the many theories that have been put forward to explain the stereo vision
process.
Let us next consider a class of slightly more complex matching functions® given by

Az, %) = f(I(z) - I(2)]%) (5)

where f is some smaoth monotonically decreasing function satisfying f(0) = 1 and f(0) < 0,
eg., f(z) = 1/(14+ Az) or f(z) = e~**. Such functions measure the local grey level distance
too, but slight differences are better tolerated by them.

The “correct” disparity curves here also carry a uniform weight of one, but deviations
from these curves yield more graceful degradations. The ridges corresponding to the curves
i =u=z,% = z+ p(z), etc... have downward slopes with steepness determined by the
second derivative in the direction perpendicular to the curve. But along the curve the
function is constant ( = 1 ), therefore sharpness of the ridges is expressed by the Laplacian
of A(z,%) there. If we calculate the Laplacian at points on curves where exact matching of
grey-levels occurs, e.g. on the curve Z = z + ¢(2), we obtain

VA@,3) = 20 { (1@ + [T } ©)

Hence, the squared first derivatives of the basic pattern control the shape of the matching
function along and around the disparity curves, and in fact at all places where the grey
levels match along some curve. So we should (under the assumption that the A(z, %) under
consideration is the correct one, and that our goal is to provide the sharpest ridge possible)
design basic patterns with high derivatives almost everywhere and as few accidental matches
(that do not correspond to desired disparity curves) as possible. Large first derivatives result
from edges, hence, a basic pattern with many edges ensures large first derivatives almost
everywhere and sharp maxima along the desired disparity curve. This seems to explain part
of the results presented earlier (in Figure 3), although we do not yet have an understanding
of the behavior of this matching function in between the ridges, for general basic patterns.

This class of matching functions indicates that local maxima are quite sharp if the pat-
terns are rich, but, since the images have finite dynamic range, there will necessarily be
many spurious matching points (and perhaps even curves) that will be equally sharp. There-
fore, it would be advisable to have several basic patterns encoding each line of the depth
pattern so that all of them will have consistent and sharp maxima along the correct dis-
parity curves, but the spurious peaks located at random places in the areas in-between.

*In [Sperling,81] and [ArndtMallotBiilthoff,95] the same model is considered. Since human stereo does
not depend strongly on correct normalization, the model is probably not, strictly speaking, correct. A more
likely model is that of correlation. However, assuming correct normalization, minimizing squares differences
approximates well maximizing correlation and the former affords a better mathematical framework because
of the uniformity of the matching function along the correct match.
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Then, in the actual matching process these spurious peaks would be averaged out. This
calls for the use of samples of a noise process for the basic pattern, either in a perhaps
far-fetched idea of using time-varying autostereograms (that would have to rely on te.mpo—
ral averaging in the visual system), or in static images, by exploiting the readily-available
second dimension in the image plane (the y -direction that we so conveniently disregarded
until now!). Indeed, we can safely assume that the depth profile does not vary too fast
in the y -dimension, and use several consecutive lines of the autostereogram to encode the
same (or slowly changing) depth pattern with a series of samples of a ra'ndom-process,
used to generate the basic patterns. (Physiologically, this amounts to assuming th_at stereo
depth involves a coarsening of resolution.) In this context the question that remains to be
answered is: what type of noise processes have the potential to yield good .wsual results?
Here again, we shall have to postulate the type of matching process that is performed by
the visual system. We shall assume that the matching function is, in this case, dependent
on averages of squared gray-level differences, over the samples of the process. Therefore,

we define
V(z,%) = E,(I(z)-I(z))* = R(z,z) + R(%,%) - 2R(z, ¥) (7)

where R(z,%) is the autocorrelation of the process I.(z) , whose samples are t_he lines
of the autostereogram. If the process I, (z) is defined as the extension of a portion of a
stationary process sampled over a basic interval, say, [0,(0)) , we obtain

V(2,) = 2R(0) - 2R(B(z) - B(2)) (8)

where B(z) and B(Z) are the z,# "back-projected” into [0,¢(0)) according to the way
I,(z) was extended beyond ¢(0). If we define the matching function to be

Mz,%) = f(V(2,%)) 9)

we see that it will have ridges at the correct disparity curves and its behavior a,rm.md these
ridges will be determined by the autocorrelation function of the process used to b}uld IL,(z).
In particular, if we make sure that the autocorrelation will only attain th:e ma:um.:ﬂ v?lue
of R(0) at zero and decay very steeply afterwards, we can shape the matchmg'functlon into
an approximate indicator function. In fact the Laplacian of A(z,#) at the ridges of local
maxima, where B(z) = B(&) , is given by:

ViA@,) = 2/ R'0) { B + [FE@P } (10)

showing that the shape of the ridge is controlled by the shape of the signal autocorrelation
around the origin (we clearly do not have control over the depth-proﬁle»depend:ent back-
projection operator B !). This result is derived under the assumption that R(7) is smooth
about the origin and, being symmetric, it has zero first derivative there.

This discussion seems to indicate that we should favor processes with large values of
R”(0). For example, the choice of a completely uncorrelated, white noise for th.e process
generating the basic pattern will lead to very sharp local maxima at the correct dJspa.rl_tles,
meaning good behavior for autostereogram interpretations, provided we can keep the Ylsual
system “locked” into the various possible 3D interpretations. But locking into any pa.rtlcu.la:
depth profile, except the trivial one, can be, in this case, extremely hard.' The matching
function will not direct (via a hill climbing process) the visual interpretation toward any
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of the secondary maxima. An example of an autostereogram produced with white nolse It
given in Figure 4. We note that most of the random dot stereograms that were presented |
the literature have the appearance of spatial white-noise and were indeed generated uning
random number generators and thresholds in quite a straightforward manner.

In the next section we present a hypothetical model for the matching process that s
based on the common belief that the visual system processes images simultaneously al
several scales. The images that are presented to us are “filtered” by several low, or hand
pass filters that can be assumed to yield a “pyramid” of coarser and coarser, i.e. more anl
more blurred, images. It can be argued therefore that, in order for an autostereogram 1o
look good and be easily interpretable, we need to have:

1. images that will look as homogeneous as possible over the entire span of spatial
coordinates, in spite of the special way they were generated (which means that the
random processes generating the autostereogram lines should be scaling invariant),
and

2. images that lead to strong peaks of the image autocorrelation located at the correct
disparities, but with with not too narrow “basins of attraction”, about them at the
coarse scales. In fact, it would help having basins of attraction tuned to the spatial
scale, that become narrower as we go from the coarser to the finer scales, in order
to direct the interpretation process (via hill-climbing on the corresponding matching
functions!) toward the maxima located at the correct disparity curves.

To ensure the appearance of spatial homogeneity (as well as scale-space homogeneity
we would like to have a scale-invariant stochastic process generate the basic pattern, since
the depth function locally scales the basic strips (in fact nonlinearly!) to produce the entire
image. White noise would again be a reasonable candidate for this, but the requirement of
having autocorrelation peaks with basins of attraction widening at a reasonable rate with
the scale parameter is not met by a process with §(7) autocorrelation.

Let R,(7) be the autocorrelations of the processes obtained when the basic pattern
process is low-pass filtered to effective width o . We can analyze the behavior of R(0) as
a function of ¢ for various types of processes. It is seen that a white noise basic pattern
leads, with decreasing o, to a very quick narrowing of the peaks of the corresponding scale
space of matching functions, A,(,) , while a noise whose spectrum that decays like Lfif2
in the frequency domain provides too slow a sharpening of the peaks with a decreasing
scale parameter. A noise process that has 1/f behavior over the frequency range relevant
to visual perception seems to be ideally suited for our needs. Indeed, 1 /f -type noise
has the property of selfsimilarity under scalings, needed for spatial homogeneity, and long-
range correlation tails that will correctly guide the process of locking into the various depth
interpretations!

To substantiate the above claim in a simple case, consider a constant depth profile. Then,
I,(z) is a periodic process.? Hence the samples of the process can be described by a Fourier
series as follows

L(z) = Y a; cos(iwoz + ¢;)
i=0

where ¢; are i.i.d. random phases distributed uniformly over [0,27), and a; are positive

*The constant depth case is rather trivial and is known in the stereo vision literature as the “wall-paper”
effect for periodic patterns (see [Ittelson,60].)
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undom variables too. The (periodic) auto-correlation of this stationary process is given by

R(7) = i E(a?) cos(iwor)
=0

B =

Now assume that we have a scale-space of filtered versions of the process I,(z) so that I
i« ubtained by cutting off frequency components beyond wg/o. Then we have

0.—1
Ry(rh= % ; E(a?) cos(iwor)
and therefore, )
i R,(r)= —li E(a?)(iowg)? cos(iwor) .
Bfep )T L e e

Note that here we have normalized r by o since ¢ is the appropriate unit of length on
wcale o; we should expand R, (7) in terms of 7/o. Let us consider a sequence of matching
functions A,(z,#) corresponding to the filtered versions of I,(z). Since the peaks of the
matching function A,(z, %) is controlled by R/(0), we see that the (¢ normalized) peaks of
\,(x, %) get narrower with decreasing o at a rate described by:

-1
1% ;
F(o) = d*R!0) = —= E E{ﬂ?)[tﬁwo}z :
i=1

If we choose E(a?) (#wo)™? (for i > 1) and let ¢ — 0 we have

F(o) — o7, for 8 = 0 (“white” noise),

F(a) — constant, for # =1 (“1/f” noise),

F(o) — o, for # =2 (“1/f*" noise),

F(c) = o*In(1/c),for 3 =3 (“1/f*” noise),

F(o) — @2, for 8 > 3 (“1/ f>*” noise).
llence we see that with 1/ f noise the peaks (normalized to length scale o) retain essentially
constant normalized width in scale space. More generally, we will have R,(1) = R('r/'fr).
This is desirable property for many reasons. We hypothesize that, whatever the matching
mechanism is, it is invariant across scale. When 7 is on the order of o we expect R, (1)
to be the operative correlation. With 1/f noise we see that the width of the peaks of the
matching function are directly proportional to scale. Suppose 7 is adapted according to
some hill climbing process in scale space. Then, in this case, for 7 < ¢ we are well within
the peak of matching function on scale o so that scale will contribute little to the correction
in 7. Having o ~ 7 places 7 on the steep portion of the peak, hence a strong indication
of the appropriate correction to 7 is generated. For 7 > ¢ we expect to be outside the
domain of attraction and small, perhaps random, corrections to 7 are indicated. Thus 1/f
noise appears ideal from the point of view of obtaining stable convergence to the peak over
the widest possible range. For 3 > 1 we expect convergence to break down on small scales,
hence resolution will be lost. For § < 1 we expect convergence to break down on large
scales, so the domain of attraction of matching will be reduced and the autostereogram will
be harder to perceive.




Figure 5. Independent lines of 1/ f* (white noise) and 1/ f* noise

Figure 4. Independent lines of 1/ f° (white) noise and 1/ f noise
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Figures 4 and 5 present a series of autostereograms with independent line process having
power spectra 1/f" for n = 0,1,2,3. Note the degradation in resolution of depth for
n = 3. It is difficult to choose between n = 1 and n = 2 for overall quality. In the next
Section we will further elaborate on the role of scale-space in stereo vision and in perceiving
autostereograms in particular. There we will conclude that a 2D 1/f process is desirable;
independent line processes of 1/f? noise actually approximate this better than independent
line processes of 1/ f noise.

3: From Scale Space to Autocorrelation

So far we made the assumption that the visual system has a way to compute the ensemble
averages of the horizontal line processes, the averages being needed to effectively evaluate
the matching functions A(z, %) that lead to 3D interpretations. It was suggested that use
could be made of the vertical direction to mimic ensemble averaging: By having different
samples on different lines vertical averaging of line by line products could mimic ensemble
averaging. The reader might object to this idea on the basis that not enough independent
lines will enter the depth calculation to simulate ensemble averaging. It turns out that a
simple frequency decomposition of the image, an operation which is widely believed to be
performed by the visual system, can facilitate this process. This can be seen even in 1D,
Consider, as before, an image line

I(z) = Zag sin(iwpz + ¢;) .

Let us assume that we have independent lines of this form where the ¢; are independent
and uniform and, for simplicity, the a; are deterministic (i.e., the same from line to line).
Let I;(x) denote a; sin(iwgz + ¢;). The calculation of the correlation takes the form

E(I(z)(z+71)) = EQ)_ L(2)I(z + 7))+ EQ_ L(z)lj(z + 1),
] g,—,é_?

where the expectation is taken over the random phases of the sinusoids. The expectation
eliminates the second term. However, if we wish to approxithate the expectation by a sum
over independent samples then, indeed, the number of samples required can be quite large.
This is due to the relatively large number of essentially independent terms which need to be
averaged out. However, if each eye-sensor were able to first extract I;, by Fourier analysis,
then the brain could compute 3", Ii(z)[;(z + 7) directly thereby significantly reducing the
number of independent samples required to approximate the ensemble average. Further-
more, since Ij(z)Li(x 4 7) = a? cos(iwoT) + a? cos(iwe(2z + 1) + 2¢;), the second, spatially
(i.e. z) dependent, term could also easily be removed by low pass filtering with a cutoff at
or above iwq. Note that a lower cut-off is not feasible since this would result in extreme loss
of resolution in depth. (Recall that in reality all calculations are local.) Fourier analysis
as indicated here is not a realistic assumption for the eyes but the point is this: band-pass
decomposition of the images, correlation within bands, and low-pass filtering of the prod-
ucts prior to recombining can significantly reduce the burden of ensemble, i.e. vertical,
averaging.

Let us elaborate a bit further on our ideal model. Suppose, as above, that the brain
computes I;(2)I;(z+7). It is reasonable to assume that averaging occurs before recombining

over 1. In this way we may conclude that the brain computes

Pi(r):= E(Li(z)I{(z + 7)) = %af cos(iwpT)

weparately for each frequency band, i.e. (ideally) for each i. Now, let us postulate that, in
order to adjust 7, P*(7) is differentiated as a function of 7. Since the length scale associated
with frequency wgi should be 1/(wgi) we define

I8

— —Pi(1) = —a? sin(wpir).
= (1) a; sin(woiT)

Di(7):=
Note that this scaling is possible only if the averaging is done before recombining the various
[requency bands, although the differentiation may occur after. Now, we will assume that
the temporal derivative of 7, g—: is computed by the brain by summing the length normalized
contribution from different frequency bands. We will therefore define,

D(r):= ) D'r)=-Y_ a?sin(iwer).

The question now is: what should we choose for a; in order to obtain good behavior for
the r-adjustment rate. For simplicity, and to enable scale invariance, let us consider the
possibility a? o i for i > 1 and ask what to choose for 3. Let wpay be the highest frequency
actually used, then we have,

Winax WmaxT

D(7) ~ —(const ) w? sin(wr) dw = —(const Jr-1-F f o sin(v) du

wy wyT
In the case of interest, wor € 1 and wya™ > 1, and -2 < 3 < 0 we have D(7) ~
(const) 7=1=#. Given a global constraint on the energy in our images, arising, for example,
from limitations in the rendering, # controls a trade-off between high resolution and the
domain of convergence. This trade-off is balanced when we choose 3 = —1. Smaller values
of 3,i.e., B < —1 favor larger scales. Convergence slows as 7 becomes small and resolution
is reduced (because of noise.) For larger 3, i.e., 3 > —1 we favor smaller scales, achieving
high resolution but reducing the domain of convergence.

Once again, by invoking a scale invariance assumption we have concluded that a 1/f
power spectrum is ideal for our basic patterns. But what properties should the 2I) basic strip
have 7 We could, for example, let each horizontal line of the basic strip be an independent
sample of a 1/f type noise process. The results of this idea are seen in Figure 4; if the
eye processed each line independently and then, in the final “correlation” stage, averaged
vertically over several lines, then, according to our analysis, this type of basic strip would
be ideal. However, the eyes do not work in this, line by line, way. This is clearly indicated
by the fact that a basic strip with 2D 1/ f noise is significantly superior to line independent
1/ f noise, as we shall see in the experiments.

A physiologically more plausible model would allow for the 2D filtering performed by the
eyes prior to correlation. It is widely held that the visual system decomposes the images
projected onto the eyes into various frequency bands. A standard model is isotropic band-
pass filtering, i.e., the gain of the 2D frequency w depends only on |w|. For stereo processing
there might well be some anisotropy but not the extreme version considered earlier. For
simplicity we will study the effect of 2D filtering by considering the isotropic model.
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Let us now try to understand our previous models from the 2D point of view. To begin
with we shall return to the model of 1D correlation of the images with vertical averaging
of the product. We will later adjust the model to add other elements. For notational
convenience we will let I, be defined by I;(x,y) := I(z + 7,y). Let F denote the Fourier
transform, i.e.,

F(I)(w) = F(I)(w1, wp) = ]/eihmﬁmy)f{r,y}dzdy-

Let G(w) (= é(w2)) denote the transfer function of (ideal) vertical averaging. Our simple
model reduces to computing the following,

FG-FUL) = [ [ F 1)) 6w - u)es (N F(D(w) dwdu (1)

where ¥ = (z,y). We can introduce band pass filtering into this model as follows. Let
H?(w) denote the transfer function of some band-pass filter and assume y_, Ho(w) = 1.
Then for each ¢ the eyes/brain may compute

/ /(e““ﬂm(u)f(f)(u))'aa(w—u)e‘wlf(e‘(w'f)m(w)f(n(w})dwdu. (12)

Here we have admitted the possibility that the filter G may depend on . In the case that
H? ~ §(|wy| — 27 /o), i.e. ideal horizontal band-pass filtering, and G introduces some low-
pass filtering in the horizontal direction, then we reproduce the scenario described at the
beginning of this section. Our 2D model would have H? represent 2D bandpass filtering in
a band near 27 /o, i.e. H? passes frequencies w = (wy, w) with |w| ~ 2r /. For simplicity
we will assume H7 is ideal, i.e.,

a 1 Q,
H(w):{a i;g

where (, is some annulus {|w| ~ 27 /o}. The filter G should represent vertical averaging
and also, perhaps, low pass horizontal filtering with cutoff near |w| ~ 27 /0.

We will study the effect of the 2D filtering via an illustrative example. We consider an
image of the form

I(z,y) = 3 aisin(iwoz + i)

where the a; are independent of y, k is determined by y € [ke/wo,(k + 1)e/wp), and
¢ir are uniformly random in [0,2x] and, for now, independent for each i and k. This
models an image in which pixels are vertically separated by ¢/wp and each horizontal line
is independent.

If we examine the 2D spectrum of such an image we find that, ro'ughly speaking, energy a?
is distributed uniformly in a strip around the line segment {w, = iwg, wy € (—wg/e, wo/e)}
and its reflection {w; = —iwg,wy € (—wo/e,wo/€)}. Thus, the energy associated with
horizontal frequencies gets smeared, approximately uniformly, across a wide range of vertical
frequencies.

For the image above, when G, is ideal vertical averaging we obtain

FUG, - FUI%)) = % fn @) cos(wyr)du (13)
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where I? denotes F~1(H? - F(I)). As before, we hypothesize that the eyes compute

D= 4:ri.'a'~'“1{(.?fr EIZTY) = -l[ |F(D)(w)*(ew) sin(wy7)dw
or 2 Ja.

T'his reveals two weaknesses associated with independent lines. If the eyes do 2D band pass
filtering as suggested above, then low (absolute) frequencies will not have enough energy
in them and higher frequencies too much. This explains, in part, why 2D 1/f noise is
superior as a basic strip to independent lines of 1/ f noise. The second undesirable effect of
having independent lines is that putting energy in frequencies (w1, wz) where |ws| > |wy] is
wasteful in the sense that stereo depth information is not carried by vertical components.
Since the derivative above associated to w = (wy,ws) € Q is, according to our model,
scaled by o ~ 1/|w]| it is better, in the sense that the derivative will be larger, to have
wy > ws. The limiting case, w, = 0, is however undesirable since this requires phases ¢
which do not vary over k, eliminating the tremendous value of vertical averaging. Thus we
observe that there is a trade off between providing for the local averaging and maximizing
horizontal signal.

A compromise is the following. We should let ¢; be positively vertically correlated,
i.e. correlated in k, in a way which depends on i. We would like the randomness in the
¢’s to result in a 2D spectrum which is largely supported, roughly speaking, in the cone
|wa| < |wq|. This can be achieved, for example, by letting ¢;r be a sample path from a
random walk as follows,

b1 = Bik + VEips1/Vi

where £, are i.i.d. uniform on [—1,1] (say) and where v is an appropriate constant inde-
pendent of i and k. In this way the 2D spectrum is also essentially 1/ f. The only remaining
concern is whether vertical averaging can still effect cancellation of cross terms in the prod-
ucts I7I7. To see this we need to reconsider the derivation of equation (13). For simplicity
let us assume that that horizontal frequencies are not spread across 2D bands. Then the
phases of the cross terms take the form ¢;j & ¢;x. Thus, the cross term phases will behave
like a random walk but the correlation length will be on the order of 1/i 4+ 1/j. Since,
because of scale space filtering, we can assume i =~ j we see that the cross term phases fluc-
tuate significantly more rapidly than the local length scale ~ 1/i, and, therefore, vertical
averaging would be able to effectively eliminate them.

Examples of images produced this way are given in Figures 6 and 7. Here we can see
the role of vertical correlation. The figure at the bottom of Figure 6, a suitable vertically
correlated 1/f noise pattern, is among the ‘best’ autostereograms we have been able to
produce. Comparing Figure 6 with Figure 7 the superiority of 1/f to 1/ f? noise when the
second dimension is properly taken into account is evident.

4: Discussion and Concluding Remarks

Autostereograms are natural generalizations of periodic patterns that were known to
produce the so-called “wall paper phenomenon” documented in old books on visual percep-
tion. Ittelson, [Ittelson,60], describes this phenomenon as follows: “An observer stands a
fow feet distant from, and squarely facing, a wall covered with a regular, repeating pattern
of small figures. By increasing the convergence of his eyes while observing the pattern on
the wall, the observer will note that there are one or more amounts of convergence for




Figure 6. Patterns of 1/ f noise with different vertical correlation ' Figure 7. Patterns of 1/ f2 noise with different vertical correlation
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whfch fusion will be obtained, but with different, rather than the same, parts of the pattern
fusing together. At the same time, the entire wall will appear to have moved nearer to the
observer and become smaller. The same effect has been observed for a typewriter keyboard
postage stamps, and various other repeated figures.” : ]
In this short paper we explained the way autostereograms are produced for arbitrar
depth .proﬁles and posed the question of designing autostereograms for best visual inter)«r
pretations. Then we analyzed possible simplistic mechanisms for depth recovery from the
autostereographic images, and concluded with arguments that point toward 1 / f -noise pro-
cesses as excellent generators for basic autostereogram patterns. Further work on this tspic
is cyrrently under way, analyzing the relationships between the processes chosen to generate
basu:_ patterns and the ease of locking into the 3D interpretations, under a variety of further
physiologically motivated stereo interpretation models. ‘
Much deeper analysis is required to solve the problem of optimal autostereogram designs
for‘ complex models of stereo perception, but we believe that 1 /[ noise will turn out to be
u'nn.'ersa\.]l},r good for these purposes. Easily perceived autostereograms might one day be
viable alternatives for the effective display of three dimensional surfaces and data. ¥
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Shape Recovery from Stationary Surface Contours
by Controlled Observer Motion
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Abstract

The projected deformation of stationary contours and markings on object surfaces is

analyzed in this paper. It is shown that given a marked point on a stationary contour,

an active observer can move deterministically to the osculating plane for that point
by observing and controlling the deformation of the projected contour. Reaching the
osculating plane enables the observer to recover the object surface shape along the
contour as well as the Frenet frame of the contour. Complete local surface recovery
requires either two intersecting surface contours and the knowledge of one principle
direction, or more than two intersecting contours. To reach the osculating plane,
two strategies involving both pure translation and a combination of translation and
rotation are analyzed. Once the Frenet frame for the marked point on the contour
is recovered, the same information for all points on the contour can be recovered
by staying on osculating planes while moving along the contour. It is also shown
that occluding contours and stationary contours deform in a qualitatively different
way and the problem of discriminating between these two types of contours can be
resolved before the recovery of local surface shape.

1: Introduction

Natural objects are full of textures of all kinds, providing qualitatively different cues about surface
shape. Different kinds of texture require different methods for analysis. One kind of surface texture,
stationary surface contours, constrains surface shape in a way very different from “blob-like”texture.
These stationary contours are one-dimensional curvilinear markings on the object surface, which,
unlike occluding contours, do not “slide” across the surface as the vantage point changes [4] and,
hence, only constrain the surface along a single dimension like a strip for a smooth surface [10].
Consequently, stationary contours have been studied mostly in the context of qualitative surface
characterization [5, 9, 12, 14]. In contrast, since the observation of Barrow and Tenebaum [1] that
occluding contours constrain surface orientation uniguely even from a single viewpoint, this kind of
contour has been the focus of considerable research to quantitatively characterize the surface from
one-dimensional curvilinear features.
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