Pattern Recognition, Vol, 24, No. 11, pp. 1019-1035, 1991
Printed in Great Britain

0031-3203/91 $3.00 + .00
Pergamon Press plc
@ 1991 Pattern Recognition Society

FINDING THE KERNEL OF PLANAR SHAPES

R. BORNSTEIN and A. M. BRUCKSTEIN*
Department of Computer Science, Technion—Israel Institute of Technology, 32000 Haifa, Tsrael

(Received 13 March 1990; in revised form 5 March 1991; received for publication 14 March 1991)

Abstract—The kernel of a planar shape is the locus of interior points from which all boundary points
can be secen. This paper discusses an algorithm for determining the kernet of a planar shape. To find
the kernel we could first ask what is the interior region seen from each boundary point. The intersection
of these regions corresponding to all boundary points is, by definition, the kernel. Since it would be
quite impractical to implement the kernel-finding algorithm just described, we should first determine
interior regions that are jointly seen from boundary points that belong to boundary fragments. Based
on this idea, a practical algorithm can be designed. It is an efficient way to intersect regions in the plane
induced by suitably defined boundary fragments and determined via visibility constraints. It is shown
that for a wide class of planar shapes, the resulting procedure is computationally ¢fficient. In particular,
for the case of a polygon with N edges, the algorithm has a time complexity of (Q(N) and hence is
optimal. It is usually more efficient and in the worst case at least as good as a previously proposed O(N)

algorithm.

Computational geometry Star-shapedness

1. INTRODUCTION

Many industrial vision applications require
description and analysis of planar shapes. In this
context it is sometimes important to determine, for
a given shape, the locus of interior points from which
all boundary points can be seen. If this locus is not
empty the planar shape is called star-shaped and the
locus of points is catled its kernel. The boundary of
star-shaped figures may then be described by an
H¢) function, a description used by certain pattern
recognition and classification algorithms.

Since polygonal approximations to planar shapes
are quite common, it is natural to consider the prob-
lem of star-shapedness and the determination of the
kernel of polygonal shapes. An algorithm for the
determination of the kernel of a polygon was pro-
posed by Lee and Preparata.!!” For a given polygon
with N edges their algorithm runs in O(N) time and
since a scan of all the polygon edges is necessary, it
is optimal. In some cases, it is desirable to describe
a planar shape boundary by parametric curves other
than straight line segments. As an example, the
boundary of a planar shape could be described as a
spline curve determined via given control points.
Given such a non-polygonal shape, the question of
how to determine its kernel arises and here we con-
sider this general problem. We first turn to the formal
definition of the problem using basic concepts of
topology and differential geometry. Theoretical con-
siderations impose several restrictions on the class
of shapes, restrictions defined in terms of natural
constraints on the shapes boundary. These con-

* Author to whom correspendence should be addressed.

Kemel

Flanar shape analysis

straints are mild and met by most shapes we would
encounter in practice. The analysis suggests that
partitioning of the shape boundary into concave and
convex fragments is useful for kernel determination.
The contribution of these fragments to the kernel
boundary is then investigated, yielding straight-
forward rules which are exploited by the kernel-
finding algorithm. Sequential application of these
rules is used as a preprocessing stage to a kernel
extraction algorithm which resembles the one dev-
ised by Lee and Preparata for polygons. When the
input shape is a polygon with N edges and M concave
fragments, our fast O(N) preprocessing stage
reduces the number of input elements to the Lee and
Preparata type algorithm to J where 2M =J = N,
Therefore, while Lee and Preparata’s original algor-
ithm considers all N input elements and thus runs
in O(N) time, a slightly modified version of their
algorithm, used as the kernel extraction stage, will
run in O(J) time. Since this stage is the most time
consuming part, for some polygons, the improve-
ment in the overall runtime of the new algorithm
over the original one is significant. Also, since the
preprocessing algorithm is very efficient, its overhead
time consumption is practically neglgible and is cer-
tainly worth the potential of savings.

In the body of our paper only main theorems and
resuit are presented. Full details are presented in
reference (6},

2. BACKGROUND, MOTIVATION AND MATHEMATICAL
PRELIMINARIES

In reference (2) it was shown that the kernel of a
polygon is the intersection of all half planes lving to

1019

1020

the left of all polygon edges when the boundary is
traversed counterclockwise. Based on this result,
Shamos and Hoey'® proposed an algorithm which
intersects &V half planes having a time complexity
of O(Nlog N). Lee and Preparatal!! improved this
algorithm by taking advantage of the natural order
in which the half planes are arranged. Their algor-
ithm muns in Q{N) time, and since scanning of all
polygon edges is necessary, it is optimal. However,
every edge of the polygon receives, on average, the
same treatment and since this treatment involves
line intersection and point location operations, the
constant in the complexity expression is relatively
high. Additionally, an extra test during the algorithm
is necessary in order to ensure that for some cases the
algorithm will terminate the FAIL, i.e. will conclude
that the polygon is not star-shaped, before doing an
O(N?) work. This test also involves the same type
of time-consuming operations. As a by-product of
analysing the more general problem of determining
the kernel of non-polygonal shapes, we will show
that in some cases the heavy treatment of some of
the polygon edges may be avoided, yielding a shorter
execution time. Furthermore, the test mentioned
above may be replaced by a stand-alone procedure
which, for certain shapes, rapidly finds that they
are not star-shaped at all, making unnecessary the
further application of the kernel extraction algor-
ithm. In this work we first deal with the problem of
determining the kernel of an almost arbitrary planar
shape. We cannot deal with arbitrary shapes because
there exist shapes whose boundary is arbitrarily com-
plex, and in such cases there is little hope of finding
a finite procedure for kernel determination. In order
to simplify the problem, we introduce some rather
natural restrictions on the complexity of the shape
boundary in terms of regularity, total arc length,
number of convex and concave fragments and the
value of a fragment turn angle.

In the case of planar shapes, the left half planes
that were considered for polygons are replaced by
left regions of each boundary point, having a some-
what similar meaning. As for polygons, the inter-
section of all these half regions forms the kernel of
the shape. However, while for polygons the number
of different left half planes was finite, in a shape of
the class we are dealing with there may be an infinite
number of different left regions. Hence, we are led
to consider left regions of entire boundary fragments.
To have an algorithm that terminates in a finite
number of steps, we need the number of these frag-
ments to be finite. In order to follow the arguments
in this work we need some simple background in
both topology and differential geometry. A brief
overview of these topics is thus first presented.

2.1. Some topological definitions

The n-dimensional Euclidian space will be denoted
Er. As special cases we have E! as the real number

R. BORNSTEIN and A. M, BRUCKSTEIN

axis and E? as the x—y plane.
With respect to a subset § of the plane, each point
p has one of the following three properties:

{(a) p is interior to S if p € § and there is a neigh-
borhood of p that is contained in S. The set of all
the points interiar to S is the interior of § and will
be denoted $/35;

(b) p is exterior to S if p & § and there is a neigh-
borhood of p that is disjoint from S. The set of all
the peints exterior to § is the exterior of § and will
be denoted 5;

(¢} p is a boundary point of 5 if p is neither interior
nor exterior to . The set of all boundary points of §
is the boundary of § and will be denoted a5.

2.2. Some basic differential geometry

Let I € E'. A planar curve is a mapping c: [— E2,
For each 7 € I we have

c(r) = (x(1), (). (2.1)

Taking the first derivative with respect to ¢ we obtain
the tangent vector

¢(0) = (x'(0), y'(1)). (2.2)

Clearly c¢'(#) exists if x'(f) and y'(f) are defined. If
¢'(r) exists and is not zero, we say that ¢(f) is a regular
point, A curve ¢:f— E?is regular if Ve, t E 1, ¢(f) is
regular,®

A piecewise regular curve is a continuous function
¢:[a, b] — E? together with a partition

H=Iq<fl<"'<tL_1<.tL=b

of {a, b] such that cft;, ;.] is regular, 0 =j=< L — 1.
The points c() are called the comners of c. A
piecewise tegular curve c[a, b] is closed if ¢(a) =
e(b), and is simple if c[a, b] is one-to-one.
The arc length s measured from a fixed point #; is
given by
{
s = [le@idr @3

Ty

The definition of 5 also applies to piecewise regular
curves.

We may reparametrize the curve using its arc
length. Henceforth we will assume that this is the
case. In this case, the total arc length of a curve fa,
bl,a<b,issimply L =5 —a.

The direction of motion when moving from c{a) to
e(b), a < b, will be denoted as the positive direction.
Traversing c(s) in this direction, we move from c(s™)
to ¢(s). Analogously, scanning ¢ in the opposite
direction will be referred to as the negative direction.

For regular curves, the tangent vector is a unit
length vectar

¢'(s) = (x'(s), y'(s)) (2.4

or in other words, ¢'(s) is a point on the unit circle.
This fact leads to another representation of ¢'(s).

Finding the kernel of planar shapes

For a regular curve c:[a, b]— E? there exists a

continuous, piecewise differentiable function
6:[a, b] — E' such that
¢'(s) = (cos(8(s)), sin{6(s))). (2.5)

Since 8 is continuous, we can define the total angular
change along the curve as the turn angle of c:

Z(cla, b]) = 8(b) — Ba). (2.6)

This value is independent of the reference value for
8.

At the corners of a piecewise regular curve & may
be undefined. Nevertheless, the exterior angle &, at
a corner point c(s;) is the oriented angle from
¢'(s;7 Ytoe'(s7). Thus we define

B(s7) = (s)+ ;. (2.7

We will assume that for each corner point (s},
—n< o<t

c(s;)1s a convex corner point, if 0 < a; < .
c(s;) is a concave corner point, if 0 > &, > —a,

Using the tangent vector we can define the tangent
line g(s) as the curve

sy + ' (s), 1€ B (2.8)

Consider also the two rays composing g(s) named
the backward ray and the forward ray, denoted ry(s)
and r(s), which are the curves

c(s) — &'(s)
and

e(s) + re'{s), t =0, 2.9

Tespectively.

Note that at a corner point ¢(s;), the tangenis
¢'(s;) and ¢’(s; } may be different and in this case,
two different tangent lines exist.

In case of a simple curve ¢[a, b], given a point ¢
on the curve, g = (), s is uniquely determined and
we shall refer to it as s,

2.3, Additional definitions

The direction of g(s). ru{s) and r{s} is defined as
the direction of ¢'(s). The left and right sides of g(s)
are thus determined.

It is agreed that while scanning a shape boundary
in the positive direction, the interior near a boundary
point ¢ is to the left of the tangent line at that point.

Let LINE (a, b) be the straight line passing
through 2 and b.

Let SEG[a, b], SEG(a, b}, SEG]|a, b), SEG(a, b]
be the close, open and half open straight line seg-
ments between e and b, respectively.

Let RAY[a, b), RAY{a, b) be the close and open
Tays, respectively, which emanate from a, pass
through b and go to infinity.

Let us define now two predicates which play an
important role in further definitions and theorems.

1021

Fin

s

Fig- 1. An illustration of INT and LEFT predicates.

Both predicates refer to a planar shape § and a point
¢ on its boundary.

2.3.1. Definition. INT(p, c) is true if and only if
either p = c or SEG(p, c) C §/a8.

2.3.2. Definition. LEFT(p, c) is true if and only if
either p=¢ or 3Im, mESEG[p,c), such that
INT(m, c).

These definitions are illustrated in Fig. 1. For

instance, INT(p,c), INT(u,c), -INT(g,c),
—INT(t,¢). LEFT(p,c), LEFI(q.c), LEFT(s,c},
—LEFT{t, c).

In addition, let us define convex and concave
Curves.

2.3.3. Definition. A regular curve cfa, b] is

concave, if #s), a=s=>b, is a monotone non-
decreasing function and 6(b) — &{a) > Q.
concave, if 6(s), a=<s=b, is a monotone non-
increasing function and &(b) — 8(a) < 0.

The above definition also applies to piecewise regular
curves if we set the value of @ at each corner point
cis;)) to any value between &(sj)and &s[). For
instance,

B(s;) = HB(s) + 8(s7))- (2.10)

3. THE KERNEL OF A PLANAR SHAPE

A simple shape is a shape whose boundary is a
simple closed curve which partitions the plane into
two disjoint regions, the interior and the exterior of
the shape (Jordan curve theorem). In this work we
shaill deal with simple shapes only.

3.0.1. Definition. The kernel of a planar shape §,
K(S), is the locus of all points p that satisfy:
Ve, c €8S, INT(p, c). (3.1

A planar shape that has a nonempty kernel is called
star-shaped (Fig. 2).

1022

Fig. 2. A planar shape and its kernel.

Note that according to the definition, there are
shapes for which points on the kernel boundary
belong to the kernel (as with a circle, for instance)
while in others, kernel boundary points are excluded
from the kernel (as with polygons). In order to
simplify matters, when dealing with theoretical
aspects of the problem we shall treat all kernel
boundary points as part of the kernel. In practice,
however, we shall exclude these points from the
kernel with the possibility of thereby incurring a
small inaccuracy.

Define a convex region as a region T which for
every two points a, b € T, SEG[a, b] C T. Define a
convex shape to be a bounded convex region. A
convex shape § is star-shaped and K(5) = §.

Since finding the kernel in a straightforward way
using its definition may be a hard task, we shall
use the following theorem. This theorem and its
successor certainly apply for a class of planar shapes
named X-type shapes which will be defined later.

3.0.2. Theorem. p € K(S)ifand onlyif Yc, c € 45,
LEFT(p, c). However, the proof for the latter the-
orem assumes the validity of the next theorem.

3.0.3. Theorem. Let S be a planar shape. Let ¢
and d be any two points in E? such that SEG[d, c] €
a5, Then either

Im, m € SEGI,), such that SEG(m, ¢) CaS or
Im, m € SEG[d, ¢}, such that SEG(m, ¢) N a5 = .

Consider the two pathological shapes illustrated in
Fig. 3. They certainly do not satisfy Theorem 3.0.3,
Therefore, we must restrict the class of planar shapes
we are dealing with to X-type shapes.

3.0.4. Definition. An X-type curve is a piecewise
regular, simple, closed curve having a finite total arc
length and a finite number of convex and concave
fragments, each with a finite value turn angle. An
X-type shape is a planar shape whose boundary is an
X-type curve.

For a given boundary point ¢, let us define the

R. BORNSTEIN and A, M. BRUCKSTEIN

{a)

(bl

Fig. 3. Two pathological shape boundaries: (a) a boundary

with an infinite number of convex and concave fragments;

(b) an endless curling spiral exhibits a fragment with an
infinite value turn angle.

locus of points p satisfying LEFT(p, ¢) as the left
region of c:

LR(c) = {p|LEFT(p, c)}.

It can be shown that LR(c(s)) is the region whose
boundary is formed by r.(s7) and r{s*) (Fig. 4).

(3.2)

cis)

Fig. 4. A demonstration of a left region of a point, i this
case, a convex boundary point. For a given boundary point
¢, the left region of c is the locus of points p satisfying

LEFT(p, ¢).

Finding the kernel of planar shapes

Then, from Theorem 3.0.2, it follows that
K($)= (1 LR(c).

cERS

(3.3)

However, this might require the intersection of an
infinite number of different left regions. Hence, we
should try to cluster several left regions to form the
left region of a boundary fragment:

let {R;} be a partition of 45 into non-overlapping
boundary fragments such that |J R; = a§.

!

Define the left region of a fragment:

LR(R;) = [LR(c). (3.4)
cER;
Then
K(S) = N LR(R)). (3.5)

A finite partition is necessary in order to make the
solution computationally feasible. So the current
question is. how to partition 357

4. PARTITIONING THE SHAPE BOUNDARY INTO
FRAGMENTS

Theoretically, any finite partition of 4§ may be
appropriate, so why should we choose one over
the other? One criterion of goodness could be the
number of fragments. A second motivation could be
the complexity of the left regions formed due to the
partition and the effort needed to intersect them. A
natural partition is into concave and convex bound-
ary fragments. Their number is finite due to the
definition of an X-type curve and their left regions
are relatively simple and have a fixed structure as we
shall see.

Let us denote the transition points from concavity
to convexity and vice versa in the positive direction
as e-type and d-type points, tespectively. Thus, a
convex fragment R; is delimited by ¢; and d; while a
concave fragment R, is delimited by d; and ¢;, . Two
problems arise:

(1) What should be done with a straight line seg-
ment common to both a concave fragment and a
convex fragment?

(2) In case an e-type point or a d-type point are
corner points, is it important how 6 is defined there?

As for the first issue, any point along the straight
line segment may serve as a transition point. It will
be evident later that shorter convex fragments are
preferable. Thus, the straight line segment will be
defined to be part of the concave fragment. The
answer to the second question is positive in order to
describe efficiently the various cases that may occur.

Thus, if ¢{s) is an e-type point,

{9(5*), if sty < B(s7)

H(s~}, otherwise

B(s) =

1023

{a)

(b)

Fig. 5. The case when a point may be both e-type and 4-
type: (a) a concave fragment consists of a single point; 4, =
¢..1; (b) a convex fragment consists of a single point; ¢ =
;. The value of & at such a point will change depending on
the current meaning of the point (either e-type or d-type).

and if ¢(s) is a d-type point,
{8(5’), ifB(s™)< B(s7)
68(:7), otherwise.

However, a point may be both an e-type and a d-
type point, introducing ambiguity in the value of 8
(Fig. 5). Depending on the context, such a point will
be regarded as either an e-type or a d-type point.
Thus, the ambiguity is resolved.

Let us turn now to the analysis of concave and
convex fragments. The curves that we refer to in all
further theorems are boundary fragments of an X-

type shape S.

8(s) = (4.1)

4.1. The left region of a concave fragment

Let R, be a concave fragment. We distinguish
between two complementary cases:

(1} £(R) > —=.

(2) £(R) = —=m.
The following theorem characterizes the structure of
the left region in the first case.

1024

Fig. 6. The left region of a concave region.

4.1.1. Theorem. Let c[s;, 54] be a curve for which
there exist 55, 55 such that:

51 <52 =835 5y,

c[51,5;] is a convex fragment;

c[s3, 54] is aconcave fragment, 8(s3) — (s,) > —m;
|53, 54] 15 a convex fragment;

B(s;) = O(s3);

(s4) = 8(s4).

Then LR{c[s,,54]) is the region T formed by the
intersection of rds,) and r,{s;) (Fig. 6). The second
case is now considered.

4.1.2. Theorem. Let ¢[s,54] be
described in - Theorem 4.1.1 except
8(s3) — 8(s,) = —m. Then LR(c[s,, s4]) = &.

The last theorem leads to the following conclusion:
if the turn angle of a concave fragment R; satisfies
£(R;) = —m, then K(§) = <. For this reason we call
a concave fragment R, a forbidden concave fragment
if Z(R;) = —x. Let us now turn to the investigation
of convex fragments.

the curve
that

4.2. The left region of a convex fragment

As with the theorems concerning concave frag-
ments, we need to regard the two neighbors of a
convex fragment. However, the two complementary
cases that appear here are not concerned with the
convex fragment directly but, instead, with its two
neighbors. The following theorems illustrate these
cases.,

4.2.1. Theorem. Let ¢[sy, 54] be a curve for which
exist §,, 5; such that:

81 <5, =53 <5y,

¢[s1, 52] is a concave fragment, 8(s,) — 8(s,) > —x;
c[s2. 53] is a convex fragment;

€[s3, 84] is a concave fragment, B(s,) — 8(sy) > —m;
Hsq) — B(s;} = 0.

Then LR(c[s).54]} = LR(c[s1, 52]) M LT(c[53,54])
(Fig. 7).

R. BORNSTEIN and A. M. BRUCKSTEIN

cls,)

cls,)

cis)}

LRicls, s 1)

Fig. 7. The left region of a convex fragment is not involved
in determining K(5).

4.2.2. Theorem. Let c[s,, 54 be the curve as was
described in Theorem 4.2.1 except that
B(s4) — 6(s,} > 0. Then there exists two points, c(ss)
and c(sq), satisfying

(1) 6(s5) = 6(s,) = B(s7), 52 <55 =533
(2) 8(s5) = B(s4) = 6(s8). 51 =56 <53
(3) 55 < 55,

and LR(c[sy. 54]) = LR(c]51, 52]) N LR{c[s5, 553 N
LR(C[53, 54]).

The first case states that the left region of such a
convex fragment is not involved in determining K(5).
As for the second, here the situation is more com-
plicated and several possibilities may happen. They
are summarized in the next theorem,

4.2.3. Theorem. Let cls;,54) be a curve as was
defined in Theorem 4.2.2. Define

O = LR(c[sy,5:] N LR(c[s3, 4]
Then one of following possibilities may occur:

(1y=@a.

(2) Q M LR(C[SS, 55]) =

(3) @ N LR(c[ss, 36]) = C.

(4} @ n LR{(c[ss, 55]) = T, where there exist 5, and
sg for which:

55 <857 < §g < Sg,

T'= QN LR(c[s, 5]},

6(sy) ~ 6(s7) < 27,

¢(s5) is to the left of g(ss) and
o(sg) is to the left of g(s,).

The interesting case is certainly (4), as illustrated in
Fig. 8. Tt will be useful to introduce an explicit
definition of such a left region.

4.2.4. Theorem. Let c[s,, 52| be a convex fragment
such that £{c[s|,s54]) < 2z, ¢(sy) is to the left of g(s4)
and c(s2) is to the left of g(s,}. Then LR(c[s), 54]} is
the region T whose boundary is formed by ¢[s,, 5,]

Finding the kernel of planar shapes

ci5,)
clsy)

els)

LFcls , 51}

1774

Fig. 8. The left region under the terms of Theorem 4.2.3,
case (4). The left region of the compound fragment is given
by LR(c[s, 52]) 1 LR{c[ss, 55]) 0 LR(c[53, 54]).

tbh}

Fig. 9. The left region of a stand alone convex fragment
¢[sy, 53} under the terms of Theorem 4.2.4: (a) £(c[s,. 52])
= (b) w< L(c[s,. 5.]) < 21

and parts of ry(s,) and ri(s;) (Fig. 9). The above
results lead to the following definition.

Let ¢[sy, 54] be a curve such as was deseribed in
Theorem 4.2.2. Refer to points c(s,), ¢(s3}, ¢{s3) and
o(s4) as di—y, &, 4; and ¢, , respectively. Then the

1025

points c(ss) and c(s¢) are of E-type and D-type, and

will be referred to as E; and D;, respectively. Under

the terms of Theorem 4.2.1, 55 and s5;; either do not

exist or 55 = 54. In both cases, we will define £, = D,
Let us now summarize the last two sections.

4.3. The structure of K(8) boundary

It is evident that dealing with either concave frag-
ments or convex fragments, the left region of both
types is a convex region. This, together with the fact
that K(S8) C §, leads to the immediate consequence
that K(S) is a convex shape. Hence, the boundary
of K(S), K, is a convex curve. The contributicns of
concave fragments and convex fragments to this
curve are as follows:

Concave fragments: let ¢[s4,,5,,.,] be a concave
fragment. If this fragment is not forbidden, then K
may include parts of r(s;) and of ry(s,) only,.ie.
cls4,, 5.,] itself does not take part in K,

Convex fragments: let c[s,,. 54] be a concave frag-
ment. If Ks, }— s,) =0, then ¢[s, .5,]cer-
tainly does not take part in K. We shall refer to such
a fragment as a non-potential convex fragment. Tf,
on the other hand, sy, ,)— 6(s,_,) >0, then
c[s,,,84] is potential. E, and D; exist and part of
c[5g,, 5p,] may determine K.

Due to these facts, the first assignment of a future
kernel algorithm is clear: locate e-type and d-type
points along a5.

5. FORBIDDEN FRAGMENT EXISTENCE TEST

We have seen that the existence of a forbidden
concave fragment implies that K(5§)=¢J. k is a
simple matter then to check the list of concave frag-
ments turn angle to see if such a fragment exists.
Nevertheless, consider Fig. 10, where both concave
fragments are allowed but the left region of the whole
curve is empty. This leads to a natural extension of
the notion of a concave fragment.

—

Fig. 10. The two concave regions are not forbidden but the
left region of the entire curve is empty.

1026

5.0.1. Definition. An alternating sequence of con-
vex and concave consecutive fragments forms a gen-
eralized concave fragment if it starts and ends with
concave fragments. Obviously, a single concave frag-
ment is also a generalized one.

As in the case of concave fragments we can show
that:

5.0.2. Theorem. If R is a generalized concave frag-
ment and /(R) < —m, then K(S) =& and hence it
deserves to be called a forbidden generalized concave
fragment.

The problem now is to devise a fast algorithm that
answers the question: is there along 35 a forbidden
generalized concave fragment? It is claimed that the
following algorithm does the job.

Suppose that there are M convex and M concave
fragments along 45. Let us denote the concatenation
of the mth to the nth consecutive fragments, m < n,
as R%. The input to the algorithm is the turn angles
of 2M consecutive alternating concave and convex
fragments forming 45:

L(RE), £(R1), - - - Z(RE-1)-
The output of this procedure is FAIL if a forbidden
fragment exists and SUCCESS otherwise. The algor-
ithm scans the list of turn angles twice in case we
started in the middle of the only forbidden gen-
eralized concave fragment.”

Algorithm Al

Initial step:
b—i =0.

General step:
Forn=0to4M — 1
begin

a,=b,_ + L(R}).
if a, = 0 then b, = 0.

else b, =a,.
if b, = —a, return FAIL,
end

return SUCCESS.

5.0.3. Theorem. Algorithm Al ends with FAIL if
and only if along 45 there exists a forbidden gen-
eralized concave fragment.

Since the turn angle of 35 is 2, the existence of
a forbidden generalized concave curve R; implies
that the turn angle of the complementary curve R; =
3S/R,, satisfies: 2 (R,) = 3. This is why R; is called
a forbidden generalized convex fragment and the
existence of two such compiementary forbidden frag-
ments is mutually dependent.

The latter fact yields a similar algorithm to Al
which scans the list of turn angles only once:

Algorithm Ala

Initial step:
b_] = 0.
Bfl =

* All indices are modulo 2M.

R. BORNSTEIN and A, M, BRUCKSTEIN

General step:

Forn=0to2M-1

begin
a4y = bn—l + L(R:)'
if a, =0 then b, = 0.
else b, = a,.
if b, =< —x, return FAIL,
A,=B,_1+ L(R}).
if A, =0then B, =0.

else B, = A,.
if B, = 3z, return FAIL.
end

return SUCCESS.

Assuming that this stage has terminated successfully,
we are ready to extract K. First, for each non-
potential convex fragment, set E;= D), For each
potential convex fragment, locate E; and D if this is
convenient or set E; = ¢; and/or D, = d; otherwise.
Then start the kernel extraction algorithm,

6. THE KERNEL ALGORITHM

The main kernel algorithm includes all steps in
order to determine the kernel of an X-type shape. It
will be introduced in the last section of this chapter.
Firstly, let us formulate the kernel extraction aigor-
ithm which is the most complicated step in the
process.

6.1. The kernel extraction algorithm

Those familiar with Lee and Preparata’s algor-
ithm,'" which will be referred to as the original
algorithm, will recognize that the proposed algorithm
follows its main lines. However, three major dif-
ferences deserve consideration:

(1) The original algorithm deals only with straight
lines, rays and segments while 1n the new algorithm,
X-type boundary fragments may appear, a fact which
demands a special treatment.

(2) The input to the original algorithm consists of
all edges while in the new one only the necessary
parts are introduced. Thus, while the original algor-
ithm maintains the subkernel boundary as a con-
tinuous curve, the new procedure may introduce,
temporarily, subkernel boundary gaps. These gaps
are bridged up in subsequent steps so their existence
is eventually unnoticeable.

(3) In the original algorithm there is an efficiency
test that ensures that in some cases, the time com-
plexity of the algorithm will not reach O(N?). This
situation may happen when the boundary wraps
around the current subkernel in an angle greater
than 3. Here this check was already done by aigor-
ithm Al and we will assume that Al was executed
prior to the application of the kernel extraction algor-
ithm.,

The input to the algorithm is M triplets, each
triplet consisting of two rays and one boundary frag-
ment:

Finding the kernel of planar shapes

Consider the convex fragment R; = ¢[s, ., 54,]. The
two rays are 7;(s,,) and re(s). The former ray will
be referred to as AP, e; meaning a ray which comes
from infinity in the direction of 8{(s,) and that ends
at e; while the latter ray will be 4;6,,A, meaning a
ray which emanates from d; in the direction of
fss) and goes to infinity. The fragment is
¢lsg,.5p,] which will be referred to as R[E;, Dy].

The output from the algorithm is either a FAIL
answer in case K(5) = (J or a circular list of vertices,
f values and boundary fragments which represents
K.

During the activation of the algorithm, the list
represents the boundary of the current subkernel
K,(5). The vertices are denoted wy, wy, . . ., where
w; is the successive vertex of w;_, in the positive
direction scan of K, and the entity between each
w;_y — w; pair, (w;_;, w)), may be either a # value
or a boundary fragment representation. In case
(w;_1, w;) is a 8 value, it will be referred to as 6.

The algorithm deals separately with the inter-
sections of the current subkernel boundary, K, with
d,-GdI.A, R,’[Eﬁ. D,] and ABel €, O=i=M-11Ifan
intersection occurs, we update K, to vield K, |. As
we find the entrance intersection point with the con-
vex shape K, {5}, we immediately search for the exit
point. Both points together with the curve between
them determine K, .. In cases where no entrance
point was found, either K(S5) =& or K, = K,

K, is maintained as a doubly linked list. In the
initial step, K,(S) is an unbounded convex region
and the list has a list head and list tail. After several
steps K,{.8) turns to be bounded and the list becomes
circalar, wy.,q and wy, are points at infinity of the
unclosed K. Correspondingly, Bh..q and 8, are the
directions of the first and last rays. As a puiding
tool, we nse LINE(w;_,, w;). The intersection of the
current item (either a ray or a fragment) with this
line navigates the next step of the algorithm. Two
vertices, wr and w, , have a special meaning. Briefly
we can say that they hold a similar meaning to £ and
L in the original algorithm. Moving in the positive
direction means also that along a convex boundary,
d is a nondecreasing function. Since K,(5) is convex
by the intersections of convex regions, in case
6 < 8,_, we must make a correction by adding 27 to
g. This will ensure that & is consistent along the
boundary of K,. The procedure forward(j) handles
this situation, i.e. increments j and adjusts & if nec-
essary, Backward(j) deoes the opposite by dec-
rementing j and subtracting 2z from & when
necessary.

A pseudo-code listing of the complete algorithm,
which will be called Algorithm A2, is given in the
appendix. Algorithm A2 constructively intersects the
necessary rays and fragments as were defined in
former sections. Therefore, if not terminated with a
FAIL answer, its output will be the boundary of
the kernel. The properties of Algorithm A2 are
summarized in the following theorems.

n27?

6.1.1. Theorem. In stage (1.1) of the algorithm, if
(w;_1, w;} C a5, then K(§) =0

6.1.2. Theorem. In stage (2.1} of the algorithm,
(w;_ 1, w;) cannot be part of 45.

6.1.3. Theorem. In stage (3.1) of the algorithm
while scanping in the negative direction, if
(WI-,[, WJ) C BS, then K(S) =,

6.1.4. Thearem. In stage (3.1) of the algorithm,
while scanning in the positive direction, if
(w;_y, w) C 3§, then no further consideration of
d;84,A is necessary.

Algorithm A2 describes the process schematically.
There are cases where additional information con-
cerning the shape boundary may be exploited. This
may yield a more efficient implementation. For
instance, if R; is a piecewise regular curve:

L1
RiE; D] = U C[SJ"SJ'H]; sa=Ensg.o=0,
i=0
and the rays r¢(s;) at the corner points are known,
we may regard each boundary point as a d-type point
and execute stages (2) and {3) for each cfs;. ;.4
fragment repeatedly. In particular, for polvgons,
exploiting this information leads. in fact, to Lee and
Preparata’s algorithm. We shall assume that this is
the case when we deal with polygons.

We are now ready to perform the sequence of

steps in order to find the kernel of an X-type shape.

6.2, The main kernel algorithm
Algorithm A3

(1) Locate all e-type and d-type points along 45.
If there are no such points, stop: K(8) = §.

(2) Activate algorithm Al. If there is any for-
bidden generalized concave fragment along a8, stop:
K(5)=(@.

(3) For all convex fragments R;: if R; is non-poten-
tial, set £; = 1);; if R; is potential, locate E; and D,
if this is convenient. Otherwise set E; = ¢ and/or
D;=d,.

(4) Activate algorithm AZ in order to extract K.

Since polygons are a subclass of the X-type shapes,
it is not unreasonable to expect that if the kernel of
a polygon is to be determined, the performance of
the proposed kernel algorithm will be similar if not
better than the performance of the original one.

A comparison, from both theoretical and practical
points of view, is made in the following two chapters.

7. PERFORMANCE ANALYSIS

Since in polygons each edge may intersect K, only
once, contrary to an arbitrary X-type shape boundary
fragment, we shall make the analysis on polygons.

1028

Let us consider a polygon with N boundary edges
and M concave boundary fragments, M > 0. The
polygon is represented by its vertical and, in addition,
the exterior angle at each vertex is known.

Points of e- and d-type are always convex corner
points. Scanning the boundary in the positive direc-
tion, an e-type point is the first convex corner point
after a concave corner point while a d-type point is
the last convex corner point prior (0 a concave corner
point. Hence, determination of the 2M e-type and
d-type points aiong the boundary is carried out in a
fast O(N) sequence. The turn angle of a concave
fragment is the sum of all its (concave) exterior
angles. Similarly, the turn angle of a convex fragment
is the sum of all its {convex) exterior angles. A1 deals
with 4M angle values sequentially and hence it is of
O(M) time complexity. Again, this part is fast since
it involves only a few elementary operations. Setting
the values of E; and D;, 0 =i = M ~ 1, is again done
in a fast O(N) procedure.

The set of input elements to algorithm A2 consists
of rays and polygon edges that belong to R;
frapments. Let this set contain J elements. As was
stated before, we exploit the forward rays at each
corner point along an R; fragment and thus we actu-
ally get the original algorithm with minor modi-
fications. We will show that algorithm A2 runs in
O(J) time. Since in polygons 2M =J =< N, A2 may
run on O(N) in the worst case, while in other cases
the order is lower.

7.1. A2 Performance analysis

The analysis of A2 is similar in spirit to the original
algorithm method of analysis. The inspection of vari-
ous AZ stages will be divided into tasks concerning
K, updating and wy and w, updating.

In stage (1), w' is searched for by scanning from
wr in the positive direction while w” is searched for
by scanning from wr in the negative direction. Let
the total number of K, edges scanned be v,.. In stages
(2) and (3) we may reach w' either by a positive
direction scan or by a negative direction scan. In the

R. BORNSTEIN and A. M. BRUCKSTEIN

first case, the scan process until we reach w’ will
be considered as w; updating. Thereafter the scan
resumes in the same direction. In the latter case, no
update of w,, takes place. Finding w’ is by a negative
direction scan and finding w" is by a positive direction
scan, both starting from w;.

As in stage (1), denote the total number of X,
edges scanned between w' and w" by u,,. The number
of edges of K, that were removed in each of the
three stages is v, — 2. Since each edge is a part of
cither a ray or boundary edge, then X (v, - 2)

=J. Thus, the total number of updating of K, is
carried out in O(J) time.

Consider now updating wrand w; . Note that these
vertices advance always in the positive direction. We
will show that the number of times each vertex is
visited is at most two. Suppose conversely that a
vertex is visited for the third time. In this case 4S
wraps around K, at least twice, i.e. along 45 there is
a fragment R, with a turn angle £(R;)= 37, in
contradiction to the fact that Al was ended suc-
cessfully, Thus, updating we and w, is done in O(J)
time,

An overall calculation thus shows that A2 runs in
O(J) time,

8. COMPARING THE ORIGINAL AND THE NEW
ALGORITHMS

In order to demonstrate the advantages arising
using the results of this work, a comparison between
Lee and Preparata’s algorithm and the proposed
implementation was done. For this purpose, a family
of polygons was created. The main feature of this
family is that the convex fragments along each poly-
gon boundary deteriorate to single points. Under
such a term, the original algorithm will deat with all
of the polygon edges while the new version will scan
only the necessary rays. M, the number of concave
fragments, and L, the number of polygon edges
along each concave fragment, are two independent

Table 1. Runtime of several stages as a function of M and L. The overall runtime of both algorithms
appears in the two right columns

e-type and Forbidden Lee and Kernel Original New

d-type point fragment Preparata’s extraction algorithm algorithm

M L location test algorithm algorithm runtime runtime
200 2 0.33 1.04 34.56 34.56 35.60 3593
100 4 0.33 1.04 2593 17.75 26.97 19.12
50 8 0.33 1.04 20.05 6.98 21.09 8.35
25 16 0.33 1.04 20.27 4.45 21.31 5.82
10 40 0.33 1.04 19.84 1.65 20,88 3.02
8 50 0.33 1.04 20.00 1.32 21.04 2.69
5 80 0.33 1.04 20.88 0.82 21.92 2.19
4 100 0.33 1.04 21.37 0.49 224 1.86
3 133 0.33 1.04 21.59 0.38 22.63 1.75

Finding the kernel of planar shapes

M=3

1029

L2133

Fig. 11. The shapes. rays concerned and kernel for various M and L values. The left column of the figure shows the rays
considered by the original algorithm, the middle column shows the rays considered by the kernel extraction algorithm
and the right column illustrates the kernel of the shapes.

parameters. We have set
M-L=N=400,

in order to work on a fixed number of polygon edges.

The simulation was done on an IBM-AT computer
and the algorithms were written in C. The efficiency
test done by the original algorithm was replaced by
a prior application of Al. The kernel extraction
algorithm in this case was, in fact, the original algor-
ithm, with minor modifications. Only e-type and d-
type points along the boundary were located. The
runtime of each stage was recorded automatically.
These values for several M and L values are pre-
sented in Table 1.

The rays each algorithm has scanned and the final
kernel that was found are presented in Fig. 11. The

overall runtime of each kernel algorithm is graphi-
caily displayed in Fig. 12. Obviously, as M decreases,
the new algorithm runs much faster.

9. CONCLUDING REMARKS

Star-shapedness is an important feature of planar
objects. Determining whether a planar object is star-
shaped or not, and if star-shaped determining the
kernel, are important tasks in shape analysis and
pattern recognition. The complexity of determining
shape related features becomes an important factor
in the design of pattern recognition and analysis
tasks.’” Therefore much attention was paid to the
complexity of finding the kernel of planar polygonal

1030

Runtime of algorithms

40

Time in sec

M \ | | | | L1 |

o] 20 40 &0 80 100 120 190

M

160 1BO 200

Fig. 12. Runtime of the two algorithms. Starting from a
similar point for the worst case (2M = N}, the performance
of the new version improves as M decreases.

objects. The algorithm of Lee and Preparata,’ hav-
ing a complexity of O(N), where N is the number of
edges of the polygonal shape, is worst case optimal,
since clearly we need to input the information to
the algorithm, and this already takes N steps. The
computational geometry community thus regarded
this problem as completely settled and did not pay
any further attention to it. However, the algorithm
of Lee and Preparata involves performing quite a
complicated procedure, for each side of the polygon
under consideration, and their algorithm may
become impractical when N is large, as happens
when we do polygonal approximation of shapes with
smooth boundaries.

We have presented an algorithm for determining
the kernel of planar shapes with smooth, non-
degenerate boundaries. The algorithm is based on
the observation that the inflection points provide a
natural segmentation of the object boundary that
helps to determine the kernel as the intersection of
the regions within the shape from which each concave
portion of the boundary is seen. From the dey-
elopment of our algorithm it is clear that after the
boundary information is read, the complexity of
finding the kernel is proportional to the number of
inflection points of the boundary, the constant of
proportionality being similar to the one involved in
the algorithm of Lee and Preparata. Reading the
boundary information for a polygonal object is pro-
portional to the number of polygon edges; however,
the constant of proportionality is very small. When
the boundary is descnibed by a spline function or any
other method for describing or approximating curved
boundaries, the complexity of reading the boundary
data is given by the number of control points, or
knots. This number will be considerably smaller than
the number of edges of a reasonable polygonal
approximation of the given object. Hence for abjects
with smocth boundaries described by methods that
are frequently used in graphics and CAD tools, our
kernel finding algorithm leads to significant savings

R. BoRNSTEIN and A. M. BRUCKSTEIN

in execution time. Furthermore, even in the case of
polygonal shapes, our algorithm yields savings in
execution time, that result from its dependence on
an inner complexity measure of the shape under
consideration, namely, the number of inflection
edges of its boundary. Only in some worst case
examples will our algorithm run in the same time
as the Lee and Preparata method. It is somewhat
surprising that in the long time that has elapsed since
the Lee and Preparata algorithm was put forward,
no one has made the observations that led to the
algorithm described above. Our motivation for
analysing this issue in fact came from a failure of the
classical algorithm to perform efficiently for poly-
gonal approximations of planar shapes with smooth
boundaries, described via splines.

We did not provide proofs for the theorems stated
in this paper, due to lack of space. These are found in
the Technical Report,® available from the authors. .

REFERENCES

1. D. T. Lee and F. P. Preparata, An optimal algorithm
for finding the kernel of a polygon, J. ACM 26, 415421
(1979).

2. 1. M. Yaglom and V. G. Boltianskii, Convex Figures.
Holt, Rinehart and Winston, New York {1961).

3. M. I. Shamos and D. Hoey, Geometric intersection
problems, 17th Annual IEEE Symp. Foundations
Compui. Sci., pp. 208-215 (October 1976).

4, C. C. Hsiung, A First Course in Differential Geometry.
Wiley-Interscience, New York (1981).

5. G. T. Toussaint, Pattern recognition and geometrical
complexity, Proc. Int. jr Conf. Pattern Recognition
{December 1980).

6. R. Bornstein and A. M. Bruckstein, Finding the Kernel
of Planar Shapes, EE Publication No. 694, Technion,
Israel Institute of Technology, Haifa (December 1988).

APPENDIX

Algorithm Al

Initial step:
n=20.
Kq is taken to be A8, w,0,,A, where wy is the inter-
section point between Af, e, and dy_,6,, A (Fig.
Al).
Wrp_1 = W
Wi-1— Wy

General step:

Fori=0to M —1do
begin
(1)
[*A8, e, is cansidered */
If i = 0 goto (2).
(1.1)
/* looking for w' */
a=e¢
if 8, =>00rAf,a
SEG[WF‘ Wp- l)
goto (2) *K,. =K, */.
W= W
while (w,_,, w)) Z38 and A6, a intersects LINE(w; |,
w,) at p do begin

intersects RA¥[w,, wp_)/

Finding the kernel of planar shapes

if p € RAY]
begin
a=
forward(5.
end.
else /*p @ SEG(w,_,, w))*/
begin

w1, WI/SEG[w, . w) (Fig. A2(2))

w' =p.
a=p.
goto (1.2).
end
end
return FAIL /* either the condition in Theorem 6.1.1
is met ot o intersection with &, was found */.
(1.2)
/* locking for w* */
If K, is unbounded
begin
If &, > B4 (Fig. AZ(b)).
begin
W, = We_q.
while Af, a does not intersect (w,_,, w,) do
backward(r).
et the intersection point be w”.
Letting K, = a{w,_;, w)fi(w;_, w}y,
we set K., = alw,_,, w W'l w'(w' ow)y/* s
also unbounded */.

end
clse
If @, < @,y ~ = (Fig. A2(c)).
begin
W, = Wy
while A8,a does not intersect (w,_,, w,) do
backward(r).

Let the intersection point be w".
Letting K, = a{w,_q, wi)Blw,_1, W)y,

we set K, = (w', w‘)ﬁ(w, w8, w' /¥ and
it becomes bounded */.
end
elsc ."‘* Bilyr:rd = Be; = Blm'f - JT*/ (Flg Az(d)}
begin
Letting K, = a(w,_,, w)B,
we set K., =Af w (W, w)f/ s alo
unbounded */.
end
end
else /* K, is bounded */ (Fig. A2(e)).
begin
W, = Wel g,
while A8, a does not intersect (w, ., w,) do
hackward(r).
TN
A
WD dy-| ~ hY

Fig. Al. The initial subkernel boundary, K, is formed by
the intersection of A, e, withdy.,8,,_ A

1031

Let the intersection point be w”.
Le[ting Kn = a(wj—h wj)ﬁ(wr-l . Wr)!
we set K, = (w', w)B(w,_,, w w8, w'.
end
Wp_ =W
{2)
/*R, is considered */
W=y
lf E, =D, goto (3). /*R; does not participate in the
boundary of K(§) */
a=FE,.
(2.1
/* looking for w' */
while Rla, D] intersects LINE(w,_,, w,) at p do
begin
t p€ RAYw, |, w)/SEG{w, . w,) (Fig. A%(a))
begin
a=p.
forward(}).
W= W,
Wp=w;
end.
else
it p € RAY[w,, w,_:)/SEG[w,. w,_) (Fig. A3(b)).
begin
a=p.
backward(j}
end.
else /*p € SEG(
begin
W, = Wy
w' =p.
a=p.
goto (2.2).
end
end
If 8, = #, + 7 return FAIL, /*K($) =
else goto (3 [*K,., =K,*/

{2.2)
/* looking for w" */
If w, is a point at infinity /* only when K, is unbounded

Wi, 1 W) *

wf
begin
if 8
begin
Letting K, = a{w;_, w;)p
weset K., = a(w,_,, w)w'R,[w', D/]d.6, A/ is
also unbounded */.
we_; = d,.
W, = d,.
goto general step.
end
else /* 0, = By + 1/
begin
Let Weo| = Whaaq
gotor {2.3).
end
end
else /* w, is not a point at infinity */
begin
forward(r).
goto (2.3).
end

(2.3)
/* Looking for a second interséction of R; with K, */
If (w,_;, w,) C 38, goto (2.4).
If R[a, D does not intersect (w,,, w,) goto (2.4).
If r = j, rewurn FAIL. /* K(§) = @*/
else (Fig. A3(d)).
begin
let w” be the first intersection point.
Lctting Kn = a(wj*l! wf)B(wr-l] wr)}'!

< Byons + 7 (Fig. A3(c)).

1032 R. BORNSTEIN and A. M, BRUCKSTEIN

(d)

(q)

Fig. A2. Several possible cases in the evaluation of A8, e,. Refer to stage (1) of algorithm A2 for explicit definitions.

we set K,y = alw,_;, w)w'R,[w', w'wW'(w", w,)y.

We_ | = w",

Wy =W

goto (2.1),
end

(2.4)
/* Looking for an intersection of 4,8, A with K, */
If d,8, A does not intersect {w, ., w,)
begin
forward(r).
goto (2.2).
end
else (Fig. A3(e)).
begin
Let w” be the intersection point.
Letting K, = afw,_ |, w,)B(w,_,, w,)y,

we set w1 = oW, W)W R, [w, D]
d,Gy, wiiw', w,)y.
Wr_y = &y

wio, =d,

goto general step.,
end

&)
/*d:8,,A is considered */
Ifi = M — 1 return K, /* The algorithm is finished. K,
is the boundary of K(5)*/

(3.1)
/* looking for w* */
a=d,.
while (w;,_,w)Ta§ and aB,A intersects
LINE(w;_ |, w) at p do
begin
if p € RAY[w;_,, w,)/SEG[w,_,,w,) (Fig. Ad(a)).
begin
a=p.
dir = positive.
Wp = WI-.
forward(j).
end.

Finding the kernel of planar shapes

{a)

0 v Lo

(b)

{d)

Fig. A3. Several possible cases in the evaluation of R;, Refer to stage (2) of algorithm A2 for explicit definitions.

else
if p € RAY[W;, w,-}/SEG(w,_,, w] (Fig. A4(b)),
begin
a=p.
dir = negative.
backward(f).
end.
else /* p € SEG(w; .1, w) */
begin

w' =p.

a=p.
goto (3.2).
end
end
if (w;_, W) Cas
begin
if dir = negative return FAIL /* refer to Theorem
6.1.3*/.
else goto (3.3) /* refer to Theorem 6.1.4 */.
end

R Z4:1)-8

if 8, > & + . return FAIL. /* K(8) = @*/
else goto (3.3).

(3.2}
/* looking for w" */
If K, is unbounded
begin
If 8,, < 8, (Fig. A4(c))
begin
W,y = W,
while afl; A does not intersect (w, ., w,} do
forward(r).
Let the intersection point be w”.
Letting K, = a(w-, 13 wi)ﬂ(""r—l » Wr)Y:
we set K, = a{w,_;, wiw' B, w(w", w,)y/* is
also unbounded */
end
else
If 6,, > Bree + 7 (Fig. Ad(d))

1033

1034 R. BORNSTEIN and A. M. BRUCKSTEIN

d.
pf % o
FRdl
(a!l

(c)

(el

Fig. A4. Several possible cases in the evaluation of 4,8,

begin
W | = Waeea-
while af; A does not intersect (w,_;, w;) do
forward().
Let the intersection point be w'.
Letting Kn = ﬂ’(Wr,], wr)ﬁ(wjfh w})?s
we set K, = (W', w)B0w,_,, wiw', W' /*
and it becomes bounded */
end
else /* B, = 8, = O,y + 27/ (Fig. Ad{e))
begin
Letting K, = afw;_,, w)f,
we set K, ;=a(w,_;, wIw8,A /" is also
unbounded */
end
end
else /* X, is bounded */ (Fig. A4(f))
begin
Wo_, =W,

G
" e W_2
(b)

A. Refer to stage (3) of algorithm A2 for exphicit definitions.

while a6, A does not intersect (w,_,, w,) do
forward(r).
Let the intersection point be w'".
Letting Ku = a(w;'—] H w}')ﬁ(wr— 8] wr)’
we set K, = alw,_, w'lw'é, w'(w" w),
end
Wi =w

(3.3)
/* updating wy */ ‘
while e;,, is on or to the left of LINE(wy_, wy) do
forward(F).
end

Algorithm A2 constructively intersects the necessary rays
and fragments as were defined in former sections. Thus, if
not terminated with a FAIL answer, the output is the
boundary of the kernel.

Finding the kernel of planar shapes

About the Anthor—ALFRED M. BRUCKSTEIN was born in Sighet, Transylvania, Romania, on 24 January
1954, He received the B.Sc, and M.Sc. degrees in Electrical Engineering, from the Technion, Israel
Institute of Technology, in 1977 and 1980, respectively, and his Ph.D. degree in Electrical Engineering
from Stanford University, Stanford, California, in 1984. From Qctober 1984 until June 1989 he was with
the Faculty of Electrical Enginecring at the Technion, Haifa. Presently he is with the Faculty of
Computer Science there. His research interests are in computer vision, image processing, estimation
theory, signal processing, algorithmic aspects of inverse scattering, point processes and mathematical
models in neurophysiology. Prof. Bruckstein is a member of SIAM, MAA and AMS.

About the Author—RAANAN BORNSTEIN received his M.Sc. degree from the Electrical Engineering
Department of the Technion, in December 1988. Since then he has been working in the Silicon Valley
in California.

1035

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

