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A variety of halftone methods for repro- 
ducing gray-level images on bilevel display 
media have been proposed. The output of 
even the best of these falls far short of the 
quality achieved on similar resolution me- 
dia in man-made engravings. We intro- 
duce Dig~Diirer- a digital engraving/half- 
toning system. For  a gray-level image in- 
put, the system produces a bilevel (black 
and white only) picture, which has the ap- 
pearance of an engraving of the input. The 
system produces high-quality output, even 
when the graphic elements of the halftone 
are visible, and both the quality and style 
of the output can be improved or custo- 
mized either by using further information 
on the image content or by interactive user 
intervention. The heart of DigiDiirer is a 
curve evolution algorithm generating half- 
tones by controlling the density of line ele- 
ments, which are the level contours of a 
potential field induced by ~he image via 
an Eikonal equation. Since the basic ver- 
sion of the system produces rather rough 
results, further capabilities were added to 
allow for user intervention and the use of 
image content information. Extensions to 
graphic elements other than lines are also 
feasible. 
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1 Introduction 
A picture is worth a thousand words. Part of the 
reason is the seemingly infinite variety of tones one 
can find in it. However, some of the most important 
mediums for the display of pictures are bilevel ones. 
The most prominent of these is the printed medi- 
um, where every point in an image is either black 
(with ink) or white (no ink). Other such mediums 
include many types of terminals that are either bile- 
vel (such as LCDs or monochromes) or else sup- 
port only a limited variety of shades. To display 
a gray-level picture on such a medium we must 
use a process called halftoning, which transforms 
the original into a bilevel, binary picture that can 
be displayed. 
There are quite a few strategies and algorithms for 
digital halftoning. Ulichney (1987) lists the most 
important of them: clustered ordered dither, dis- 
persed ordered dither, and error diffusion tech- 
niques (Fig. 1 a-d). Other methods include those of 
Knuth (1987), Kollias and Anastassiou (1991), Peli 
(1991), Sullivan et al. (1991) and more. All these 
methods have several properties in common: 

They are inherently digital - that is, they can 
be viewed as transformations of pixels into pix- 
els. 

- When the pixel grid is fine (so that individual 
pixels cannot be seen) many of them achieve a 
quality that is between acceptable and excellent. 

- When the grid is coarse (so that individual pixels 
are noticeable) the quality is considerably de- 
graded. 

A nondigital method that in essence shares these 
properties is the halftone screen (Harrop 1968; 
Ulichney 1987) used for most picture reproductions 
in printing presses to date. It is a photomechanical 
analog method that produces dots of varying sizes 
according to the local grayness at the position of 
the dot. 
Before mechanized methods became available, the 
need to display gray-level pictures on a bitevel me- 
dium (mainly ink on paper) was met by artists or 
craftsmen who specialized in the production of pic- 
tures composed of single tone elements on a back- 
ground of contrasting tone. Engraving, etching, 
woodcutting and lithography are the most com- 
mon of the variety of styles and techniques used 
by these human masters, see Ivins 1985, 1988. (The 
word halftone is itself a translation of the Italian 
mezzotint - the name of one such technique.) Figure 
2a-c  are examples of the impressive achievements 
of man-made halftones. 
Despite the large variety, there are a few things 
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Fig. la -d .  Common digital halftone methods: a clustered order dither; b dispersed 
order dither; e error diffusion - the Floyd-Steinberg method; d error diffusion 
method (Jarvis et al. 1976) 

a b c 

Fig. 2a-c. Examples of man-made halftones: a "Erasmus of Rotterdam" by A. Dfirer (Strauss 1973); b "The Bagpiper" by 
A. Dfirer (Strauss 1973); e "A  Classical Head" engraved for the Society of Dilettanti, London, 1809 (Ivins 1988) 
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common to such halftone works of art, especially 
when compared to the digital methods already 
mentioned: 

- A l t h o u g h  one could impose a grid on such 
works, the picture itself suggests no regular grid 
of reference. 

- The output  is pleasing to the human eye even 
when the elements of the halftone are clearly visi- 
ble (as often is the case). 

- Many such works have an additional artistic 
value (which would be missing if we were to view, 
say, a photograph of the scene rendered). 

- Like any other product handmade by a skilled 
person, to have an artist produce a halftone pic- 
ture is both expensive and time consuming. 

Both digital, or mechanized, halftones and human 
halftones have a place in our world. The first as 
a way of generating inexpensive and fast outputs 
and the second as a way of producing highly spe- 
cialized or artistic outputs and also as a way for 
skilled individuals to express themselves. However, 
one could argue that there is also a place for a 
third type of halftone methods attempting to com- 
bine some good features of both. 
The proposed DigiDi~rer aims at this compromise: 
we wish to generate, via a software system, half- 
tones that would resemble in style and quality 
hand-crafted items, yet do so at a fraction of the 
time and cost required by the human master. Clear- 
ly we cannot expect such a system to be as speedy 
or inexpensive as the regular digital halftone meth- 
ods and it probably will lack in the higher artistic 
values associated with the human halftone art. Yet 
it could fill the gap between the highly specialized 
and expensive hand-made items and the standard 
digital halftones, which rely mainly on the small 
size of the pixel for their quality. 
If we keep the system open, the human user can 
guide the halftone process in matters of style, or 
make corrections where he deems the system's al- 
gorithm has made a wrong choice. Without human 
intervention DigiDi~rer would be a tool for generat- 
ing higher quality halftones in the style of the hu- 
man engraver. With human intervention it can be- 
come a tool for generating artistic halftones in dif- 
ferent styles and varieties according to the user's 
wish and creativity. 

2 The structure of Dig'DOrer 
Much of the beauty of human halftones arises from 
the fact that the artist understands the subject of 
his art. To give DigiDiirer the quality and flexibility 
for which we aim, we must provide means by which 
such "understanding" of the picture can be en- 
coded into and used by DigiDiirer. 
However, providing an "understanding" of a pic- 
ture is extremely difficult and a whole field of re- 
search, namely "computer  vision", attempts, most 
of the time rather unsuccessfully, to achieve this 
goal. Therefore, to give our system the robustness 
required of a working, usable system, we must not 
make it too sensitive to the availability and quality 
of this type of automatic image "understanding". 
Our solution to the dilemma is twofold: first, for 
each type of information required by DigiDi;trer we 
provide three possible sources - a built-in algo- 
rithm, an interface with the user, and a "side infor- 
mation" mode that allows DigiDiirer to use infor- 
mation provided externally, either off-line by a hu- 
man agent or by "your  favorite state-of-the-art al- 
gorithm" not implemented in Dig~D//rer. 
Second, we structure DigiDi~rer into levels accord- 
ing to the complexity of obtaining the information 
required. Each set of lower levels is designed to 
function as an autonomous halftone system. When 
"deeper understanding" is available, the appro- 
priate higher levels become active and guide the 
lower levels of the halftone process. We identify 
four levels for DigiDiirer: 
1. The basic level has no understanding of the pic- 

ture; it simply halftones (engraves) it "blindly" 
according to the rule of keeping the local density 
of black elements proportional to the local gray- 
ness of the picture. 

2. The syntactic level understands the picture up 
to the level achieved without any knowledge of 
real world objects. This includes segmentation 
into planar regions according to gray-level simi- 
larity, edge detection, etc. (to moderate degree 
of accuracy, this information is considered ob- 
tainable by existing known algorithms). The 
syntactic level uses its knowledge to decompose 
the picture into regions, which are then sepa- 
rately halftoned by the basic level algorithm. 

3. The semantic level understands the picture as 
a two-dimensional projection of a real-world 
scene. This includes the 3D structure of the 
scene, its segmentation into real world objects, 
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etc. The effects of this level are in guiding the 
halftone process to enhance the 3D structure 
and to correctly deal with shadows, reflections, 
occlusions, etc. 

4. The artistic level is supposed to have the type 
of understanding that transforms a "mere pic- 
ture" into a "work  of art". Unlike the other 
levels of Dig~Diirer, we make no attempt at even 
suggesting how (if at all) such a transformation 
can be done algorithmically. We do, however, 
see it as part of Dig*Di~rer for the following rea- 
sons: 
1. It indicates what we lack with respect to hu- 

man artists. 
2. It allows for the possibility that an experi- 

enced and artistically inclined person might 
be able to use DigiDi~rer to produce works 
of art, his creativity and understanding rep- 
lacing what cannot be supplied by the pro- 
gram. 

3. The belief that for some purposes this level 
might be replaced by a pseudo-artistic level; 
that is, an algorithm designed to mimic the 
style and technique of a specific human artist 
or artistic movement. Attempts to produce 
pseudo-artistic pictures have been made 
(Haeberly 1990) and they seem feasible. 
Keeping in mind that our goal is items that 
are midway between digital halftones and hu- 
man art, a pseudoartistic level might be suffi- 
cient. 

Remark: the aspect of textures should be incorpo- 
rated into this scheme, although it is not complete- 
ly clear to the authors how. One possibility is to 
have a separate texture level that extracts textures 
from the picture and guides the rendering process 
accordingly. Another possibility is to add it to the 
existing syntactic and semantic levels (since texture 
too, in our categorization, is either "syntactic" or 
"semantic"). 
The prototype DigiDiirer as presented in the sequel 
describes the current stage of development. It im- 
plements a basic level and a partial syntactic level. 
For  the most part, we concentrate on halftones 
composed of line elements. The need to concentrate 
on a single type of graphic element was necessary 
to focus the development effort. We chose line ele- 
ments since they dominate in human works of art. 
However, later we show that this was a beneficial 
choice in the sense that we can generalize from 
lines to arbitrary elements in a relatively simple 

manner. The presentation is as follows: 

- Section 3 describes the basic level algorithm and 
shows its results. 
Section 4 presents improvements on this algo- 
rithm. The improved version is the engine used 
in DigiDfirer. 

- Section 5 explains how to extend the presented 
halftone with lines method of DigiDi~rer into a 
halftone method with almost arbitrary shapes. 

- Section 6 explains how the syntactic and semant- 
ic levels intervene in the halftone process to im- 
prove output quality. We give some examples 
of syntactic level outputs. 

3 The raw basic level 

3.1 The Eikonal equation 

The basic level has no understanding of the picture. 
Its operation is completely local: for any given 
small region of the picture - A the amount of gray 
in the output should equal the total gray level of 
the input, i.e., 

h(x, y) dA = j" g(x, y) dA (1) 
A A 

where g (x, y) is the original picture normalized so 
that 0 is white and 1 is black, and h(x, y) is the 
halftone picture, which, at any point, is either white 
or black. (It is common in some cases to replace 
g(x, y) with f (g(x,  y)) where f is a nonlinear point 
operation representing the response of the human 
eye to the different gray levels.) 
We wish to use line elements: let L be a (curved) 
line of the rendering, and let (s, t) be a coordinate 
system such that for each point on L the direction 
s is a tangent to L and the direction t is normal 
to it. Equation 1 can now be replaced by 

~ h(s , t )dtds= ~ ~ g(s, t)dtds 
sEA tEA sEA tEA 

Since 0 h =  0 (the line is uniformly black and the 
as 

background uniformly white). This implies that 

h (s, t) d t = ~ g (s, t) d t (2) 
tEA tEA 

In other words: the local density of halftone lines 
in the direction normal to the lines themselves must 
be proportional to the local gray level. 
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l.ompilCer 
Looking at classic halftones, we observe the follow- 
ing properties: 

1. The lines are nonintersecting. 
2. They are approximately parallel to each other. 
3. They are smooth (except at the edges). 

These three properties, which seem to play an im- 
portant role in making the halftone pleasing to the 
human eye, are characteristic of "equipotential" 
lines of potential fields. What we need then, is a 
potential function H(x,y)  whose equipotential 
lines satisfy Eq. 2. Such a function I-I(x, y) must 
be a solution of the Eikonal Equation: 

II • H(x, y)ll = V  Y-Y +77-x =g(x' y) 

Using this equation to produce, with line elements, 
an illusion of a picture was first suggested by 
Schroeder (1974). The motivation there was not 
to generate halftones, but to give an example of 
yet another "gestalt" effect. 
The general algorithm for the basic-level halftone 
generation could be: 

1. Choose a line L(s, 0)=(x(s, 0), y(s, 0)) as the ini- 
tial condition. 

2. Find an / - /which solves the Eikonal equation 
for g(x, y) with boundary condition L(s, 0). 

3. Produce equipotential contours of H as the de- 
sired halftone (sampled at a distance A H apart, 
where A H is proportional to w - the width of 
the displayed lines). 

The following remarks about this general algo- 
rithm should be made: 

- Without further knowledge of the picture con- 
tent, there is no preference for choosing one type 
of initial condition over another, and indeed for 
the basic-level algorithm any smooth line would 
do. Part of the control higher levels have on the 
basic level is in choosing appropriate initial con- 
ditions. 

- The exact way in which we find H and extract 
its equipotential lines is immaterial to DigiDi~rer. 
The only considerations are therefore technical: 
accuracy, simplicity, and time complexity of the 
algorithm. We present two acceptable methods 
in the following subsections. 

3.2 An Equipotential contour (EPC) 
algorithm 

Since our final aim is not H, the potential function, 
but its equipotential lines, it makes sense to use 
a method that produces them directly. Such meth- 
ods are called front propagation methods. This sub- 
ject, being important in shape skeletonization, dis- 
tance transforms, shape offsetting, and shape anal- 
ysis has been extensively studied (Blum 1973; Bor- 
gefors 1986; Danielsson 1980; Kimmel and Bruck- 
stein 1993; Sapiro et al. 1993). Since here it is only 
a tool for other purposes, we refer the reader to 
these sources for more details. An example of such 
a method for the solution of the shape from shad- 
ing problem is given by Bruckstein (1988). Since 
we can view our Eikonal equation as a special case 
of the image irradiance equation solved there, we 
can apply this method directly for our purposes. 
Given that L(s, 0)=[x(s ,  0), y(s, 0)] is a known 
equipotential line, we move a distance d t from each 
point on it in the direction of the normal, satisfying 

dH = g(x, y) d t. 

The points reached constitute the equipotential line 
L(s, d t) for which the potential is greater (or less) 
than at L(s, 0) by dH. Apart from a few numerical 
and topological problems, which are listed below, 
the iterative application of this step can give a map- 
ping of the picture with equipotential contours 
(L(s, t)). 
One problem is that the algorithm always goes in 
one direction (say, "up"  the potential field) so that 
we might not cover the entire picture. If this hap- 
pens, we can reinvoke the algorithm after we have 
reversed the direction of the parameter s on L(s, 0), 
an operation which flips the directions of "up"  and 
"down"  (Fig. 3). 
The other problem is of a topological type: even 
for a smooth picture g(x, y) and a smooth line 
L(s, 0), there might be cases where a step of the 
equipotential contour algorithm of a line L(s, t) 
(even with a very small A H) produces a new line 
L(s, t + A t) that intersects itself. Since equipotential 
lines do not intersect themselves, we cannot pro- 
ceed from L(s, t) by a simple application of the 
iterative step. Such a situation occurs as we ap- 
proach either extrema or saddle points of H (x, y). 
The case of extrema is relatively simple both to 
detect and to resolve: when we find that l, the arc 
length of an equiheight contour, is below a critical 

281 



3 
4 

Fig. 3. Changing the signs of "up" 
and "down" 

Fig. 4. Handling saddle points 

length, we assume that we have reached an extre- 
mum and stop the propagation. 
The case of saddle points is more difficult: one 
of the indications of a saddle point, or points, is 
that the line L(s, t) crosses itself. This requires a 
special algorithm to check for self-intersections of 
the line. After the existence of a saddle is detected, 
we must divide our line into three separate seg- 
ments: one including all the points on one "side" 
of the saddle, another for all the points on the 
other side of it, and a third for all the points that 
make up the saddle (which could be a whole line 
and not just a single point). Once we have made 
this division, we can ignore the points of the saddle. 
For the other two groups of points, we must con- 
tinue the propagation, but now separately for each 
of the two (now separated) equiheight contours 
formed (Fig. 4). 
The numerical implementation of this algorithm 
is as follows: 

1. Start with some equipotential line L(s, 0). 
2. If the current line is in the picture and is not 

degenerated, do: 
a. Normalize the line so that s is the arc length 

- this is necessary to ensure better numerical 
stability (Sethian 1985). 

b. Check the line for self-intersections: if an ex- 
tremum was reached, discontinue step 2. If 
a saddle was reached, remove the points of 
the saddle itself, and separate the remaining 
points into two equipotential lines. Put one 
on the stack and make the other the current 
line. Renormalize if necessary. 

c. Output  the line. 
d. From each sampled point on the current line 

calculate the direction of the normal and 
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move a distance of A H in that direction. (This 
amounts to integrating g(x, y) in the direction 
of the normal until the integral equals A H.) 
The points reached define the next equipoten- 
tial line. 

e. Make the set of points reached the current 
line. 

3. If the stack is not empty, read a line from it 
an go to step 2. 

4. If we have not  covered the entire picture, reverse 
the direction of L(s, 0) and go to step 2. 

3.3 Integrate to threshold 

It is interesting, to point out that we can arrive 
at this EPC algorithm by taking a totally different 
approach and viewing the basic level as a limiting 
case of the standard halftone method of error diffu- 
sion first introduced by Floyd and Steinberg 
(1976). 
For the one-dimensional case the halftone problem 
can be stated as follows: Given a sampled signal 
0__<g(n)__<l (n integer), produce a sequence 

h (n) E {0, 1} such that the error E (n) -= ~ g (n) - h (n) 
0 

is minimal for every n. A solution can be produced 
by the error diffusion algorithm: given that for some 
value i, h(i)= 1, the next pixel with h(j)= 1 is the 
first pixel j > i such that 

j - 1  j 

E( i )+g( j )+  ~ (g(k)-h(k))=E(i)+ ~ g(k)>_l 
k = i + l  k = i + l  

Suppose that w is the size of the smallest black 
mark we can produce. In the limit, for constant 



w and increasingly smaller pixels the algorithm be- 
comes the so-called integrate to threshold algo, 
rithm: given that for some value xo, h(xo) is a point 
of transition from 0 to 1, the next point of transi- 
tion from 0 to 1, x~, is such that 

Xl  X 1 

E(xo)+ i (g(t)-h(t))dt=E(xo)+ I g ( t ) d t - w > l  
XO XO 

Suppose we wish to halftone a two-dimensional 
picture g(x, y) with line elements of width w, and 
we are given some arbitrary line L(s, 0) that should 
be part of the halftone. The next line L(s, 1) should 
be such that 

s 2 L ( s ,  1)  

E(t)= ~ j" (g(x ,y) -h(x ,y) )dA 
sl L(s,O) 

is minimal for any sl and s2. If g(x, y) is smooth 
and the curvature of L(s, 0) is not too large, an 
extension of the 1D integrate-to-threshold algo- 
rithm is a possibility: treat the line L(s, 0) as an 
infinite set of 1 D elements. For  each such element, 
s, choose a direction (which changes smoothly with 
s) and apply the integrate-to-threshold method. 
The best choice of direction is the normal to the 
line at s, as it ensures that we satisfy step 2, Sect. 3.2 
and guarantees minimal overlap of the paths of 
integration. It also ensures the local similarity of 
L(s, 1) to L(s, 0). The resulting algorithm is the 
EPC algorithm. 

3.4 An a l ternat ive-  
the level sets algorithm 

A different method for obtaining the equipotential 
lines of a potential function satisfying a differential 
equation such as our Eikonal equation is presented 
in Osher and Sethian (1988). In this approach we 
induce a smooth function ~(x, y, 0) on the picture 
with the following properties: 

- For all points on L(s, 0) (the intial equipotential 
line) �9 (x, y, 0) = 0. 

- For all points with a higher potential 
0~(x, y, 0)>0. 

- For  all points with a lower potential 
�9 (x, y, 0)<0. 

Using this function and its derivatives we iterate 
on the picture to produce ~(x, y, dH), which is a 
function having the same properties except that 
�9 (x, y, dH) is zero at points with a potential higher 

than that of our initial condition by dH. The algo- 
rithm that evolves is as follows: 

1. Use L(s, 0) to induce ~b(x, y, Ho). 
2. While ~b(x, y, Hi) has zeros in the picture, do: 

a. Extract the lines where @ (x, y, H0 = 0. 
b. Output them. 
c. From ~(x, y, Hi) calculate ~(x, y, Hi+l) 

=- ~(x, y, Hi+ AH)=r y, Hi+z) 
= ~(x, y, Hi) + A H x g(x, y) x [I V~(x, y, H3II. 

3. If the entire picture has not been covered, re- 
verse the signs of cI)(x, y, Ho) and go to step 2. 

The advantages of this algorithm are that it is nu- 
merically much more stable and that it takes care 
of the topological problems automatically (Osher 
and Sethian 1988). Its big disadvantage is that it 
is much slower than the equiheight contour (for 
a picture of size n x n, the complexity of one itera- 
tion for the EPC algorithm is O(n Log(n)) or even 
O(n) if the number of intersections is much less 
than n, whereas it is O(n 2) for the level-sets algo- 
rithm). 

3.5 Results of the basic algorithm 

Both the EPC and level-sets algorithms were run 
on a number of gray-level images with different 
initial lines. Figure 5 a-d  are examples of the results 
produced; the following observations were made: 

1. Overall, the algorithm is correct - when the pic- 
ture is viewed at an appropriate distance (which 
depends on w, the width of the line) the halftone 
closely resembles the original. 

2. For most regions of the picture, the rendering 
has the pleasing qualities associated with classi- 
cal human halftones (consecutive lines are 
roughly parallel and nonintersecting and indi- 
vidual lines are mostly smooth). 

3. The quality of the output is not very sensitive 
to different initial conditions (although no two 
lines match in Figs. 5 a-c, the impression we get 
from the pictures is much the same). 

4. In some regions, it happens that, at certain 
points, breaks in the smoothness of the lines 
appear. Since neighboring lines are similar, cor- 
related breaks in smoothness occur in consecu- 
tive lines with the unfortunate effect that our 
eyes see false contours in the picture. 

The first two observations point out that, globally, 
the reasoning behind the development and imple- 
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5a b 

Fig. 5. a The  EPC a lgor i thm:  the initial line is a vertical line on  the  left. b The  
E PC a lgor i thm;  the init ial  line is a hor izon ta l  line at  the bo t tom,  e The  level sets 
a lgor i thm;  the  init ial  line is a circle, el As in Fig. 5a,  bu t  with  a lower line densi ty  

mentation of the method were correct. The third 
shows that at least at the basic level the initial 
line can be chosen arbitrarily. The fourth observa- 
tion requires closer investigation as it is the most 
serious flaw in the quality of the output  and also 
as it reveals a flaw in the design of the algorithm, 
since our aim was to produce lines that are, among 
other things, "smooth" .  
We term the points at which a "break in the 
smoothness" is formed discontinuities or shock 
fronts, since this effect is caused by a discontinuity 
in the normal vector to the line (-y'(s),  x'(s)). The 
fact that such discontinuities are annoying is no 
surprise, given the known properties of the human 
visual system (Levine 1985). On one hand, the hu- 
man visual system is tuned to change, so that even 
a small discontinuity in a long, otherwise smooth 
line immediately draws our attention, and on the 
other hand, at a higher level the visual system tends 
to group small features into a larger object. The 
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first property focuses our attention on the disconti- 
nuities and the second causes us to interpret them 
as (false) contours. The question we have to answer 
is how such discontinuities are formed. Given that, 
we must either find a way to prevent them from 
being formed, or if this turns out to be impossible, 
we must find a way to make them less obvious. 

4 The improved basic level 

4.1 What causes the shocks? 

At first one might suspect that the shocks are 
caused by some technicality of our implementation 
(a bug in the software); however, this is not so. 
The problem survived different implementations of 
the EPC algorithm, as well as the level-sets algo- 
rithm that uses a different computational ap- 



proach. To find its source, we look at the mathe- 
matical analysis of the Eikonal equation. 
We rewrite the Eikonal equation as an evolution 
equation for L(s, t) - the map of the equipotential 
lines. We view L(s, t) as a vector function of two 
parameters: L(s, t )= [x(s, t), y(s, t)] where t is the 
potential parameter of the line and for t = constant 
L(s, t) is a single equipotential line. Since we climb 
at a constant rate, we can interpret t as a time 
parameter and speak of the position of the front, 
L(s, t), at time t. Our algorithm performs the fol- 
lowing: 

0L 
[? - 1 ]  cts t+at 

L(s, t + d t ) - L ( s ,  t ) = u  0/" II~TH ~ g(x, y) d t  
j H ~ H  t 

II II 

For a small dt, a smooth g(x, y) implies that 

t + d t  

g(x, y )d t~g (x ,  y)dt  
t 

and so we get that 

8L 

OLot [? - 1 ]  Os - g { x ,  y )  
L* J ~ 

I I & l l  

In this form we see that our equation is hyperbolic 
(or a reaction equation). 
Given that L(s, 0), the initial condition, and g(x, y) 
are smooth, it can be shown that for t close to 
O, L(s, t) is also smooth (this is what gives the lines 
their smoothness for most of the picture). However, 
it is well known that as t moves away from 0, 
shocks (i.e., lines along which L(s, t) is not smooth) 
may appear. This happens when we reach the same 
point on the plane, by following the characteristics 
of the equation, from more than one point on 
L(s, 0). It can be shown that the location at which 
a shock is formed depends on the curvature of 
L(s, 0) and on the rapidity of change of g(x, y) in 
the domain of dependence of that point. For a low 
curvature L(s, 0) and an almost constant g(x, y), 
such a location may be quite far away from L(s, 0), 
whereas for a high curvature L(s, 0) or rapidly 
changing g(x, y) we encounter a shock almost infin- 
itesimally close to L(s, 0). 
To ensure smooth lines we can try either to replace 
the Eikonal equation with another equation that 
is less sensitive to rapidly changing g (x, y) and high 

curvature L(s, O) but still has good halftoning prop- 
erties, or we can try to force g(x, y) to change slow- 
ly. 
The first approach seems the more promising as 
we cannot expect to choose the properties of the 
picture we halftone. Unfortunately, as discussed in 
the following subsection, this approach gives only 
a partial solution. Happily, it turns out that there 
are some operations that have the effect of limiting 
the rate of change of g (x, y) while still keeping the 
output true to the original picture. Some such oper- 
ations fall within the jurisdiction of the basic level 
and are discussed in a succeeding subsection; 
others are explained when we discuss the higher 
levels of DigiDiirer. 

4.2 The reaction diffusion alternative 

It is well known that the phenomena of shocks 
never occurs in evolution equations of a parabolic 
form (also called diffusion or heat equation form): 

~L 02L 
Ot  - 2 = ktl 

where k is the signed curvature of the plane curve 
L(s, t) with t constant and s being the arc length 
parameter. 
Intuitively, we may say that since propagation 
speed depends on the curvature, the front always 
"leaves the room before the walls close in" 
(Fig. 6). 
We can, therefore, attempt to combine our Eikonal 
equation with a diffusion equation in the hope of 
getting the good properties of both: such equations 
are known as reaction-diffusion equations (Smoller 
1983). Our particular reaction-diffusion equation 
takes the following form: 

0L 

= ~ s  jg(x ,Y)+~ Os 2 0 t  - -  (3) 

It can be viewed as a linear combination of the 
reaction effect produced by the Eikonal equation 
and a diffusion effect that serves to smooth out 
the shocks. The relative strength or speed of each 
is determined by the parameter ~. As expected, the 
behavior of such an equation is somewhere be- 
tween that of the reaction term alone and that of 
the diffusion term alone: as we use consecutively 
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Fig. 6a, b. The evolution of: a the diffusion term; b the reaction term 

Fig. 7. Adding a nonselective diffusion term 

Fig. 8. Adding a selective diffusion term 

8 

larger values for c~, the solution remains smooth 
for more rapid change in g(x, y) or higher curva- 
ture of L(s, 0). However, we must ensure that in 
this transition we do not loose the desirable prop- 
erties of the Eikonal equation - correct rendering 
of the gray tones and sharpness of output. 

Correct rendering 

We arrived at the Eikonal equation in an attempt 
to satisfy Eq. 1; however, already in moving from 
Eq. 1 to Eq. 2 we had to make an assumption that 
either L is of very low curvature everywhere or 
that we do not stray too far from it. It can be 
shown that up to some value of c~ (~<cA t2/2, 
where c is the local grayness of the picture and 
A t is the local step size between two consecutive 
lines) the reaction-diffusion Eq. 3 satisfies Eq. 1 
even better than the Eikonal equation. However, 
we cannot go much above this value before we 
loose the halftoning property of the equation. 

Sharpness of output 

Loss of sharpness is the very nature of a diffusion 
process and the effect becomes more noticeable as 
the "strength" of the diffusion is increased relative 
to the reaction term. However, the effect is also 
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related to the rate of change of g(x, y). For regions 
of the picture that are constant or slowly changing, 
diffusion has little or no undesired effect. For  rapid- 
ly changing g(x, y) it is highly objectionable. To 
keep objectionable desharpening at a minimum we 
apply the diffusion adaptively, e, the strength of 
the diffusion, is inversely related to the local rate 
of change of g(x, y) and ranges from 0 (no diffusion) 
at the edges (places of a high rate of change) to 
a maximum when the picture is constant locally. 
Happily those regions of the picture for which we 
cannot apply diffusion (or apply it very weakly) 
are precisely those regions where the discontinui- 
ties in the output lines are the least objectionable. 
A rapidly changing g(x, y) manifests itself as an 
edge to the human visual system, since the edge 
is a "break in smoothness" in the picture. The fact 
that our lines might display a break in smoothness 
at an edge location is not objectionable and might 
even help enhance the edge. (In other words a 
"false contour"  that happens to coincide with a 
"real contour"  is much less objectionable than one 
which does not.) 
Figures 7 and 8 display the effects of a diffusion 
term: we can see that constant diffusion (Fig. 7) 
results in a severe loss of sharpness, whereas the 
effect is only slightly noticeable for adaptive diffu- 
sion (Fig. 8). Comparing these with Fig. 5 a, we see 
that most of the shocks have disappeared. However 
the most severe shocks - the ones which are most 
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Fig. 9. Using multiple sets of lines 

Fig. 10a, b. Outputs with dashed lines 

lOa 

not iceab le -  are precisely those that, although sof- 
tened, did not disappear. To smooth them out 
would require a value of a that causes a severe 
loss in sharpness and rendering quality. 
In summary, we can improve the quality of the 
output by using a reaction-diffusion version of the 
Eikonal equation. However, there is a limit to the 
strength of the diffusion (the value of c 0 we can 
apply. Hence the method is effective only up to 
a certain rate of change in g(x, y) beyond which 
it cannot overcome the shocks inherent in the reac- 
tion term. 

4.3 Breaking the lines 

Going back to handmade halftones, we see that 
the human artist also had to deal with the problem 
of g(x, y) changing too fast to make a good rendi- 
tion with line elements. His solution, many times, 
was to change the type of lines used. For  bright 
regions it is not uncommon to see the artist switch 
from continuous lines to dashed lines, where the 
proport ion between the length of the black and 
white segments decreases as the rendered tone be- 
comes lighter. For dark regions the artist may ei- 
ther switch to wider lines or else use two overlaying 
patterns of lines at the same or different orienta- 
tions (see Fig. 9 and of course Figs. 2 a-c). 
Similar solutions may be adopted to our case. Sup- 
pose we set a minimum dmi n and a maximum dma x 
on the distance between a point on L(s, t) and its 

corresponding point on the consecutive line 
L(s, t+A t). In effect this limits the range of g(x, y) 
from 0<g(x ,  y ) < l  t o  w / d m a x ~ g ( x  , Y)<w/dmin (and 
hence limits the maximum rate of change over a 
constant length A t. Since we want a correct render- 
ing, when we develop a line in regions that are 
darker or brighter, we must remember the amount  
of black or white we "owe"  each point. Later, when 
we output the lines, we pay this "due"  back by 
making the lines wider or dashed depending on 
whether we "owe"  black or white. Thus, it is possi- 
ble that, by appropriately selecting the values of 
dr,~. and d . . . .  we can" get an output of smooth 
lines, without sacrificing the other desirable prop- 
erties of our original algorithm. (In the limit, when 
setting drain = dm,x the output will be parallel lines 
with the halftone effect achieved only by locally 
varying the width or dashedness of the lines.) An 
example of the application of this method can be 
seen in Fig. 10a, b (where we limited only dmin and 
paid back the "due"  by making the lines dashed). 
It can be seen that the shocks have all but disap- 
peared. 

5 From lines to general elements 

An interesting feature of our method is that it 
forms the basis for a general halftoning algorithm 
with any type of elements - even halftoning with 
different types of elements in the same picture. 
Consider the output of the basic level algorithm 
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Fig. 11. The phase problem 

Fig. 12. Generalizing to dot 
elements 

when run for extremely thin lines�9 Except at some 
special points (such as saddle points and extrema 
of the potential function) this output can be 
thought of as an approximation of a function 
L(s, t): Rz--~R2�9 A walk along a t=constant line 
is a walk along one line of our output�9 A walk 
in the t direction, on the other hand, is a walk 
in blackness space, that is, t 4 - t a = t 2 - t l  if and 
only if 

t 4 t2  

g(x, y )d t= ~ g(x, y)dt 
t 3 t l  

Suppose we recalibrate the s direction so that it 
also has this property, that is, s 4 - s 3 = s z - s l  if 
and only if 

S 4 S2 

g(x, y)ds= ~ g(x, y)ds 
S 3 S1 

(Note that for the purpose of numerical stability 
s was an arc length parameter - but once we have 
computed the lines we can recalibrate s any way 
we choose.) We can now view s and t as a new 
coordinate system that has the useful property that 
regions of equal area in the s, t plane cover equal 
amounts of blackness in the picture. This has the 
following implications: 

1. In the same way that lines of constant t can 
be used as halftones of the picture, so could lines 
of constant s be used to form an orthogonal 
halftone (each line of the t = const halftone inter- 
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sects the lines of s = const halftone at right an- 
gles). Moreover, displaying both types of lines 
together would result in a crisscross pattern that 
is quite common in man-made halftones. 

2. Suppose we wish to halftone a picture, not with 
lines, but rather with area elements of a certain 
shape and size A. Since the amount of blackness 
in one such shape is simply the area of the shape, 
a halftone results when we place these elements 
on a proper grid in the s, t space: we know 
that the resulting locations of the elements in 
the x, y satisfies Eq. 1 and hence is a halftone 
of the picture with these elements�9 

3. This observation remains true if instead of one 
type of such elements we tile the s, t plane with 
a set of possible elements�9 We get a halftone 
composed of elements from this set. 

To turn the ideas of this section into a robust algo- 
rithm we must still deal with two types of problems�9 
One is the problem of the saddles and extrema 
and the other is the problem of a phase correlation�9 
When the elements are placed on the s, t grid in 
the same phase, the correlation between the ele- 
ments may result in unpleasant Moir6 patterns al- 
though the output is a halftone (Fig. 11). However, 
even without addressing these problems, the results 
can be quite satisfactory as the test example in 
Fig. 12 shows�9 This example was produced by run- 
ning the EPC algorithm to produce lines L(s, t) 
and then running a one-dimensional version of it 
on each line to recalibrate s. The dot elements were 
placed on the resulting (s, t) grid. 
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6 The higher levels of Dig'D Jrer 
6.1 The role of the higher levels 

The improved basic level as already presented can 
be viewed as the engine of DigiDfirer. By properly 
setting up its different parameters we can produce 
all (or at least most) of the elements or patterns 
we would like to see in a halftone. Moreover, when 
viewing a small patch of the picture the output 
is usually, indeed, what we would like to see. 
The higher levels of DigiDiirer should be viewed 
as the driver (actually, automatic driver) that sits 
behind the wheel and controls the engine so that 
DigiDiirer goes where we want it to. Like the driver, 
it exerts its influence by properly setting up the 
parameters under which the engine runs. These pa- 
rameters include the following: 

- g'(x, y) - The picture that the basic level sees 
and halftones (as opposed to g(x, y), the raw in- 
put to DigiDiirer). 

- L(s, 0) - The initial condition (first line) of the 
halftone. 

- The rendering parameters including: 
- w, the width of the lines produced. 
- e, the strength of the diffusion term. 
- dmin and dmax, the maximum and minimum 

distance between two consecutive lines. 
- The graphical elements to be used in the half- 

tone (if we include the ideas of the previous 
section and allow for general elements). 

Note  that the rendering parameters can be set ei- 
ther statically (once for each run of the basic level), 
adaptively (different values at different locations in 
the picture), or interactively (recomputing them 
after each step or iteration of the basic level). 
When designing the higher levels of DigiDi~rer we 
must answer the following two intertwined ques- 
tions: What information do we need to properly 
set the controls of the basic level? Given that infor- 
mation, how do we use it to give each parameter 
its optimal value? To answer these questions we 
compare our outputs to the works of artists and 
to the ideas we have as to how we would like our 
outputs to appear. Then we try to find those as- 
pects with which we are least satisfied and improve 
them. 
This leads to an iterative development process that 
eventually produces a set of heuristics comprising 
a level of DigiDiirer. Since some of these heuristics 

are useful as separate algorithms, we speak of them 
as partial levels. One important partial level which 
deals with the decomposition of the picture into 
objects is presented in the following subsection. 
Ideas about  other aspects of the higher levels are 
discussed in the concluding subsection. 

6.2 Separation into objects-  
a partial syntactic level 

One of the most obvious differences between hu- 
man halftones and the results of our basic level 
is that the human artist almost always renders each 
object in the picture separately, whereas our basic 
level renders a picture as a whole. Among other 
things, by doing so, the artist generally avoids the 
problem of rapidly changing gray levels that pro- 
duce the shocks encountered at our basic level. 
For  most pictures and most objects the local gray 
level does not change within an object as rapidly 
as it does across objects (a change which is inter- 
preted as an "edge"). This is especially true for 
syntactic segmentation where the criteria for seg- 
mentation are local similarity in gray levels and 
the paradigm that an object cannot cross an edge. 
Indeed, examining outputs of the basic-level algo- 
rithm, we observe that all the severe discontinuities 
(those that do not disappear in the reaction diffu- 
sion version) and quite a few of the less severe ones, 
have their origin on an edge between two distinct 
objects or an object and its background. 
(An instructive way of stating this is that for an 
input picture containing edges - unsmooth or rap- 
idly changing gray levels - it might be that there 
is no smooth solution to the Eikonal equation or 
its reaction-diffusion counterpart. The way to gen- 
erate a good halftone is then by placing the discon- 
tinuities where they are least objectionable or even 
beneficial, i.e., on the edges between objects in the 
picture. Hence we modify our method by artificial- 
ly forcing discontinuities at the edge locations.) 
Once a segmentation of the input picture is avail- 
able, we can perform a higher-level algorithm 
(which is syntactic or semantic - depending on the 
type of information at hand) as follows: 

1. For each object of the input picture (including 
the background as a separate object): 
a. Create a new picture g'(x, y) that consists of 

the current object and an interpolation of it 
into its convex hull. 
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Fig. 13. An example of syntactic level 
output of Dig~Diirer 

Fig. 14. Simulation of a wood cut 
(syntactic level output of DigiDi~rer) 

Fig. 15. An example of syntactic level 
output of DigiDi~rer 

Fig. 16. An example of syntactic level 
output with more than one set of lines 

Fig. 17. Syntactic level output with 
dot elements 

. 

b. Choose an initial condition, L(s, 0), for 
g'(x, y). 

c. Choose the parameters of the basic level for 
g'(x, y). 

d. Let the basic level run on g'(x, y). 
Produce the complete output  by clipping and 
putting together the renderings of the different 
objects. 

Note that the interpolation of each object (which 
may even be composed of a number of discon- 
nected regions in cases of occlusion) into its convex 
hull is necessary, since our basic level expects the 
picture it is rendering to be convex. 
To make the algorithm a complete syntactic or 
semantic level we must specify the information we 
need and the mechanism(s) we use to choose the 
parameters in steps lb  and lc. When such informa- 
tion or such a mechanism is not available, we are 
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forced to use default parameters and we are left 
with a partial level algorithm. This partial level 
algorithm is conceptually much simpler than a full 
level algorithm, since the separation of a picture 
into objects is a task most humans do easily, where- 
as setting the rendering parameters requires some 
artistic or graphical expertise (this is also true when 
the rendering is done by hand and not with a com- 
puter). 
To check the feasibility of the partial level algo- 
rithm we let it run on pictures for which a decom- 
position into objects was performed semiautomati- 
cally. (To separate the issue of good edge detectors 
and segmenters from the issue of using such infor- 
mation for halftones, the acceptable range of gray 
levels for each object in the segmentation was cho- 
sen by a human agent.) The results can be seen 
in Figs. 13-17. Indeed, among other improvements 
in quality, the lack of shocks can be clearly noticed. 



6.3 Towards full syntactic 
and semantic levels 

At this stage of our  research, we h a v e  nei ther  a 
working syntactic level no r  a working semantic  lev- 
el. However ,  we do have a few ideas, which are 
being tried, as to how we should go abou t  imple- 
ment ing  these levels. We present  some of them here, 
first for the syntact ic  and  then for the semantic  
levels. 
At  the syntactic level, a main  goal can be to ensure 
the global similarity of lines within the same syn- 
tactical object  (which is often associated with a face 
of a real world  object). This can be done  by  the 
methods  out l ined in Sect. 4.3. However ,  the dmin 
and dm,x should now change interactively to ensure 
that  the " f r o n t "  does "skip  over"  local distur- 
bances while it still modifies itself according to the 
general variat ions of  gray over  the entire object. 
Once the lines are globally similar, the major  re- 
maining issue at the syntactic level is the or ienta-  
t ion of the overall g roup  of lines, which can now 
be control led by proper ly  selecting the initial line 
of the rendering. At  first glance Figs. 5 a -c  seem 
to indicate tha t  this pa ramete r  has little effect on 
the overall  qual i ty of  the output .  However ,  even 
there we find cases (for example,  the por t ion  of 
the hat  above  and slightly to the left of the nose) 
where the effect is noticeable.  When  a g roup  of 
lines is globally similar this effect should become 
even more  dominant .  
Possible ways of selecting an initial line at  the syn- 
tactic level include choosing:  

- An edge of the object. 
- A line perpendicular  to an edge of the object. 

- A line along a direct ion of maximal  corre la t ion  
between pixels in the object. 

All three ideas are inspired by observing h u m a n  
halftones. The  first two seem to emphasize the ob- 
ject  against  its background  and sometimes enhance  
its perceived three-dimensional  structure.  The  third 
is expected to enhance  texture. 
Observing h u m a n  halftones, we also notice tha t  
not  only  are the lines similar to one ano the r  over  
large areas, but  that  typically they also follow the 
project ion of the three-dimensional  s t ructure  of the 
object rendered.  When  we have semantic-level in- 
fo rmat ion  at our  disposal, one of ou r  main  aims 
should be to make  our  lines follow this 3 D struc- 
ture. Again the me thod  is similar to the previous 
ones, except that  now we do not  wish the " f r o n t "  

to move  at roughly  constant  speed, but  ra ther  at 
the predicted speed of the equiheight or steepest 
descent " f ron t" .  N o te  that  unlike the syntactic lev- 
el, here the prob lem of making  lines in a crisscross 
pat te rn  might  actually become simpler since we 
can use the directions of the normal  and tangent  
of the project ion of the three-dimensional  s t ructure  
as our  two intersecting directions. 
W h en  a choice of the half tone elements is available, 
it appears  tha t  it should be used mainly  to enhance  
texture  (especially if a semantic level a lgor i thm al- 
ready takes care of the three-dimensional  struc- 
ture). This can be done  either by selecting half tone 
elements that  match  the elements of the texture 
(dots when the texture  is dots, etc.) or else choosing 
elements tha t  give the feeling of tha t  s t ructure  - 
smooth  elements for a smooth  surface etc. See ex- 
amples in Gill (1984). 
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