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In the classical literature, which corresponds to inverse 
spectral  problems  associated with  differential operators or 
to inverse  transmission-line or layered-earth  proble.ms, 
the two methods correspond to using linear  equation for- 
mulation.s,  e.g.  those  of  Gelfand-Levitan or Marchenko or 
Krein  (Celfand  and  Levitan, 1955; Krein, 1954; Agranovic 
and  Marchenko, 1963) or  to using  the socalled direct, dy- 
namic deconvolution  or  differential  methods (see  e.g. 
Robinson, 1975; Bruckstein, Levy and Kailath, 1983/85). 
This distinction is formulated  here in general  terms  and 
’illustrated with several  examples. 

In general  terms, the (inverse)  scattering  procedures 
apply to linear systems with a cascade  str,ucture.  Such  sys- 
tems  are  by no means unfamiliar in the signal  processing 
literature-they are encountered as layered  earth  models 
in geophysical  analysis, as acoustic tube models in speech 
signal  processing, as modular .realizations in circuit and 
system  theory.  This  paper  presents a  unified conceptual 
framework  for  studying inverse or synthesis problems  per- 
taining to such  structures  and  arising in many  applications. 
The  cascade  systems under  consideration are first  inter- 
preted as layered,  wave  scattering  media,.  and the gen- 
eral direct and  inverse  scattering problems are then 
defined. The direct.  problem requires the  determination 
of the signals  generated within  the system  by  some  given 
inputs, under  the assumption  that the  medium  properties 
are known. The  inverse, or  model  identification,  problem 
is to determine, if it is possible, the  medium  properties 
from, its response, recorded at the boundary, to some 
probing  input signals. We shall  state conditions on the 
structure of the layers  that  enable recursive.model  identi- 
fication, and  shall present two alternatives for  the  imple- 
mentation  of  inverse  scattering  algorithms. The first 
implementation takes the scattering  data  and uses them to 
identify  a  portion of the  medium and  then,  at  each  step, 
replaces the data  by a set of “synthetic” scattering  data 
corresponding to the yet unidentified  part  of  the  medium; 
this  yields  the  so-called  “layer  peeling”  (or  dynamic 
deconvolution)  methods. The second implementation 
compounds  the identified  portions of the  medium and 
propagates the  original  scattering data through  this, 
already determined, system to obtain  the  information 
required  for  furthering  the  identification process; this 
process  yields the so-called  “layer  adjoining’’ (or linear 
equations-based)  methods. 

This  paper is organized as follows. The  next  section dis- 
cusses the general  set-up  of  wave propagation  through 
layered  scattering media.and  the section on examples of 
scattering  media  presents  several important models of sig- 
nal propagation,  arising in interesting applications.  The 
next  section then analyses the direct and  inverse scatter- 
‘ing problems, in fairly general  terms,  and  presents the 
alternative  layer-peeling  and  layer-adjoining  imple- 
mentations  of  inversion  algorithms.  The  subsequent 
section  applies the general  results to  the  previously 
presented  examples.  Finally, in  the last  section,  some in- 
teresting  connections  between  linear  fractional maps, 

continued fractions and inverse  scattering are briefly 
discussed. 

SPATIO-TEMPORAL  SCATTERING 

In spatio-temporal scattering  theory,  we  analyze the 
propagation of pairs of  discrete-time sequences through  a 
structured,  layered medium  (extending in the “space” di- 
mension).  Figure 1 describes the situation we have in 
mind. The time sequences, or ”waves”, W R ( n , t )  and 
WL(n, t ) ,  are functions  indexed by the depth, -or  space- 
index n, and  by the  running  time t. We shall  use the  term 
discrete  time-sequence or signal to describe the  functions 
WR(n,*)  or WL(n,.) for  a particular n. The medium may 
therefore  be regarded as mapping  time sequences, or sig- 
nals,  at certain points in space into  other sequences  at 
some different  points  in space.  The  layers of  the medium 
characterize the  interaction  between signals, and  we  shall 
say that time-sequences  propagate  and  interact in a way 
defined  by  the  properties of  these  elementary medium 
layers. In many  physical situations, wave propagition is 
described  by linear differential equations,  and then the 
action of  the elementary medium layers is a ,linear opera- 
tor. This is an assumption  made in most  signal  processing 
applications too.  Therefore we shall  consider that  the 
passage of the s’ignals through  the  n-th layer,  and their 
interaction, is described by a linear and  time-invariant 
operator.  Two different representations of this operator 
will be  used. 

By definition,  the transmission  representation of  the 
action of layer n on the propagating sequ,ences provides 
W R ( ~  + 1, t )  and WL(n + . l , t) ,  i.e., the signals  at depth 
n + 1, by operating on the signals at depth q. Formally 

where OW,, , D) is a linear, time-invariant (matrix) operator 
with  fixed  ,structure-spatially  parametrized  by a real 
valued  vector K,,. In the  description  of 0, D denotes 

,In,t) , . .  

, I n , t l  . . .  

layer 0 layer 1 layer i layer n 

depth 

Figure 1. Waves  in a Layered  Medium.  The  waves W,, 
and WL are  indexed  by the  depth  parameter n and  by  the:, 
discrete  time t. For a particular n the signals W R h  t l  and:. 
WLh,  tl’are discrete  time  sequences. The elementary lay:’ 
ers of the medium  define the,relationships [or interaction): 
between  the  signals  appearing on its  left and right sides.,: 
Usuallv the wave interaction is described bv a linear and; 

I time-invariant  oDerator. ,..I 
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an elementary  delay operator that acts on time sequences 
as follows 

Df ( t )  = f ( t  - I ) .  

It should  be clear that if  the entries of 0 are linear and 
time-invariant operators, their action on signals  can  always 
be  expressed as some function  of D (whose power series 
expansion is simply a representation of,the  corresponding 
weighting  or  impulse response function). Thus the entries 
of the transmission representation will be functions of D. 

In many  instances, for physical  reasons, one seeks a 
related, so-called scattering representation in  which the 
signals WR and WL are interpreted as right and left propa- 
gating waves respectively and,  instead of (2.3, we  relate 

"incident" variables {Wi (n ,  t),Wr(n + I., t ) }  ,to  "reflected" 
variables { W R ( ~  + 1, t ) ,Wr(n, t)}. Formally we write 

where Z(K,,, D) is a linear operator with  known structure, 
again parametrized by K,,. 

The scattering description  of a layer  thus  relates the 
outgoing, or reflected waves, to  the  incoming  or  incident 
signals at each medium section, as opposed to the trans- 
mission description  which provides, from the signals at a 
given depth, the signals that will appear one layer deeper. 
in the medium. Figure 2 gives a pictorial  interpretation to 
the action of  the 0 and 8 matrix operators. 

In  our  conceptual set-up, the  scattering  and trans- 
mission operators are sjmply two ways of  expressing the 
physical action of a medium layer (i.e. of  the relations it 
forces between the propagating signals). It is thus natural 
to ask how these representations are  related.  Suppose that 

(2.3) 

Then, assuming the blocks uz2 are invertible, simple 
algebra  shows that 

(2.4) 

and similarly that O(K, D) = X{Z(K, Dl>. 
Since the  above-defined  operators act  on  time- 

sequences,  we  can  raise the issue of causality,  An operator 
will be called causal if the outputs at a certain time instant 
depend  on  the present  and the past of the inputs only. The 
layered medium  under consideration will be assumed to 
be a causal scattering structure, defined  on the semi- 
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infinite axis [O,w), the signal flow  on it being described 
most  naturally by  the scattering  representation  of the sec- 
tions. Thus, it will  be  implicit  throughout that Z ( K ,  D) is’a 
causal operator. 

For the layered or cascade  system of Fig. 3 the signal 
“~(0, t) acts as an input, i.e. a probing wave that is sent 
into the  medium. Provided the  medium is originally at 
rest, the  output WL(O,t) is  the  reflected wave that- is 
evoked  by the  propagation of  the  probing signal  alone. 
Such pairs of causally  generated  signals will  be called  scat- 
tering data for  the  medium  under consideration. 

EXAMPLES OF SCATTERING MEDIA 

We shall  next  present some simple, but  important 
classes of scattering  media,  capable  of modeling rather 
general input-output (I/O) maps. 

Example 7: TAPPED  DELAY-LINEflRANSVERSAL FILTER 
(Fig.  4) 

The  scattering  system of  Figure4 models a general linear 
system with  input-output (convolution)  relation 

m 

w~(0, t )  = 2 Ki WR(O, t - i )  (3.1) 
i=O 

where  the gains {K,} are simply  the spatial  mapping of  the 
system’s weighting  or  impulse response function. In the 
scattering  terminology, the {Kt}  provide  the local para- 
,metrization of the  propagation  medium. For this medium 
we  have 

wR(n + 1,t)] - [ D  o] [ WR(n, t )  
[wL(n, t )  

- 
K,, 1 WL(n + 1, t )  ] (3.2) 

and therefore  the  corregponding transmission  matrices 
are  given  by 

O(K,,, D) = = [”-, :I’ (3.3) 

Example 2: TRANSMISSION-LINE TYPE MEDIUM (Fig. 5) 

The  ,medium model described  by,Fig. 5 is a cascade of 
pure-gain (i.e., memoryless)  interactions,  parametrized 
locally by K,,, and (relative) delay  elements. Note  that the 
delay  element shifts the WR sequence  by one  time  unit 
with respect to the  corresponding Wr signal. This model 
corresponds to a discretization of wave propagation equa- 
tions along a transmission-line structure or  in an acoustic 
medium with varying local impedance, as is  the case in 
some  geophysical  examples  (e.g.  Berryman  and  Greene, 
1980; Bube  and  Burridge, 1983; Bruckstein  and  Kailath, 
1983,  1986). In this case there is no simple  expression re- 
lating  the response WL(O, t )  to the  probing  input WR(O, t ) .  
The  scattering evolution is described by  the equations 

[ W R ( ~  + 1, t ) ]  = [ 
Wr(n, t) 1 

(3.4) 

so that  the scattering operator is 

where + i ( * )  are some arbitrary  functions  of K ,  with 
+1,3tK) # 0. The corresponding transmission  representa- 
tion is 

We note that in this  model  the delay eleinent may be split 
into half delays acting on the waves WR and WL, in  order 
to more “physically”  describe the symmetric propagation 
on a transmission-line  type  structure. Indeed in terms  of 
the local interactions between  the WR and the WL signal, it 
is only  the relative time  shift  between  the signals that is 
important. Therefore if we split  the delay into half delays, 
the  resulting  models  remain  completely  equivalent, 
modulo  a so-called travel-time  renormalization. 

Note  that  the local parametrization of  the scattering 
operators Z ( K ,  D) is done  entirely in terms of  the local “left 
reflection  coefficient”, u21 = K. This property  will  turn 
out  to be of crucial importance in the sequel. A case that 
most often occurs in practice is when  the  structure is as- 
sumed to be energy  preserving, or lossless. In this case the 
scattering  representation of  the  propagation  operator has 
to be unitary, which forces the  functions + i ( K )  to be of the 
form 

& ( K )  =‘ +3(K)  = (1 - K2)-”2 and &(K) = -K  
(3 * 7) 

The result i s  a classical, discretized  transmission-line 
structure, which is obviously parametrized  entirely  by  the 
sequence of  local  reflection  coefficients {K i }  (see  e.g. 
Bruckstein  and  Kailath, 1983, 19861,. 

Example 3: DELAYED  FEEDBACK  STRUCTURE (Fig. 6) 

In the  solution  of partial realization  problems, or  of  the 
related Pade approximation  and Hankel matrix  factori- 
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O(K, D) = 

[ "1 [O '1 ] (3.11) 
- P o  1 1 0 0 D-* 

which is schematically depicted in Fig.  6b. 
We note that this  medium structure, like  the  simple 

tapped-delay line, is a canonical  way  of representing  arbi- 
trary,  linear,  time-invariant  systems, or equivalently, I/O 
maps defined via input-response  data  (see e.g.  Kalman, 
1979; Gragg  and  Lindquist, 1983). 

Further  examples of layered  scattering  systems  can  be 
considered,  such as some  general "first degree" (in D) 
layers  (see  Fig. 7) not necessarily having  a gaindelay 
structure as in Examples 1 and'2.  Such generalized  models 
turned  out to be  useful in digital  filter design  (see Rao and 
Kailath, 1984,  1985). 

INVERSE  SCATTERING  ALGORITHMS 

Given any arbitrary pair of  signals WR(O, t )  and WL(O, t ) ,  
and the sequence  of  parameters iKi}t=1,2,3 ... that  specifies 
the medium, it is easy to  find the 'signals W R ( ~ ,  t )  and 
WL(n, t) H a l l  depth n. To do so, we merely use the transfer 
representation  of the  medium. The  signals at depth n +$I 
are clearly given  by 

zation  problems, we encounter  a linear  system structure 
of the type  described in Fig. 6. This model corresponds to wL(n + 1,t) 
a set of nested  feedback  loops,  parametrized by vectors K n  (4.1) 
of  the form [ a n ,  Po,.; . ,  P a n ] .  Th,e local parametrization is 
therefore  the order, an, of  the next  feedback  element  and which shows  that we also  have a recursive  way  of  deter- 

the parameters  necessary to determine an all  pole transfer mining the  signals at all  depth. Thus the  direct scattering 
function via Tfl (D) ,  The polynomia~ Tn(D) is given by problem is solved  recursively in an almost trivial way:Note 

that the'action of a  medium layer in the transfer  represen- 

and  by considering Fig. 6 we can readily write  down  the 
scattering evolutibn equations 

lm -m1 
(3.9) 

Recalling'(2.4), the transmissio,n  representation is found  to 
be of  the form 

This forward  propagation  operator, O(K,D),  admits  a 
useful decomposition  'into static gain and pure delay/ 
advance  sections: 
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Layer-Peeling  Algorithms 

A sufficient  condition  for having a medium that is iden- 
tifiable is to be  able to determine  the parametrization  of 
the  first layer  of the  medium from the scattering  data. 
Indeed,  suppose  that from  the structure  of  the medium, 
and from knowledge  of WR(O, t )  and WL(0, t ) ,  the parame- 
ter KO can  be  determined,  i.e. assume that there exists a 
function F(. , e }  so that 

KO = F{WR(O, t ) ,  W ~ ( 0 , t ) )  (4.2) 

Then it follows that  we  have a recursive procedure to cam- 
- pute  the  entire local parametrization  sequence. To do so, 

where  the matrix operator 

Mn(D) = O(Kn,D)**.O(Ko, D) (4.5) 

is the transmission  representation of  the portion  of the 
medium  extending over [O,nl. In  other words, we'may 
use the  identified  local parameters not  to  compute 
WR(n + 1, t )  and WL(n + 1, t )  from  the waves WR(n, t )  and 
WL(n, t ) ,  but  to determine  the matrix  transfer function of 
the medium over LO, nl; then  the waves at depth n + 1, or 
the  portions  thereof that  are required by F(.,.}, can be 
found by  propagating the  original scattering  data through 
this transfer function, M,,(D). Note that in this case the 
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1) compute Kn = WL(n,n) /WR(n,n)  
2) set W R ( ~  + 1, t )  = WR(n,  t - 1 )  and WL(n + 1, t )  = 

-Kn WRh,  t )  + WLb,  t )  
3) set n + n  + 1 and goto 1) 

The Layer Adjoining  algorithm is, following the  previous 
section. 

1) compute Kn = WL(n;n) /WR(n,n)  
2) update M,(D) to 
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(5.2) 

Now. in the LP algorithm, we form @(KO) and  apply it to the 
scattering  data WR(O, t )  and WL(O, f )  to get the sequences 
W R ( l ,  t )  and WL( l ,  t ) ,  one  section  deeper into the  medium. 
Then  using the  relation WL( l ,  2) = K, WR( I  identify KT 
and  proceed as before.  Note that this  algorithm may be 



propagated for  the general  transmission line structures 
described  by (3.5) or (3.6), and the sections  need not,have 
the  frequently assumed  lossless form given  by (3.7).  .For 
reasons to be  discussed in the next  section, we shall call 
the LP algorithm  a generalized  Schur algorithm. 

The,corresponding  layer-adjoining  algorithms are  also 
immediately obtained. As in  the previous example, they 
will be seen to be  fastways of  solving certain linear equa- 
tions with specially structured  coefficient matrices.  The 
actual structure depends on the form  of  the scattering 
data-the  choice  of  'the input and output pairs, e.g. 
whether  the input is an impulse or some other (perhaps 
specially  chosen)  sequence. Correspondingly  we can 
obtain various  classical  inverse  scattering  equations  such 
as the Gelfand-Levitan  equations, which have coefficient 
matrices that are the sum of a Toeplitz and a  Hankel 
matrix, the Krein  equations with a Toeplitz  coefficient 
matrix,  and the  Marchenko equations which display the 
scattering  data in a Hankel coefficient matrix. A feature of 
our approach is that all these  equations  arise as particular 
cases of  a new  general equation  corresponding to an arbi- 
trary pair of scattering  data. Moreover  our  formulation, 
viz. the LA algorithm,  leads directly to fast algorithms for 
solving these linear equations, e.g., the Levinson  algo- 
rithm  for  the Krein  equations having  a  Toeplitz  coefficient 
matrix or a fast-procedure  due to Berryman  and  Greene 
(1980) for solving  discrete Marchenko.equations. 

For completeness  he're, we shall show how  the matrix 
equations  of  Gelfand-Levitan, Marchenko and Krein arise 

layer 0 layer n I 

naturally from  the  properties  of  forward transfer  functio'ns 
M,(D), together with the causality  of  signal  propagation, 
when .the scattering  ,data  have  certain  particular  forms. 
Then, the fast  algorithms for  solving  the matrix  equations, 
obtained in the  literature by  using the  structure of their 
coefficient matrices,  are  easily  recognized to be the result 
of fully  exploiting  the  multiplicative  structure  of  the M,(D) 
(for details see Bruckstein  and  Kailath, 1983,1986; Kailath, 
Bruckstein  and  Morgan, 1986). 

The  Classical  Equations of Inverse Scattering 

Let  us show how'the classical  matrix  equations  arise in 
a  unified way.  First note  that  the entries of  the matrix 
MN-l(D) are  polynomials of degree  (at  most) N in D. Recall 
that 

is the  forward transfer  matrix of  the scatterin,g medium 
composed of  the  first N elementary  layers  described  by 
(3.5);with  parameters KO, Kl,  K2,. . . , KNe1. The  structure of 
this  medium  in  the  scattering  domain shows that i f  
WR(n, t )  and Wr(n, t )  are  causally  generated  waves  due to 
the input WR(O, t )  in an initially quiescent system, then we 
shall  have 

(WR(N,t)  = 0 for t < N 
N-I 

Wr(N, t )  = 0 for t I N i and Wr(N, N + 1) = KN WR(N, N )  

This is simply a result of causal  signal  propagation,  and it 
was  also  used in  deriving the layer peeling algorithms. 
Here,  however, we shall  use the  following fact: the waves 
at depth N are the result of passing the waves  at depth 0 
through  the  forward transfer function' M N - ~ ( D ) .  This 
means that  the  first N + 1 time lags of WR.(N,t) and 
WL,(N, t )  may be obtained by convolving  the scattering  data 
,with the  polynomial entries  of MN- l (D) .  Denote by Mii the 
N + l-vectors  listing  the coefficients of  the  polynomial 
mij(N - 1, D ) ,  of  degree N, in increasing order of  powers 
of D, and  by UN+l and VN+l the vectors listing the first 
N + 1 lags of  the signals W R ( N , t )  and W L ( N , t )  re- 
spectively.  Spelling out convolutions  of sequences as the 
product  of  a  lower triangular  Toeplitz  matrix  having  one  of 
the sequences as the  first  column,  with  a vector listing  the 
lags of  the  second  sequence, we obtain  the  following 
result 

r N-I 

where we denoted by L ( X )  the  lower triangular  Toeplitz 
matrix  having the vector X as i t s  first  column. This is a 
general result relating  the vectors Mii to the scattering 
data.  Suppose  that the  medium parameters up to depth N 
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determining  the  reflection  coefficients associated with a 
stationary  covariance  sequence (Dewilde,  Vieira  and 
Kailath,  1978;  Kailath,  1985,1986). It is important to rernem- 
ber  that,  for  general  transmission-line  models,  the 
computation  of KN requires the  numbers WR(N,N) and 
Wf(N, N + I) ,  and finding  the later from  the original data 
and M,(D) implies performing two inner  products.  Inner 
products become  unnecessary, as in the tapped-delay line 
example, when  the  layer-peeling,approach is used. How- 
ever, the layer adjoining  method also provides MN(D)  for 
all N, as the  inversion process  proceeds  (and this infor- 
mation  might be  useful, or even required). Since inner 
products are computational  bottlenecks  when  parallel 
processing is possible,  one would generally like  to avoid 
them.  Therefore in order to  determine  the  mediu'm 
parameters  only,  layer peeling algorithms should be the 
natural  choice;  moreover  we  may note  that  by propaga- 
ting the LP and LA algorithms in parallel, one can avoid  the 
inner  product  computation and obtain  the transfer func- 
tions M,(D) as well. 

Example 3- INVERSION FOR  DELAYED-FEEDBACK 
STRUCTURE (MINIMAL PARTIAL  REALIZATION) 

The  delayed-feedback structure of Fig. 6 can  also  be 
recursively identified  from an arbitrary, (causally  gener- 
ated) scattering  data  pair,  since the a. + 2 parameters of 
the vector KO = [ao, Po, PI,  ... ,polo] are  readily determined 
from WR(O, t )  and Wf(O, t).  Indeed, first  note  that a. i s  just 
the  number of  leading  zeros in Wr(0, t )  (under the assump- 
tion that WR(O,O) # 0). Then, to identify  the parameters 
{p i } ,  consider the cascade factorization of the first layer's 
transfer description (see  Fig.  6a) to see that  the parameters 
can  be identified recursively as follows: 

I)  right shift Wf(O,t) by a. to align the  first  nonzero 
element of  the response  sequence with WR(O,O) # 0. 
2 )   i n te rchange   the   sequences  W R ( O , t )  and  
Wf(O,t + a o ) .  
3) recursively identify Po, P I , .  . . , pn as in Example 1. 
Note  that P o  # 0. 

At the  end  of this process  we obtain "~(1, t )  (which  will 
equal WL(O, t ) ,  by inspection) and Wf(l, t ) ,  with  which data 
the  identification of the next  layer  can  be performed.  Note 
the  algorithm ensures  that WL(l, t )  will have  at  least a. + 1 
leading  zeros.  Therefore a1 will  be at least 1. 

The importance of the above  example is in  the fact that 
it provides a  complete  solution to the famous minimal 
partial realization problem, in a generalized setting (see 
e.g.  Kalman,  1979; Gragg and, Lindquist, 1983; Citron, 
Bruckstein  and  Kailath, 1984).  This problem  requires to 
determine, for all N, the linear system,of  minimal  order 
that  matches the'first N lags of a given input-response 
pair (scattering  data).  The partial ,realization problem is 
very important in the  theory of linear systems  and  also in 
algebraic coding theory, thus it received considerable 
attention in the  literature. The more recent results on 
this problem have  stressed the nestedness property  of 
partial realizations of a given infinite impulse-response 

sequence.'lt was proved (see  e.g.  Kalman,  1979; Cragg  and 
Lindquist, 1983) that if we wish to realize a given impulse 
respmse sequence for increasing  values of N, then  the 
partial  realizations may be  realized with a canonical, 
nested  feedback structure similar to the cascade  system 
considered in Example 3, which enables the determina- 
tion of the realization parameters  recursively.  Two  types of 
fast  algorithms for  determining  the realization  parameters 
have  been  prop.osed. One is the  algorithm  of Berlekamp 
for  decoding  error-correcting codes, which was inter- 
preted by  Massey (1969)  as a minimal  order shift-register 
synthesis procedure. The other is based on a  procedure  of 
Lanczos for  factoring Hankel  matrices  (see  Kung, 1977; 
Citron and  Kailath,  1986). 

The algorithm presented  above is, obviously, a layer- 
peeling type identification  method.  In  the particular case 
when WR(O, t )  is a unit impulse,  i.e., when  the  weighting 
sequence of  the system is given, the process  of  deter- 
mining  the  minimal partial  realization is known to be 
equivalent to a  block  factorization of the Hankel  matrix 
of the  Markov pafameters  (see  Kailath, 1980).  The layer- 
peeling process  can be  identified as a generalized Lanczos 
algorithm (see  Kung,  1977). If  the  corresponding and  easily 
derived layer-adjoining  method is called upon,  then the 
celebrated  Berlekamp-Massey algorithm i s  recovered 
(Citron,  Bruckstein  and  Kailath, 1984). 

Let  us show that  the delayed-feedback structure as- 
sumed  above  does indeed  provide  minimal partial realiza- 
tions  (and hence the factorization  of  Hankel matrices 
displaying the scattering  data), for  the response of the 
medium.  First, it is immediate from the structure  of the 
elementary layers that  the  forward transfer  matrix of 
the  first n + 1 layers M,(D) is constructed  according to 

(5.12) 

Note that D-""T(D) is a  polynomial  of degree a in D-', 
since  always Po # 0. This  means'that the entries mzl(n, D )  
and mz2(n,D)  can be'obtained as a result of propagating 
the  following recursion (simply by  reading (5.12) in reverse 
order) 

m&(u + 1 , D )  = m2*2(u, D )  

m%(u + 1, D )  = m&(u, D )  (5.13) 

+ m&(u, D){-D-'l"-"T,-,(D)} 

with  initial, conditions m&(O,D) = 0 and m&(O,D) = 1. 
Now  observe  that (5.13) may be  recognized as an 
Euclidean division  algorithm in reverse, which implies  that 
for all n,  the polynomials mzz(n,D) and ml l (n ;D)  will 
be  coprime. 

Also from the  structure  of  the basic  layers, this time 
examined in  the scattering  domain, it follows that the scat- 
tering representation of M,(D) is of  the  form 
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D^n{a  causal transfer function){a causal function) data could  in  principle  represent. a complicated  com- 
putation  involving  the  whole  time  history of WR(O, t )  and 
WL(O, t ) .  This would immediately raise the computational 

(5.14) complexity of  the  inversion .algorithms, which  would  re- 

- mzl(n, D^n{a  causal  transfer function) 
m d n ,  D )  

where A, = a. + al + . . . + a,. This  shows that the  im- 

by the  formal  power series So(D)  = s lD  + szDz  + 
s3D3 + e . . ,  is related to the  impulse response (or  the 

main  recursive but  not nested-any more. 
As a simple example,  suppose that we wish to realize a 

"Ise response Of the medium 'at, depth O' represented gain-delay scattering structure that has a prescribed ratio- 
nal  transfer function  of  the  form 

input-reflection transfer function, see Section 6) of the a. + al D + azo2 + . . . + a,D" 
medium at depth n + 1, S,,+,(D), which has leading 
zeros, as follows: 

H(D)  = 
bo + b lD + b2D2 + .. .  + b"D" 

(5.16) 

Thus we want a scattering structure that, to the input se- 
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CONTINUED FRACTIONS AND INVERSE  SCATTERING 

The  above presented inverse scattering theory is cl,osely 
connected to  the  theory  of linear fractional maps and.con- 
tinued fractions, which have long been  used in  circuit 
theory. Indeed, considering  the scattering data WR(O, t.) 
and WL(O, t)  and recalling the  linearity  of the  infinite cas- 
cade.systems under consideration, we can  associate with 
the data  an equivalent impulse  response-or a so-called 
reflection transfer function (RTF), 

where W,(O, D )  = X W,(O, t)Df is defined as a  function  of 
the (complex) variable D. Then  we  may  ask the  question: 
how does the RTF at the n-th section, Sn(D),  defined  in 
an obvious manner,  evolve as we proceed  deeper and 
deeper into  the  medium? 

Since WR and Wr propagate according  to  a set of  linear 
equations  we shall have (cf. (2.1)) 

This is a linear fractional  transformation  (recursion) and 
therefore we see that Sn(D) can be found by  applying a 
sequence  of  such transformations to the  original data 
So@). Conversely it is easy to recognize that So(D) will be 
implicitly expanded in  a  continued fraction, expressed in 
terms of  the {Bi j(Kn, D)} .  

In  the case of a tapped delay-line model,  the  fractional 
transformation is 

with K, = Sn(0)  and  we simply get the  power series repre- 
sentation of the function So@).  However, (6.4) together 
with  the identification  formula  yielding K,' from Sn(D)  at 
D = 0, may  also be  interpreted as an algorithm  for  in- 
verting a formal  Z(here  D)-transform, see  e.g. Jenkins, 
1967, who  points.ttiis  out  together  with a short discussion 

I of what happens if So(D) is a rational function  in D. Not 
surprisingly,  he  arrives at a practical algorithm  which is 
exactly the Layer Adjoining process for  determining  the Kn 
sequence, where  the scattering data  are the  finite  denomi- 
nator  and numerator sequences. 

For the lossless transmission-line model,  where O(K, D )  
is given  by (cf. (3.7) and (3.6)) 

the linear fractional transformation becomes 

Sn+I(D) I - K n  + Sn(D)/,D 
D D 1 - KnSn(D) /D  

-= -  (6.5) 

Here  we have that 
Kn = Sn(D)/Dl,=o (6.6) 

Such fractional transformations were used  by I. Schur in 
1917, as a test for boundedness of  functions analytic inside 
the  unit disc. In  our  formulation, his result is the  follow- 
ing: a function has the boundedness property  provided it 
is the RTF of a lossless  transmission line structure, which 
means, under the assumption of  the  model (3.5) and (3.7), 
that the inversion algorithm yields a sequence of  reflec- 
tion coefficients obeying IKnI 1 for all n (see e.g. Bruck- 
stein  and  Kailath, 1983, 1986). 

The  delayed  feedback structure of  Figure 6 corresponds 
to  the linear fractional recursions 

which, as pointed  out  to us by W. Cragg, corresponds to 
the so-called principal part continued  fraction expansion 
introduced by A. Magnus (see e.g.  Gragg and, Lindquist, 
1983). Indeed, by writing (6.7) as 

we  can obtain  a  continued  fraction expansion of So(D). 
Here again, from Sn(D) we can determine a n  and ?,,(Dl, 
as described in Example 3 of,  the previous section,  and 
therefore (6.7) may  be regarded as a recursive way of 
determining  the  continued  fraction  expansion  of  the 
data So(D 1, 

Note also the following interesting result: if we have the 
forward transfer matrix for  the  medium composed of  the 
first n layers, Mn-l(D) then we can write 

WR (0, D )  

from  which it follows that 

(6.9) 

We  can  also rewrite (6:IO) to display So@) as a function  of 
Sn(D) ,  and then we obtain 
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If we consider the scattering  representation  of Mn(D),  . scattering  medium,  and different algorithms  are obtained 
for  different elementary  layer  structures. We  have shown 

M;(D) = [ t ( n  - ” D, P(n - (6.12) however  that in all cases there are G o  basic  algorithms 
r(n - 1,D) T(n - 1,D) called  layer-peeling  and  layer  adjoining, which lead to 

and recall (2.41, we  have that (6.11)  can be  written as a variety of  efficient  computational  Procedures that 

analyzing  each problem separately  and  using different 

1 - P(n - l ,D )Sn(D)  A basic difference between the layer adjoining algo- 

follows:  were  arrived at in  the  literature rather  indirectly,  by 

SIJ(D) = r(n - 1, D>+ t ( n  - 1, D )  S n  (D 1 methodologies. 
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cally unstable (De Jong, 1978). However  the behavior of 
the  efficient algorithms for matrix inversion, which are 
inverse scattering processes for lossless transmission line 
type media,  have been thoroughly investigated, and these 
were found stable numerically (see  e.g. Cybenko, 1980 or 
Bultheel, 1981). Also we did  not address the  problem of 
doing inverse scattering with noisy data; however some 
new results in, this  direction are reported  in,(Bruckstein, 
Koltracht and Kailath, 1985 and Koltracht and Lancaster, 
1986). These  issues  are of  crucial  importance in all the 
applications, since it is obviously  quite useless to have 
extremely fast algorithms that  provide  wrong results. We 
feel  however  that  the basic and unified  theory  that 
emerges’ by investigating several signal processing and 
system theoretical problems in a common, inverse scatter- 
ing framework is a good  foundation  for  further  numerical 
investigation and for applications in  other areas. 
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