
16
COOPERATIVE CLEANERS :

A STUDY IN ANT ROBOTICS
Israel A. Wagner and Alfred M. Bruckstein

Computer Science Department
Technion - Israel Institute of Technology

Haifa, Israel 32000

To Tom K ailath, teacher and friend, with appreciation and best wishes for the
next sixty great years!

ABSTRACT
In the world of living creatures, "simple minded" animals often cooperate to achieve
common goals with amazing performance. One can consider this idea in the con
text of robotics, and suggest models for programming goal-oriented behavior into the
members of a group of simple robots lacking global supervision. This can be done by
controlling the local interactions between the robot agents, to have them jointly carry
out a given mission. As a test case we analyze the problem of many simple robots
cooperating to clean the dirty floor of a non-convex region in Z2, using the dirt on
the floor as the main means of inter-robot communication.

1 INTRODUCTION
In the world of living creatures, "simple minded" animals like ants or birds
cooperate to achieve common goals with surprising performance. It seems that
these animals are "programmed" to interact locally in such a way that the de
sired global behavior is likely to emerge even if some individuals of the colony
die or fail to carry out their task for some other reasons. It is suggested to
consider a similar approach to coordinate a group of robots without a central
supervisor, by using only local interactions between the robots. When this,
decentralized approach is used, much of the communication overhead (char
acteristic to centralized systems) is saved, the hardware of the robots can be
fairly simple, and better modularity is achieved. A properly designed system
should achieve reliability through redundancy. Significant research effort has
been invested during the last few years in design and simulation of multi-agent

290 Chapter 16

systems (e.g. [20], [15], [4], [19]). Unfortunately the geometrical theory of such
multi-agent systems is far from being satisfactory, as has been pointed out in
[2] and many other papers.

Our interest is focused on developing the mathematical tools necessary for the
design and analysis of such systems. In a recent report [21] we have shown that
a number of agents can arrange themselves equidistantly in a row via a sequence
of linear adjustments, based on a simple "local" interaction. The convergence
of the configuration to the desired one is exponentially fast. A different way
of cooperation between agents is inspired by the behavior of ant-colonies, and
is described in [6]. There it was proved that a sequence of ants engaged in
deterministic chain pursuit will find the shortest (Le. straight) path from the
ant-hill to the food source, using only local interactions. In [7] we investigate
the behavior of a group of agents on Z2, where each ant-like agent is pursuing
his predecessor, according to a discrete biased-random-walk model of pursuit
on the integer grid. We proved there that the average paths of such a sequence
of a(ge)nts engaged in a chain of probabilistic pursuit converge to the straight
line between the origin and destination, and this happens exponentially fast.

In this paper we investigate a more complicated question concerning the be
havior of many agents cooperating to explore an unknown area (for purposes of
cleaning, painting, etc.), where each robot/agent can only see his near neigh
borhood, and the only way of inter-robot communication is by leaving traces
on the common ground and sensing the traces left by other robots. We present
an algorithm for cleaning a dirty area that guarantees task completion (un
less all robots die) and prove an upper bound on the time complexity of this
algorithm. We also show simulation results of the algorithm on several types
of regions. These simulations indicate that the precise time depends on the
number of robots, their initial locations, and the shape of the region.

In the spirit of [3], we consider simple robots with only a bounded amount
of memory (Le. a finite-state-machine). Generalizing an idea from computer
graphics, [10], we preserve the connectivity of the "dirty" region by allowing an
agent to clean only so called non-critical points, points that do not disconnect
the graph of dirty grid points. This ensures that the robots will stop only
upon completing their mission. An important advantage of this approach, in
addition to the simplicity of the agents, is fault-tolerance: even if almost all
the agents cease to work before completion, the remaining ones will eventually
complete the mission. We prove the correctness of the algorithm as well as an
upper bound on its running time, and show how our algorithm can be extended
for regions with obstacles.

The rest of the paper is organized as follows: in Section 2 the formal problem
is defined as well as the aims and assumptions involved. The algorithm is pre
sented in Section 3, where its time-complexity is analyzed, and some simulation
examples are shown. Section 4 is devoted to the problem of exploring/ cleaning
regions with obstacles, and is followed by some examples from our simulation

Cooperative Cleaners 291

runs. We conclude the paper with a discussion and by pointing out several
connections to related work.

2 COOPERATIVE CLEANING: PROBLEM
STATEMENT

The problem we address is the following: we are given a region Ro to be
explored, which is assumed to be a connected subset of the integer grid, ZZ,
and a set of k robots initially located at r(O) = (rl (0), rz(O), ... , rk(O)). We
want these robots to clean Ro, i.e. initially all points of Ro are assumed to be
dirty ("off" ,0) and must be turned clean ("on" ,1). The system should evolve
according to a rule that can be described as

(R(t + l),r(t + 1)) = f (R(t),r(t))

where R(t) is the status map of Ro at time t - indicating the region still to be
cleaned by O's and designating those points that have already been cleaned by
1. Initially all bits are set to indicate the status of all points in Ro as O.

We seek for a rule f that will fulfill the following aims

1. Full coverage: each point in Ro is eventually cleaned.

2. Agreement on Completion: After the whole region has been cleaned,
there should eventually be a time when all the robots that are still active
become aware of this fact (and hence can go and take a nap or proceed to
the next mission).

3. Efficiency: in time and space (memory usage of each robot).

4. Fault Tolerance: if some of the robots die and hence stop working before
completion, the others should be able to carryon and complete the mission.

We make the following assumptions

1. A robot can move one grid unit at a time, from a grid point to an adjacent
one.

2. Each point in Ro represents a room and several robots may occupy the
same room at the same time.

3. There is no prior knowledge of the shape of Ro except that it is assumed
to be simply connected 1.

4. There is no central control; it is a 'de-centralized' system with no leader
(i.e. all agents/robots are identical).

1 We shall later show how to deal with non-simple regions too.

292 Chapter 16

5. A robot can see and sense the status of his 8-neighborhood. (i.e. the 3 x 3
square around its current location).

3 A MULTI-AGENT CLEANING
ALGORITHM

To solve the cooperative cleaning problem, we suggest the protocol CLEAN
(see Figure 16.1), to be programmed into and executed by each robot at every
(discrete) point of time.

Each robot has, by assumption, a bounded amount of memory (i.e. it is a finite
automaton). The connectivity of the region still to be cleaned, R, is preserved
by allowing a robot to clean only non-critical points, i.e. points that do not
disconnect the current graph of dirty grid points. This way, it is also guaranteed
that the robots will stop only upon completing their mission. An important
advantage of this approach, in addition to the simplicity of the agents, is fault
tolerance: even if almost all the agents cease to work before completion, the
remaining agents will take over their responsibilities and complete the mission.
The "pivot" is a special point on the boundary of R, oR (oR is defined as the
set {(u, v) i(u, v) E Rand (u, v) has an 8-neighbor in Z2 \ R}), and all robots
are assumed to be initially located there. This point (denoted Po) is artificially
set to be critical during the execution, hence it is also guaranteed to be the
last point cleaned. Completion of the mission can therefore be concluded from
the fact that all (working) robots are back at Po with no dirty neighbors to go
to, thereby reporting on completion of their individual missions. Note that the
pivot is not necessary for the algorithm to work well - it just makes life easier
for the user since one then knows where to find the robots after cleaning has
been completed. If we do not start with all robots at the pivot and force Po
to be critical, the location of the robots upon completion will generally not be
known in advance. We denote the initial dirty region by Ro and the remaining
dirty region by R; our aim is to finish with R = ¢.
The introduction of the notion of critical points makes time-complexity analysis
significantly harder since a critical point may be visited several times before its
cleaning. We conjecture that the algorithm proposed is efficient, and additional
robots will speed up the cleaning process only up to a limit. In order to give
this argument a rigorous form, we need some definitions. We denote the area
of R by a(R). In the "grid" context, this area was defined as the number of
grid points in R. Actually, R defines a dichotomy of Z2 into Rand R = Z2 \ R.
The border of R, denoted oR, was defined as the set of points in R which have
8-neighbors in R. We define the circumference of R, c(R), to be the area of
oR. A path in R will be defined as a sequence (PI, P2, ... ,Pm) of points in R
such that any two consecutive points are 4-connected in R. (Two points are 4-
connected if the Manhattan distance between them is one). We now formalize a

Cooperative Cleaners 293

notion of R's "fatness" - i.e. its maximal width - as following. Consider u E R,
a point in R. A string of u is a simple path in R that starts at u and ends at a
non-critical border point. The depth of u, denoted by w(R, u), will be defined
as the shortest string of u (unless u is itself critical - then its depth will be
defined to be zero). The length of a string is defined as the number of points in
it. The total width of R, denoted w(R), will be defined as the maximal depth
among all points of R: w(R) = maxuER {w(R,u)}. In the CLEAN algorithm,
the connectivity of the dirty shape is always preserved, since a point is never
erased as long as it is a critical one. We shall assume that some (arbitrary)
point Po on the boundary of R is a starting point for our agents, and we shall
call it a pivot. The longest in-region distance between Po and any other point
in R will be referred to as l(R), the length of R:

l(R) = max {dRCPo,V)}
vER

where dR(X,y) is the distance (shortest path within R) between x and y. See
Figure 16.3 for an illustration of the above definitions.

With these concepts defined, we have the following results.

Lemma 16.1 If a(R) > 0 then w(R) 2:: 1, that is: any finite simple region has
at least two non-critical points on its boundary.

Proof: The boundary oR is a connected graph, hence it has a spanning tree.
In such a tree there are at least two vertices with degree 1; these vertices are
necessarily not critical in R, since any boundary point which is critical in R is
also critical in oR. 0

Theorem 16.1 A group of robots executing the CLEAN protocol will even
tually clean a simply connected region and stop together at Po, the pivot set by
the "INITIALIZE" phase of the algorithm.

Proof: While R has not yet been cleaned, a(R) > 0 and hence, by Lemma
16.1 there is a non-critical point on oR. Since the robots obey the CLEAN
rule, at least one of them will arrive to a non-critical point once in a period
of a(R) (since c(R) ~ a(R)), and erase this point from R, thus reducing a(R)
by 1. We conclude that after no more than a2 (R) units of time we shall have
a(R) = O. The fact that all robots will meet at the same point is implied by
the following two rules that are implemented in the CLEAN algorithm:

• rule 1: R is always being kept connected. (We never clean a room that
has no clean neighbor and never clean a critical room either).

• rule 2: The pivot Po is cleaned only when no other dirty points are left in
R.

294 Chapter 16

This completes the proof of Theorem 16.1. o

Eventually, as the agents progress in their job, each point becomes non-critical
and is cleaned. The point last cleaned is the pivot Po, since we (artificially)
keep it critical until all other points have been cleaned. Let us denote the j'th
robot time of its i'th visit to Po by rj. The i'th tour of the boundary by robot
j, denoted Tj, is the path traversed by robot j between two consecutive visits
at Po, namely:

The path of robot j can then be decomposed into a series of tours:

path(j) = T},Tj, ... ,Tr

where rj(t) is the location of j at time t, rj is the start-time ofTj, the i'th tour
of the boundary by r j, and M is the total number of tours. In the CLEAN
algorithm, the inter-robot order never changes; that is - there is exactly one
visit of j at Po between two consecutive visits of i at this point, for any i, j such
that 1 :5 i,j :5 k. Note that due to Lemma 16.1, and the order-preservation
property of the CLEAN algorithm, the total number of tours is the same for
all robots.

Hence we can order the tours by the order they visit the pivot po:

T/,Ti, ... ,Tl,Tf,Tl, ... ,T/:

The next Lemma states that tour-cardinalities are non-increasing.

Lemma 16.2 The cardinality of the set of points visited during a tour cannot
be larger than the preceding one, namely

where v(T) denotes the number of vertices in a tour T.

Proof: First we note that each tour is a simple, dosed, rectilinear polygon.
T1+'1' the m'th tour of robot rj is created by tracking the previous tour Tr,
while deleting any non-critical points along the way. Going along such a poly
gon, we either go straight, turn right or turn left. For the sake of simplicity, let
us denote T1+'1 by T' and Tr by T. It is easy to see (see Figure 16.4(a),(b))
that a right turn increases the tour-length by two and a left turn decreases it
by two. (Going straight has no effect). But the tour is a simple rectilinear
polygon, hence it always has four "left" turns more than "right" turns (This is
a simple consequence of the "rotation index" Theorem (see, e.g. [8] pp. 396):
If a: [0, 1] ~ R2 is a plane, regular, simple, closed curve then J; k(s)ds = 271",

Cooperative Cleaners 295

where k(s) is the curvature of n(s) and the curve is traversed in the positive
direction (Le. with the inside to the left of the walker)). The only exception
occurs when one or more points along the tour are critical (see Figure 16.4(c)).
In such a case, the critical points are just repeated in V (T') but do not increase
the overall size of the set. 0

Note that the length of the tour may increase but its cardinality will never
exceed that of the first one, namely laRI.

Next we establish a link between the cardinality of a tour and its length:

Lemma 16.3 The length of a tour never exceeds four times its cardinality,
that is:

c(T) ~ 4v(T) (16.1)

where c(T) is the length of tour T and veT) is the number of points in it.

Proof: The tour T = (V, E) is a directed cyclic path traversing the vertices of
V = V(aR), the border of R, along the edges E = E(aR) on the boundary.
Observing that the maximal degree in R (and hence in aR) is 4, and that no
edge in T is traversed more than twice, one can easily see that

c(T) ~ 2IE(T)1 ~ L d(u) ~ 4v(T)
uEV

o

The conclusion from Lemma 16.2 and Lemma 16.3 is that a tour length never
exceeds twice the original circumference of the region. We next, proceed to
show that the total number of tours is bounded above. Let us define w(Tt),
the width of the m'th tour of robot j, as the width of the region surrounded
by this tour. Then we have

Lemma 16.4 The width of robots' tours is monotonically decreasing, that is:

Vj,m 1 ~ j ~ k, 1 ~ m ~ M: w(Tj) ~ max {O,W(T.i-l) -1}

Proof: By definition, w(T!) is the longest distance from an internal point of
Tt to a non-critical point on its boundary. But, according to the CLEANing
rule, robot j has cleaned all non-critical points from the boundary of TI~l -
hence its width has decreased by one, the only exception being when TI~l is
already equal to one. 0

From Lemma 16.4 it clearly results that the number of tours, M, is bounded:

Corollary 16.1

296 Chapter 16

Proof: According to Lemma 16.4 there are at most 7!- tours before the width
reduces to 1. Once w = 1 all that remains from Ro is a skeleton that can clearly
be cleaned in a single tour. 0

A relation between the length and duration of each tour is stated next.

Lemma 16.5 The time it takes robot j to make its i'th tour is bounded above
by 1.5 times the geometric length of the tour, namely:

T;+1 - Tj = 1.5 . c(Tj)

Proof: With the CLEAN procedure the robot follows its tour step-by-step,
the only exception being when more than one robot enter the same point at
the same time, going in the same direction. But, this cannot happen with
more than 4 robots (since any point has no more than 4 neighbors), and, such
collisions are resolved by releasing the 4 robots at 4 consecutive time points.
The times that the four robots have to wait in this location are 0,1,2 and 3
units of time, respectively. Hence the ratio of the "efficient" time to the total
time is 1±~+3 = ~, so the total touring-time of a robot cannot exceed 1.5 times
the length of the tour. 0

We are now ready to prove the main timing theorem:

Theorem 16.2 Assume that k robots start at some boundary point Po of a
simple connected region Ro and work according to the CLEAN algorithm, and
denote by tk the time needed for this group to clean Ro. Then it holds that:

(16.2)

where a,c,l and w denote the area, circumference, length and width of of Ro,
respectively.

Proof:

1. The lower bound is quite obvious - the left term 2k is the time needed
to release the k robots from the pivot, % is a lower bound on the time
necessary to cover the region if the robots were optimally located at the
beginning. The right term, 2l, comes from the observation that at least
one robot should visit (and return from) any point of Ro, including the
one farthest from Po, to which the distance is l.

2. According to Lemma 16.2 all robots stop simultaneously at Po after com
pletion of M tours. Hence, we can estimate the total stopping time as the
stopping time for any of the robots, say robot 1:

M

tk = Tf'l = T[+ ~ (T;,,+1 - Tf")
m=1

Cooperative Cleaners 297

by Lemma 16.4, Corollary 16.1 and Lemma 16.5, we get:

3. The additional term of 2k stands for the time of release - since all robots
are initially concentrated in one point and they keep a separation of two
time units between them, we need 2k units of time before all k robots
become operational.

o

Using the above theorem we can bound the speedup ratio, defined as

which expresses the benefit of using k robots for a cleaning mission:

Corollary 16.2

{ 2k 1 2l} tk 2k (WC C) max -, -, - ::; - ::; - + 6 - + -
a k a a a ka a

(16.3)

where a,'w,c,l and k are as in Theorem 16.1.

An interesting result of Corollary 16.2 is that when a > > k > > w, i.e. the
number of robots is large relative to the width but small compared to the area,
then the speedup is bounded below by twice the ratio of the length and area,
and bounded above by 6~, three times the ratio of the area and circumference
of Ro. Note here the similarity to the ratio fo' known as the shape-factor.

Another conclusion is that when we scale up the region by a factor of n, the
area increases as n 2 but the width, length and circumference all increase as n
so we get

Corollary 16.3

where

as n -* 00,

1
Leo = k'

and a = aon2 , c = con, W = won are the scaled area, circumference and width,
respectively.

298 Chapter 16

4 REGIONS WITH OBSTACLES
So far we have only dealt with simply connected regions, i.e. - regions with
no "holes". In the case of a (connected) region with obstacles (i.e. holes)
the simple CLEANing algorithm will not work, due to the following "cycle"
problem: eventually, each obstacle will be surrounded by critical points, and
there will be a time when all boundary points of R will be critical, contrary
to the statement of Lemma 16.1. (We shall call such a situation useless, as
opposed to the useful state when some points are cleaned during a tour). As a
cure to this problem, we suggest to add an "odoring" feature to our cleaners;
that is, a robot will be able to label a point on the floor by a small amount of
"perfume". (This action may remind one of the pheromones left by ants during
their walks). These labeled points will designate the external boundary of the
dirty region. Upon getting to the useless state (detected by each robot due to
no cleaning between two consecutive visits to the pivot) a robot will continue
to traverse the boundary, but will now look for a point which has a "mixed"
boundary - that is, one that has odor on one side but no odor on the other. The
robot will clean this point (despite its "criticality" - it is not really critical since
it is necessarily part of a cycle around an obstacle) and then continue as in a
useful state. This will open one cycle, hence, if there are s obstacles, we will
need s/k such tours before the region is completely clean. (See Figure 16.2
for the modified algorithm). On the other hand, Lemma 16.2 no longer holds
(see Figure 16.6) since the boundary area can increase with time. However the
boundary is always bounded above by the area. We now make the following

Conjecture 16.1 Assume that k robots start at some boundary point of a
non-simple connected region R with s obstacles in it, and work according to the
CLEAN-WITH-OBSTACLES algorithm, and denote by tk the time needed
for this group to clean R. Then it holds that:

(16.4)

where a,c,l and w denote the free area, circumference, length and width of of
R, respectively, and s is the number of obstacles in R.

5 SIMULATION EXAMPLES
A simple motion rule is the core of the cleaning algorithm, as shown in Figures
16.1 and 16.2. Each robot checks if his location is critical. If not - he cleans
this location. Then, if the robot is the only one at the current point, it looks
around and goes to the rightmost free grid point that is closer than others to
the border of the region. If a robot with higher priority occupies the same
location, the robot waits.

We ran the algorithm on several shapes of regions and for numbers of robots
varying from 1 to 20. See Figure 16.5 - 16.6 for some examples of the evolution

Cooperative Cleaners 299

of the layout with time. The gray level of each pixel designates the index of
the robot that actually cleaned this point. The right side of Figure 16.5 shows
the same region and number of robots as in the left side 6f this Figure, but
with randomly chosen initial locations at the corners. It can be seen that the
dirty region is cleaned in a similar way. It should be said here that all the
theory we developed in the previous sections (up to a small additive constant)
applies to the case where the robots are initially located in randomly selected
points on the boundary of Ro (rather than starting from Po). Figure 16.6 shows
the evolution of the CLEAN-WITH-OBSTACLES algorithm for the same
shapes with four additional obstacles in each, with 2 robots (left) and 10 robots
(right).

Figure 16.7 summarizes the timing results of many simulations, plotting the
time (normalized by area) vs. number of robots, compared to the theoretical
bounds. In Figure 16.8 we show the results for the same figures with additional
obstacles, together with the conjectured theoretical bounds.

6 RELATED WORK AND DISCUSSION
Our cooperative CLEANing algorithm can be considered as a case of social
behavior in the sense of [17], where one induces multi-agent cooperation by
fprcing the agents to obey some simple "social" guidelines. This raises the
question what happens if one robot malfunctions. We have shown that if less
than k robots stop, the others will take over their responsibilities. But what
if some robots start to cheat ? Such adversaries will have catastrophic conse
quences, since a crazy robot may clean a critical point and disconnect the dirty
region.

Another question of interest is the resolution of collisions between robots. In
the CLEAN algorithm we resolve such a problem by giving each robot a
priority measure depending on his previous location. But it is an interesting
open question whether a coin flipping is better here.

The cleaning problem discussed is related to the geometric problem of pocket
machining, see [9] for details. An interesting problem of cleaning and mainte
nance of a system of pipes by an autonomous robot is discussed in [14]. The
importance of cleaning hazardous waste by robots is described in [11].

Our approach is that cleaning is always done at the boundary. It is possible
that a better efficiency will be achieved using other approaches:

1. Given that several neighbors are dirty, visit the non-critical ones first (even
if not on the boundary). This approach is quite efficient for one robot, but
can be a mess for several robots.

2. Once entering a large "room" (that is - upon passing from a critical area
to a non-critical one) - designate the entrance by a special type of token,

300 Chapter 16

so that other robots will enter only in case there is no other work to do.
This approach guarantees that the robots will be distributed between the
large rooms of the R-configuration. This is attractive if the region has such
rooms of quite similar areas.

3. Quite a different idea is to divide the work into two phases - the first one
of "distribution" - the robots locate themselves uniformly around the area.
Then, in the second phase, each robot cleans around his "center". If the
distribution is appropriate, there will be minimum of interactions between
robots in the second phase.

We use the dirt on the floor as a means of inter-robot communication, but
other ways for communication between agents have been suggested. One is to
use heat trails for this end, as was reported in [16]. In [20], self-organization is
achieved among a group of lunar robots that have to explore an unknown region,
and bring special rock-samples back to the mother-spaceship, by programming
each robot to drop a crumb at each point he visits and walk around at random
with a bias toward the negative gradient of crumb concentration.

Another question of interest is how to guarantee covering, at least with high
probability, without using any external signs, using only the inter-robot colli
sions as an indicator for a good direction to proceed.

It is of interest to notice here that an off-line version of the problem, that is:
finding the shortest path that visits all grid points in R, where R is completely
known in advance, is NP-hard even for a single robot. It is a corollary of the
fact that Hamilton path in a non-simple grid-graph is NP-complete [12].

In summary, we would like to cite a statement made by a scientist after watching
an ant making his laborious way across a wind-and-wave-molded beach[18]:

An ant, viewed as a behaving system, is quite simple. The appar
ent complexity of its behavior over time is largely a reflection of the
environment in which it finds itself.

Such a point of view, as well as the results of our simulations and analysis, make
us believe that even simple, ant-like creatures, yield very interesting, adaptive
and quite efficient goal oriented behavior.

*

Cooperative Cleaners

Procedure INITIALIZE (r17 r2,.· .,rbPo):
Ll) Choose a pivot Po E (JRo;

1.2) Locate the robots at Po;

1.3) For(t = 1; t ~ k; t + +)
1.3.1) Let robot rt start working at Po

according to the CLEAN protocol;
1.3.2) Wait 2 units of time;

end INITIALIZE.

Protocol CLEAN(r,x,y):

301

A) if not (is-critical(x, y)) then /* can I clean my current location? * /
Set R(x, y) to 1;

B) if (x, y) has no dirty neighbors then STOP.
C) if [there are no other robots at (x, y)] or 1* plan the next move * /

[priority(r) is higher than the priorities
of the other robots at (x, y)]

then go to the rightmost neighbor of (x, y) on (JR.

end CLEAN.

Function is-critical(x,y): /* criticality test */
if [(x, y) has two dirty 4-neighbors which are not connected

via the 8-neighborhood of (x,y) (excluding (x,y) itself)]
or [(x, y) = Po]

then return(TRUE);
else return(FALSE);

end is-critical.

Function priority(r):
(xo, Yo) := r's previous location;
(Xl, yd := r's current location;

return(2· (xo - xI) + (Yo - yd);
end priority.

/* priority measure * /

Figure 16.1 The CLEAN protocol for robot r currently at (x,y), and its
sub-functions. In step C, rightmost means: starting from the previous bound
ary point sweep the neighbors of (x, y) in a clockwise order until you find
another boundary point

302

Procedure INITIALIZE (r17 r2,·· .,rk,po):
1.1) Choose a pivot Po E 8!loj
1.2) Locate the robots at Poj
1.3) For each r, status(r):=usefulj
1.4) For(t = Ij t $ kj t + +)

1.4.1) Let robot rt start working at Po

Chapter 16

according to the CLEAN-WITH-OBSTACLES protocolj
1.4.2) Wait 2 units of timej

end INITIALIZE.

Protocol CLEAN-WITH-OBSTACLES(r,x,y):
A) if not(is-critical(x, y)) /* can I clean my current location? * /

or [status(r)=useless and
there is odor on only one side of (x, y)]

then
Set R(x, y) to Ij
Set odor(x, y) to Ij

B) if (x, y) has no dirty neighbors then STOP.
C) if [there are no other robots at (x, y)] or /* plan the next move * /

[priority(r) is higher than the priorities
of the other robots at (x, y)]

then go to the rightmost neighbor of (x, y) on 8R.
D) if [(x, y) = Po and no point has been cleaned by r

since previous visit to Po]
then status(r):=uselessj

end CLEAN-WITH-OBSTACLES.

Figure 16.2 The CLEAN-WITH-OBSTACLES protocol. Note the use
of odor to identify cycles. The priority and is-critical functions are the same
as in CLEAN algorithm.

Cooperative Cleaners 303

left turn - length decreases

w(R)=w(R,u)

a tour of R

w(R,u)

right turn - length increses
u

- , - a robot
pillOe

Figure 16.3 An illustration of the definitions involved in Theorem 16.1.

pivot - costrained to stay dirty

J • point cleaned by robot (j)

• point cleaned by robot (j+ I)

critical (separating) point

boundary of the region

Figure 16.4 The effect of corners on tour-size may be either an increase (a,c)
or decrease (b)

304

~>Q.>lj;~_ 'fi~~:to< ~ ,.~< ~ '" 'W 91 :W: ~~~~

~N~"~>lIi'~M_"'~~l>.:E~~_~· ;:'~"l

Chapter 16

~:t'~t«JII: ¢~:jt., ~ ~):~ _ olt.u ~ ii&~:m

"* ~t ~ ~ t~> ~~ JiI.~'" ~ 3t.~m ~~ ~_ ~ ~~.:t

Figure 16.5 Cooperative cleaners: maze, 10 robots (left), and 10 robots with
random initial locations on the boundary (right).

Figure 16.6 Cooperative cleaners: 2 robots, 6 rooms with obstacles (left),
10 robots, 6 rooms with obstacles (right).

Cooperative Cleaners 305

"C::''''''-'-'''~''''.'.J ,,,,,.,, ... ' ' ,, " '[~:J
, ~. . .

, '--""", -~ .. ~.
" -. ,_
, ,

., . .
,. ". ' .
.:.~: .• :,:." ... ,: .. : ... :':':',:',:'.:':',:'. ':.\:;:::,::::,::,::.:: .

. ~'''''''-'--''-'~='-J' , .. '"'.~

. .
:

••••••••••••
" , , ,. " " ,.

"
. , , ... " " .. " '" ..

Figure 16.7 Various shapes tested in CLEAN simulations and the normal
ized time (~) vs. number of robots (k) for each shape, together with the lower
and upper bounds according to Theorem 16.2

306 Chapter 16

D·nITiRV~ · .W~ub~
-",

'"

'"

".

'"
',', , ,. " " ,.

"' ~' .. --.~--,..-:"-: J":~:' --
: .
" .
" .

.
',., .. " " " " " " '"

.[' .. --.-~,.-.. -j .. ~~.-
':
'0 , • , • " " " "

Figure 16.8 Various shapes with obstacles, tested in CLEAN-WITH
OBSTACLES simulations and the normalized time (~) vs. number of ro
bots (k) for each shape, together with the lower and upper bounds according
to Theorem 2

Cooperative Cleaners 307

REFERENCES
[1) B. Bollobas, Graph Theory - an Introductory Course, Springer-Verlag,

1990.

[2) G. Beni, J. Wang, "Theoretical problems for the realization of distributed
robotic systems," Pmc. of the 1991 IEEE Internl. Conference on Robotics
and Automation, pp. 1914-1920, Sacramento, California, April 1991.

[3) V. Braitenberg, Vehicles, MIT Press 1984.

[4) R.A. Brooks, "Elephants Don't Play Chess," in Designing Autonomous
Agents, P. Maes (Ed.), pp. 3-15, MIT Press/Elsevier, 1990.

[5) R.A. Brooks, "Intelligence without representation," Artificial Intelligence,
47 (1991) 139-159, Elsevier.

[6) A.M. Bruckstein, "Why the Ant Trails Look So Straight and Nice ," The
Mathematical Intelligencer, vol. 15, No.2, pp. 59-62, 1993.

[7) A.M. Bruckstein, C.L. Mallows and I.A. Wagner, "Probabilistic Pursuits
on the Integer Grid," Technical report CIS-9411, Center for Intelligent
Systems, Technion, Haifa, September 1994. Submitted to SIAM Review.

[8) M.P. Do-Carmo, Differential Geometry of Curves and Surfaces, Prentice
Hall, New-Jersey, 1976.

[9) M. Held, On the Computational Geometry of Pocket Machining, Lecture
Notes in Computer Science, Springer-Verlag 1991.

[10) D. Henrich, "Space-efficient region filling in raster graphics," The Visual
Computer {1994}, 10:205-215, Springer-Verlag 1994.

[11) S. Hedberg, "Robots Cleaning Up Hazardous Waste," AI Expert, May
1995, pp. 20-24. Springer-Verlag 1994.

[12) A. Itai, C.H. Papadimitriou, J.L. Szwarefiter, "Hamilton Paths in Grid
Graphs," SIAM J. on Computing {1982}, 11:676-686

[13) Instantiating Real- World Agents, Papers from the AAAI 1993 Fall Sym
posium, Tech.Rep. FS-93-03, AAAI Press, Menlo Park, California.

[14) W. Neubauer, "Locomotion with Articulated Legs in Pipes or Ducts,"
Robotics and Autonomous Systems, 11:163-169. Elseveier 1993.

[15) S. Levy, Artificial Life - The Quest for a New Creation, Penguin Books,
1992.

[16) R.A. Russell, "Mobile robot guidance using a short-lived heat trail," Ro
botica , Vol. 11, 1993, pp. 427-431.

308 Chapter 16

[17] Y. Shoham, M. Tennenholtz, "On Social Laws for Artificial Agent Soci
eties: Off Line Design," to appear at AI-Journal, 1995.

[18] H.A. Simon, The Sciences of the Artificial, 2'nd ed., MIT Press, 1981.

[19] S. Sen, M. Sekaran, J. Hale, "Learning to Coordinate Without Sharing
Information," Proceedings of AAAI-94, pp. 426-43l.

[20] L. Steels, "Cooperation Between Distributed Agents Through Self
Organization," Decentralized A.!, - Proc. of the 1 'st European Workshop
on Modeling Autonomous Agents in Multi-Agent World, Y. DeMazeau,
J.P. Muller (Eds.), pp. 175-196, Elsevier, 1990.

[21] I. A. Wagner and A. M. Bruckstein, "Row Straightening via Local Inter
actions," Technical report CIS-9406, Center for Intelligent Systems, Tech
nion, Haifa, May 1994. Submitted to SIAM J. on Matrix Analysis.

