An Inverse Scattering
Framework for Several
Problems in Signal Processing

- ABSTRACT

The'aim of this paper. is to show that a general inverse
scattering formulation illuminates alternative, com-
putationally efficient solution methods for several classes of
sngnal processing problems. Inverse scattermg problems arise

in physncs, transmission-line synthesis, geophysms and acous- .

tics and in one class of formulations they require a procedure
to determine the parameters of a layered wave propagation

~medium from measurements taken at the boundary. There

exists a close relationship between the physmal inverse scat-
tering problems and some important issues in signal process-
ing such as the design of digital filters, the development of
linear predlctlon algorithms and their lattice filter imple-
mentations and cascade synthesns of systems. with a given
impulse responise (realization problems). For many of these
problems several efficient algorithms already exist in the liter-

ature, but the connection between the dlfferent solutlons was:
not always clear. Recently, the push to VLS| lmplementatlons ~
led to the realization that, in spite of their apparent. sumllarlty, :
the alternative algorithms possess radlcally different proper-
ties ' when, say; a parallel implementation is sought In_ this

paper we shall show that alternative procedures. that are usu-
- ally arrived at by various clever tricks, in fact correspond to
two conceptually extremely: simple, basic ways of solving in-

verse scattermg problems the s0 called ”layer-peelmg” and .

Levmson methods for determmmg the optimal fllters for pre-

diction of stationary stochastic processes, and the generalized -

Lanczos vs Berlekamp-Massey methods for the partial real-

ization (Pade ‘approximation) problem, and. also several re-

cent deSIgn procedures for some classes of dlgltal fnlters

INTRODUCTION

ITH THE INCREASING INTEREST in the potential of

- parallel computation, alternative forms of certain

‘well-known algorithms have been introduced. In the the-
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-is-well. known that the determination of the optimal pre-

dictor coefficients involves the solution of a linear system’
of equations with a matrix of coefficients having Toeplitz

structure. The usual way of solving linear equations re- -
quires an O(N°®) computation for the N-th order predictor,
but Levinson had shown already in the early 40’s;:that:a

numerically much more efficient, O(N?), algorithm to .

_compute the prediction filter coefficients can be obtained

by cleverly exploiting the Toeplitz structure. The Levinson
algorithm for solving Toeplitz systems of equatlons is: by

now well-known in digital sighal processing. Recently
‘however, the Levinson algorithm for the solution of linear
‘equations with Toeplitz coefficient matrices was dis-
“covered to be less efficient with parallel computation than

an alternative, so-called Schur algorithm (see Kung and
Hu, 1983; Kailath, 1985, 1986). Similarly the Berlekamp-

Massey algorithm for the corresponding. problem in--
"volvmg Hankel matrlces has been found to be more ex-

pensive than the so called generalized Lanczos algorithm
when parallel compufation is possible‘(see Kung, 1977;
Citron and Kailath, 1986). Hankel matrix problems arise
naturally in coding theory and in connection with the par-

tial realization problem in system. theory, the goal here :

being to determine a minimal order linear system with

\impulse response matching a given sequence of numbers

up to a certain length-N.
The aim of this papet: is.to show that there is a. nice’
interpretation of these and related results in terms of what

"'miay be called “layer- adjoining” and “layer-peeling”. meth- -

ods of solvmg model based inverse scattering problems.

This work was supported in part by the.U.S. Army Résearch Office,

“under: Contract DAAG29-79-C-0215 and by the Air Force Office of
- Scientific: Research, under Contract AF49-620-79-C-0058.. =

Professor Thomas Kallath gratefully acknowledges the supportkpro-
vided by an"Erna and }akob Michael Vlsmng Chair in Theoretical

. Mathematics at the Weizmann Institute, of Science, Rehovot, Israel,
ory of linear prediction of stationary random sequences, it - :

durmg Spring Quarter, 1984

0740-7: 467/67/01‘007Q006$01 .00©1987|EEE -



In the classical literature, which corresponds to inverse
spectral problems associated with differential operators or
to inverse transmission-line or layered-earth problems,
the two methods correspond to using linear equation for-
“mulations, e.g. those of Gelfand-Levitan or Marchenko or
Krein (Gelfand and Levitan, 1955; Krein, 1954; Agranovic
and Marchenko, 1963) or to using the socalled direct, dy-
“namic deconvolution or differential methods (see e.g.

Robinson; 1975; Bruckstein, Levy and Kailath, 1983/85). -
This distinction is-formulated here in general terms and

iliustrated with several examples.

In general terms, the (inverse) scattering procedures
apply to linear systems with a cascade structure. Such sys-
tems are by no means unfamiliar in-the signal processing
literature — they are encountered as layered earth models
in geophysical analysis, as acoustic tube models in speech

signal processing, as modular realizations in circuit.and

system theory. This paper presents a unified conceptual

framework for studying inverse or synthesis problems per-

taining to such structures and arising in many applications.
The cascade systems under consideration are first inter-
preted as layered, wave scattering media, and the gen-
eral direct and inverse scattering problems are then
defined. The direct-problem requires the determination
of the signals generated within the system by some given
inputs, under the assumption that the medium properties
are known. The inverse, or model identification, problem
is to determine, if it is possible, the medium properties
from_its response, recorded at the boundary, to some
probmg input signals. We shall state conditions on the
structure of the layers that enable recursive-model identi-
fication, and shall present two alternatives for the imple-
mentation of inverse scattering algorithms. The first
implementation takes the scattering data and uses them to
identify a portion of the medium and then, at each step,
replaces the data by a set of “synthetic” scattering data
corresponding to the yet unidentified part of the medium;
_this yields the so-called “layer peeling” (or dynamic
deconvolution) methods. The second implementation
compounds the identified portions of the medium and
propagates the original scattering data through this,
already determined, system to obtain the .information
required for furthering the identification process; this
process yields the ‘so-called “layer adjoining” ‘(or linear
equations-based) methods.

This paper is organized as follows. The next section dis-
cusses the general set-up of wave propagation through
layered scattering media.and the section on examples. of
scattering media presents several important models of sig-
nal propagation, arising in interesting applications. The
next section then analyses the direct and inverse scatter-
ing problems, in fairly general terms, and presents the
alternative layer-peeling and layer-adjoining imple-
mentations of inversion algorithms. The subsequent
section applies the general results to the previously
presented examples. Finally, in the last section, some in-
teresting connections between linear fractional maps,

| between the signals appeamng on its left and right sides.

continued fractions and inverse scattering are briefly
discussed.
SPATIO-TEMPORAL SCATTERING :

in  spatio-temporal scattering theory, we.analyze the
propagation of pairs of discrete-time sequences througha .
structured, layered medium (extending in the “space” di-
mension). Figure 1 describes the situation we have in
mind. The time sequences, or “waves”, Wg(n,t) and
W.(n,t), are functions indexed by the depth, or space-
index n, and by the running time t. We shall use the term,
discrete time-sequence or signal to describe the functions
Wr(n,) or W.(n,*) for a particular n. The medium may
therefore be regarded as mapping time sequences, or sig-
nals, at certain.points in space into other sequences at
some different points in space. The layers of the medium
characterize the interaction between signals, and we shall
say that tlme-sequences propagate and interact in a way
defined by the properties of these elementary medium
layers. In many physical situations, wave propagation is
described by linear differential equations, and then the
action of the elementary medium layers is a linear opera-
tor. This is an assumption made in most signal processing
applications too. Therefore we shall consider that the
passage of the signals through the n-th layer, and their
interaction, is described by a linear and time-invariant
operator. Two different representations of thls operator
will be used.

By definition, the transmission representation of the
action of layer n on the propagating sequences provides
Wr(n + 1,t) and Wi(n + 1,1), i.e., the signals at depth
n.+ 1, by operating on the S|gnals at depth n. Formally

[Wk(n + 1,t) WR(n/t)]
WL(n~_+ 1,t) WL(n/'t)
where ©(K,,, D) is a linear, time-invariant (matrix) bperator

with fixed -structure—spatially parametrized by a real
valued vector K,. In the description of ®, D denotes

| - o, o @.1)

W to,th [E Wi (n,) Waln+ 1,11 5

Wi lo,f) wi(n,h) Welne i, )

layer n

'. : depth ¢

Figure 1. Waves in a Layered Medrum The waves Wn‘%t
and W, are indexed by the depth parameter n and by the
disgrete time t. For a particular n the signals Wi(n,t) and
W.(n,t) are discrete time sequences. The elementary lay-
ers of the medium define the relationships (or interaction):

Usually the wave interaction is descrlbed by a linear and
time mvamant operator
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(a) )

Figure 2. - Transmission (a) and Scattering (b) Represen
tations of the Medium. The transmission representation:
_relates the signals at the right side of a layer to those
“appearing at its left. The scattering representation. re-
,,lat;es the incoming .or incident waves to the reﬂected"y
_giving the signals W and WL the interpretation of:
ght and left propagating waves, Two such repr‘esenta-
"tions are equivalent (i.e. describe the same medium-in
" different ways) iff they are related by the so-called Mason“
change rule [see equatlon [2 4))

an elementary delay operator that acts on time sequences
as follows

Df(t) = f(t - 1).

It should be clear that if the entries. of @ are linear and
time-invariant operators, theiraction on signals can always
be expressed as some function of D (whose power series
expansion is simply a representation of the corresponding
weighting or impulse response func’non) Thus.the entries
of the transmission representation will be functions of D.

In many instances, for physical reasons, oné seeks a
related, so-called scattering representation in which the
signals W and W, are interpreted as right and /eft propa-
gating waves respectlvely and, instead of (2. 1), we relate

“incident” variables {Wk(n, t),W.(n

”Ieft and ‘their effect generates the outpu
t). Df course the Ieft propagatmg wave also elicit

_ + 1, t)} to “reflected”.
variables {Wr(n + 1,t),Wi(n, t)}. Formally we write

Weln + 1,61 o - [Weln, o)
[WL(n,t.) ] - 2(K"’D)[WL(n +1,1)

where (K., D). is a linear operator with known structure,
agaih parametrized by K.

~ The scattering description of a layer thus relates the
outgoing, or reflected waves, to the incoming or incident
signals at each medium section, as opposed to the trans-
mission description which provides, from the signals at a
given depth, the signals that will appear one layer deeper
in the-medium, Figure 2 gives a pictorial interpretation to
the action of the ® and 2 matrix operators.

In our conceptual set-up, the scattering and trans-
mission operators are simply two ways of expressing the
physical action of a medium layer (i.e. of the relations it
forces between the propagating signals). It is thus natural
to ask how these representations are related. Suppose that

611 912} and 2(K,D)=[

] (2.2)

on 0'12]
O21. U224

2.3)

Q(K’ D) = {021 022

Then, assuming the blocks 0x; o2 are invertible, simple
algebra shows that

— ~1 =1
3(K, D) = X{O(K, D)} = ["“ 9022 0z ”-'*’2_2“]
0285 0%
(2.4)
and similarly that ©(K, D) = X{S(K, D)}.

Since the above-defined operators act on time-
sequences, we can raise the issue of causality. An operator
will be called causal if the outputs at a certain time instant
depend on the present and the past of the inputs only. The
layered medium under consideration will be assumed to
be a causal scattering structure, defined on the semi-

ig re 4 A Tapped Delay Llne as a Layer'ed Medlump";‘
ttering repr‘eseﬁ%aﬁeﬁ of &classmal tapped delay line-
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infinite axis [0, ), the signal flow on it being described
most naturally by the scattering representation of the sec-
tions. Thus, it will be implicit throughout that 3(K, D) is‘a
causal operator.

For the layered or cascade system of Fig. 3 the signal
Wk (0, t) acts as an input, i.e. a probing wave that is sent
into the medium. Provided the medium is originally at
rest, the output W.(0,t) is the reflected wave that. is
evoked by the propagation of the probing signal alone.
‘Such pairs.of causally generated signals will be called scat-
tering data for the medium under consideration.

EXAMPLES OF SCATTERING MEDIA

We shall next present some simple, but important
classes of scattering media, capable of modeling rather
general input-output (I/O) maps.

Example 1: TAPPED DELAY-LINE/TRANSVERSAL FILTER
“(Fig. 4) »

The scattefing system of Figure 4 models a genéral linear

system with input-output (convolution) relation
Wi(0,t) = X KWk (0,t — i) 3.1
i=0 -

where the gains {K;} are simply the spatiavl mappihg of the

system’s weighting or impulse response function. In the -
scattering terminology, the {Ki} provide the local para-

.metrization of the propagation medium. For this medium
we have

[WR(n + 1,t)] 3 [D O][WR.(h,t)

W.(n, ) X wL(n+1,t,>] (3.2

and therefore the ‘corresponding transmi'ssion matrices

are given by

O(K,,D) = 3.3)

[szn 10] '

, Flgure 5. Tr‘ansmlssmn-Lme Type Layered Medium, The
scattering representation of this medium clearly shows
'the parametrization of its elementary layers in terms. of
pthe local reflection coefficient sequence {Kg, K1, Kz, **}.
As in the case of the tapped delay-line Wkr(0, t)is assumed
to'start at £ = 0, and W.(O, t) is the reflected response. |
Here however, due to re-refiections (¢2(K) # O in .
: 'gener‘aIJ there is no simple way to relate W, (0, t) to the

Example 2: TRANSMISSION-LINE TYPE MEDIUM (Fig. 5)
The medium model described by-Fig. 5 is a cascade of

pure-gain (i.e., memoryless) . interactions, parametrized

locally by K, and (relative) delay elements. Note that the
delay element shifts the Wz sequence.by one time unit
with respect to the corresponding W, signal. This model
corresponds to a discretization of wave propagation equa-’
tions along a transmission-line structure or in an acoustic
medium with varying local impedance, as is the case in
some geophysical examples (e.g. Berryman and Greene,
1980; Bube and Burridge, 1983; Bruckstein and Kailath,

11983, 1986). In this case there is no simple expression re-

lating the response W, (0, t) to the probing input Wx(0,t).
The scattering evolution is described. by the equations

[wR<n £ 0] [0 _¢2(Kn>][w,;<n;t> ] |

WL(nrt) KnD ¢3(Kn) ’ WL(n + 1/t)
(3.4)
.50 that the scattering operator is
: 1(K) ¢2(K)] [D 0]
K,D) = [ : 3.5
D= gatio @3

where ¢;( ') are some arbitrary functions of K, with
é1,3(K) # 0. The correspondmg transmission representa-
tionis

O ol 1 e

We note that.in this model the delay element may be split
into half delays acting on the waves Wr and W;, in order
to more “physically” describe the symmetric propagation
on a transmission-line type structure. Indeed in terms of
the local interactions between the Wk and the W, signal, it
is only the relative time shift between the signals that is
important. Therefore if we split the delay. into half delays,
the resulting models remain completely equxvalent

B(K,D) = {[

.modulo a so-called travel-time renormalization.

Note that the local parametrization of the scattering
operators 2(K, D) is done entirely in terms of the local “left
reflection coefficient”, o2 = K. This property will turn
out to be of crucial importance in the sequel. A case that
most often oécurs in practice is when the structure is as-
sumed to be energy preserving, or lossless. In this case the
scattering representation of the propagation operator has
to be unitary, which forces the functions ¢;(K) to be of the
form

$1(K)

)—1/2

="¢3(K) = (1 = K? .and ¢2AK) = —K

(3.7)
The result is a classical, discretized transmission-line
structure, which is obviously parametrized entirely by the

sequence of local reflection coefficients {K;} (see e.g.
Bruckstein and Kailath, 1983, 1986).

Example 3: DELAYED FEEDBACK STRUCTURE (Fig. 6)

In the solution of partial realization problems, or of the.
related Pade approximation and Hankel matrix factori-

JANUARY 1987 |[EEE ASSP' MAGAZINE 9



o IE ETC
Tn(D:

Kn'{“n[so‘ﬂb'“aa“n]} .
(e} ‘

; Lyw.(n*l,t)’ |

Wi nelt)

" Nested Delay-Feedback Structure (a) and A
I Decomposition of The Elementary Layer Trans-
on Representation (b). This medium structure is yet
canomcal way of representing a general linear
/stem and it'arises in connection with the partial realiza-
) algorithm. The decomposition-(b) of the elementary:
yer"s transmission operator into an advance operator
cting on the W.(n, t) sequence, a layer that exchanges

We and W, sequences, and a tapped -delay line type of
ire proves to be the key factor in deriving inverse

ing algomthms for such medla

zation problems, we encounter a linear system structure
. of the type described in Fig. 6. This model corresponds to
a set of nested feedback loops, parametrized by vectors K,
of the form {a,, Bo,***, Ba,]. The'local parametrization is
therefore the order, «,, of the next feedback element and
the parameters necessary to determine an all pole transfer
function via T, (D). The polynomial T,(D) is given by
T:(D) = Bo+ B:1D + B2D* + +~ + B, D" (3.8)
and by considering Fig. 6 we can readily write down the
scattering evolution equations v

We(rni +1,t) _ , vWR(n,t)‘

[WL(n,t)' ] - 2(K'VD)[WL(n + 1,t)]
ps D
T.(D) T,(D) .[Wk(n,t) ]
Den D LWi(n +1,1)
T.(D) - T.(D)]

3. 9)
Recalling (2.4), the transmission representation is found to
be of the form

0 1

O(K, D) = X{3(K,D) = [1 g (D)] (3.10)

This forward propagation operator, (K, D), admits a

useful decomposition into static gain and pure delay/
advance sections:

10
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o][o o][ 1 _-«0][0 o]
1iLo 1dl-Bos 1ll0 11
1 01J0 171 0
el ollo 52 e
which is schematically depicted in Fig. 6b.

"We note that this medium structure, like the simple
tapped-delay line, is a canonical way of representing arbi-

_ trary, linear, time-invariant systems, or equivalently, /O

maps defined via input-response data (see e.g. Kalman,
1979; Gragg and Lindquist, 1983).
Further examples of layered scattering systems can be

|  considered, such as some general “first degree” (in D)

layers (see Fig.7) not necessarily having a gain-delay
structure as in Examples 1 and 2. Such geheralized models
turned out to be useful in digital filter design (see Rao and
Kailath, 1984, 1985).

- INVERSE SCATTERING ALGORITHMS

Given any arbitrary pair of signals Wk (0, t) and W.(0, 1),
and the sequence of parameters {K;}i=1,2,3... that specifies
the medium, it is easy to find the signals W(n,t) and
W.(n, t) atall depth n. To do so, we merely use the transfer

- representation of the medium. The signals at depth.n + 1

are clearly given by

[WR(n + 1), t)]

Wk(0, t)]
Win + 1,t)

8(Kn, D)+ O(Ko, D) [WL(O t)
4.1

which shows that we also have a recursrve way of deter-
mining the signals at all depth. Thus the direct scattering
problem is solved recursively in.an almost trivial way. Note
that the action of a medium layer in the transfer represen-

1x % x

STATE,(t) D STATE,(t)

and formally solvmg for the STATE.(t) and substltutln
the result in the above relation yields a general, degree-

1 scattering operator, parametrized by the reflection cog

ficients {K}, displaying the wave interactions only.. (The
entries are assumed to be functions of K.)




tation need not be causal. The result (4.1) holds in general,’
i.e., not only for the causally generated W, (0, t), that cor-
responds to the input W(0,t). In the general casé the:
signals Wr(n,t) and Wi (n, t)will not be causal (i.e. we shall -

have W.(n,t) # 0 for t < 0, since physically, a wave had
" to start propagating from n .= « at the infinite past in
~ order to generate the part of W.(0, t) that is not evoked by
“the propagation of Wk(0, t) into the medium).

However the causality restriction is important for the ‘

general inverse scattering problem, which we define as
follows: Given the probing signal, Wk(0,t) and the caus-
ally evoked system response W; (0, f) (the scattering data),
and given only the structure of the scatterers 2(K, D), de-
termine the sequence of medium parameters {Ki}.
The inverse scattering problem is not always solvable. In
fact we can easily imagine layer structures that provide the
same response for different local parametrization se-
quences, For certain structures however, including all
~'those in the previous sections, the response is in a one-
to-one relationship with the local. parametrization se-
quence. We shall descrlbe two general classes of inversion
algorithms.

Layer-Peeling Algorithms
A sufficient:condition for having a medium that is iden-

tifiable is to be able to determine the parametrization of -
the first layer. of the medium from the scattering data. -
Indeed, suppose that from the structure of the medium,

and from knowledge of Wk (0, t) and Wi(0, t), the parame-
ter Ko can be determined, i.e. assume that there exists a
function F{:,} so that

= F{WR (0, t),WL(O/ t)}

Then it follows that we have a recursive procedure to com-

(4 .2)

_pute the entire local parametrization sequence. To do so,.

- next local parameter as

layer identified and E
adjoined to My~ | (D)

Flgure 9 The Layer-Adjoining Process, :
M,(D) = 8(K,-+, D). ... 08(Ko, D) and the orlgmal data
{Ws(0, tJ, W, (O, t:)} determine the portlon 0
{Whaln, £, WL(n. £}y that is needed to compute K, via F{.}
STEP 2: Update the transmission representation of the
alr‘eady udentlﬂed pormon of the medlum L

' Note that the omgmal scatterlng data are reused at each
step and propagated through Mo, Propagation of the
_data through M,(D) requires convolutions, or inner prod
‘uct_computations (but -can also be done via fast con
,volumon methods tool), ‘

note that once Ko is known, we can propagate the (initial)
scattering data forward by using the operator 8(Ko, D); this
will provide the sequences Wz (1, t) and W.(1, t), which are

‘a-causal input-response pair, or scattering data, for the

medium extending over [1, ). Then we can determine the

= F{W:(1,1), W.(1, 1)} 4.3)
and forward propagate for the scattermg data for the
medium extending over [2,%). Proceeding in this manner,
we:can recover the sequence Ko, Kq, K2+ ++. Conceptually
this is a process of layer identification via a recursive
“layer-peeling” scheme (see Figure 8).

Layer Adjoining Algorithms

Another inversion algorithm may be based on the obser-
vation that once. ©(K;, D) is determined for.j =.0,1,2,
...n, we could also compute the waves at depth n' + 1 as

[ Wa(n + 1,t~)] _ [WR(o,n]
[wLm r1,0) =M Plwo,n] @Y
where the matrix operator

Mn (D) = @(KmD)'”®(Km D) ’ (4-5)

is the transmission representation of the portion of the

medium extending over [0, nl. In other words, we may
use the identified local parameters not to compute
Wr(n + 1,t) and Wi (n + 1,t) from the waves Wk (n, t) and

‘W.(n,t), but to determine the matrix transfer function of

the medium over [0, n]; then the waves at depth:n -+ 1; or
the portions thereof that are required by F{:,*}, can be
found by propagating the original scattering data through
this transfer function, M, (D). Note that i.n,f this case the

11
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original scattering data sequences are not replaced by the
waves at deeper and deeper levels, but are reused in each
step of the inversion:process. In the process:of inversion,

the identified layers are not peeled off, but instead are’

combined to provide M, (D) for.increasing values of n (see
Figure 9); hence the name “layer adjoining” algorithm.

In.summary, we have two equivalent inversion
algorithms _

ALGORITHM LP (recursive layer-peeling)

1) initialize:.n = 0, Wr = Wx(0,t), W, = W.(0,1)

2) compute K = F{Wg, W,}.
3) propagate the scattermg data through the identified

layer. ‘
L] —owoly]

4)setn < n + 1and.goto 2):

ALGORITHM LA (recursive layer adjoining)

1).initialize n = 0, M(D) = 1

2) ecompute K = F{Wk(n,t), W.(n,t)} ‘

3) update transfer function M(D) < O(K, DYM(D) _

4) determine Wk(n + 1,t) and W.(n + 1,¢)by applying
M(D) to data,

5) set n <=n + 1and go to 2).

EXAMPLES OF INVERSION ALGORITHMS

We:shall next show. how the general inversion proce-
dures discussed-in the previous section apply to the ex-

amples given in the section prior to that, and compare the -

two complementary (LP and LA) algorithms for solving the
inverse problem. In some cases the inversion algorithms
are rather simple; in others it will be seen that easy deri-
vations of some nontrivial classical results are obtained,
~together with insight into the conceptual connections that
exist between apparently very different subjects. We shall
start with the simple- examiple of the tapped delay-line,
where the LP.and LA algorithm will be easily recognized as
two ways of solving a (triangular) set of linear equations.

Example 1- -INVERSION FOR TAPPED DELAY- LINES
(DECONVOLUTION) .

Itis clear from the structure of (K, D), in (3.2), and from
- causality, that in this case we have (see Fig. 4)

_ first nonzero term in W.(i, t)
first nonzero term in W (i,t)

(5.1

Therefore, the Layet Peeling inversion algorithm is:

1) Compute K, = WL(nv/ n)/WR(n/ n) ’ ‘

2)set We(n-+ 1,t):= We(n,t — 1) and Wi(n +1,0 =

—Kn We(n, t) + Wi(n,t)

3)'set n .« n" + 1.and goto 1)

The Layer Adjoining algorithm is, following the previous
section.

1) compute K, = Wi(n;n /WR n, n)

2) update M,,(D) to

12
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and {W.(0
-In matrix notatlon this is equivalent to solving the (trian-

Mn (D) = PR 0]

[-*K,{Dh+1 = Kpoqg D" —rer = Ky 1

Now propagate the scattering data through M, (D) to get .

the information required in order to determine the next
local parameter i.e.,

3)setWR(n+1n+1)=

Wr(0,0) and compute
Win +1,n + 1) using '

W, (n +1 n + 1) W[_(O n+ 1) - E WR(O I)Kn—l

4)sétn.<n +1 and goto 1)

Of course what we are solving here is a deconvolutlon
problem: given the input and output sequences, {Wx(0, 9}
,")}, determine the causal lmpulse response {K}

gular Toeplltz) set of linear equations

Wk (0, 0) 0 0 - 0] [kl

W..(0, 0)
We(0,1)  Wx(0,0) 0 - ol | K| w0, 1)
Wr(0,2) Wk(0,1) We(0,0) "0 Kz {=] Wi(0,2)

We(0,2). W(0,1) -

Here, the usual back-substitution method of solving the
lower-triangular system of equations is exactly the LA algo-
rithm described above. In this method an inner product
(Z8'Wr(0, )K,=;) is computed at-each step, an operation
that is a bottleneck. for parallel computation. The LP
method, while mathematically equivalent, determines the
{K;} sequence without directly forming any inner prod-
ucts; instead, the propagation of the waves (i.e. the scat-
tering data) through the elementary layers directly yields
the quantities {W.(n + 1,n + 1)}.

The features seen in this simple example will reappear in’

“a much less obvious context in the next two examples. In

Example 2, the LP and LA algorithms turn out to. corre--
spond to the Schur and Levinson algorithms for solving
Toeplitz (and related) linear equations. In Example 3, they
will turn out to correspond to the Lanczos and Berlekamp-
Massey methods for solvmg Hankel (and related) linear
equations. .

" Example 2— INVERS(ON FOR TRANSMISS!ON LINE

MODELS. (LINEAR PREDICTION)

'In this example we have, by causality of propagation on
the gain-delay structure, that WL(O 0) =0 and that (see
Fig. 5).

. WL(b/ 1)

K —
® = Wk(0,0)

(5.2)

Now: in the LP algorithm, we form ©(Ko) and apply it to the
scattering data Wz (0, t)"and W.(0, t) to get the sequences
Wk(1,t) and W.(1, t), one section deeper into the medium.

Then using the relation W.(1,2) =K Wk (1,1), identify K
and proceed as before. Note that this algorithm may be:



propagated for the general transmission line structures

described by (3.5) or (3.6), and the sections need not have M,
:when the scattering data have certain particular forms.

the frequently assumed lossiess form given by (3: 7). For

reasons to be discussed in the next section, we shall call:

the LP algorithm a generalized Schur algorithm.

The- corresponding layer-adjoining algorithms are also
immediately obtained. As in the previous example, they
will be seen to be fast ways of solving certain linear equa-

tions with specially structured coefficient matrices. The

actual structure depends on the form of the scattering
data—the choice of ‘the input and output pairs, e.g.

whether the input is an impulse or some other (perhaps’

specially chosen) sequence. Correspondingly we can

obtain various classical .inverse scattering equations such”

as the Gelfand-Levitan equations, which have coefficient
matrices that are the sum of a Toeplitz and a Hankel
matrix, the Krein equations with a Toeplitz coefficient
matrix, and the Marchenko equations which display the

scattering data in a Hankel coefficient matrix. A feature of *

our approach is that all these equations arise as particular
cases of a new general equation corresponding to an arbi-
trary pair of scattering data. Moreover our formulation,
viz. the LA algorithm, leads directly to fast algorithms for
solving these linear equations, e.g., the Levinson algo-
rithm for the Krein equations having a Toeplitz coefficient
matrix or a fast.procedure due to Berryman and Greene
(1980) for solving discrete Marchenko equations.

For completeness. here, we shall show how the matrix
equations.of Gelfand-Levitan, Marchenko and Krein arise

layer O
(a)

layer'n

gure 10. General Cascade Synthesns'by Layer Peelmg
eallzaplon of a general transfer functlcn via ron-neste

- (3.5), with parameters Ko, K1, Kz, . . .

naturally from the properties of forward transfer functions
(D), together with the causality of signal propagation,

Then, the fast algorithms for solving the matrix equations,
obtained in the literature by using the structure of their
coefficient matrices, are easily recognized to be the result
of fully exploiting the multiplicative structure of the M, (D)
(for details see Bruckstein and Kailath, 1983, 1986; Kailath,
Bruckstein and Morgan, 1986).

The Classical Equations of Inverse Scattering

- Let us show how the classical matrix equations arise in
a ‘unified way. First note that the entries of the matrix
Myni-1(D) are polynomlals of degree (at most) N in D. Recall
that

mu(N =1,0) mun(N.~1,D)

My_1(D) = [ ] 5.3
| D) = | N - 1,D) mz(N = 1,D), -3
is the forward transfer matrix of the ‘scattering medlum
composed of the first N elementary layers described by
, Kn-1. The structure of
this 'medium -in the scattering domain shows that if

Wrin,t) and W.(n, t) are causally generated waves due to

~ the input Wk (0, t) in an initially quiescent system, then we

shall have
We(N,£) =0 for t <N
. N—=1
Wi(N,t) =0 for t=N

and WL(N N+ 1) = KNWR(N N)

This is.simply a result of causal signal propagation, and it
was also used in deriving the layer peeling algorithms.
Here, however, we shall use the following fact: the waves
at depth N are the result of passing the waves at depth 0
through the forward transfer function My-(D). This
means that the first N + 1 time lags of Wg(N,t) and
W.(N, t) may be obtained by convolving the scattering data

with the polynomial entries of Mx-+1(D). Denote by M; the

N + 1-vectors listing the coefficients of the ‘polynomial
m; (N —1,D), of degree N, .in increasing order of powers
of D, and by Un:1 and Vs the vectors listing the first
N + 1 lags of the signals Wr(N,t) and W.(N,t) re-
spectively. Spelling out. convolutions of sequences as the
product of a lower triangular Toeplitz matrix having one of
the sequences as the first column, with a vector listing the
lags of the second sequence, we obtain thé following
result '

[00. .OE q&(K,:)]T
[00..00]

L(Un+0)Mp + L(YN+1)M12
L(Un+1)M21 4 L(VNi1)M22

(5.5)

where we denoted by L(X) the lower triangular Toeplitz
matrix having the vector X as its first column. This is a
general result relating the vectors M; to the scattering
data. Suppose that the medium parameters up to depth N
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have already been determined. Then the identification of
Kn becomes straightforward: we only have to compute
W/ (N, N + 1) which is. (extendlng the second set of equa-
tions in (5.5))

[We(O,N + 1) Wg(0,N):-- WR(O/1)]M12

+ [Wi(0,N + 1YW.(0, N) =+ Wi (0, )Mz = WL(N, N + 1)
(5.6)

Now, Ky is obtained by dividing W.(N, N '+ 1) by We(N, N)
(from (5.4)), and this makes it possible to compute My (D).
So, starting with Mo(D); = I we can propagate an algo-
rithm that will yield all the M, (D) along with the parameter
sequence Ko, K1,**. This is, of course, the layer adjoining
algorithm, and we see that it has something to do with
solving nested sets of linear equations. ' ‘
The key observation in deriving the previously men-
tioned classical systems is that the vectors M;; are not un-
related.

the following relations between the M,,
Mz = InsiMn and My = ’N+1 Mz (5.7)

where TnsisaN +1 X N + 1 matrix having ones on the

antidiagonal. (This means that I has the effect of reversing-

the order of the elements of vectors on which it operates.)

The result 5.7, which is an immediate consequence of the

symmetry of the medlum layers, can be proved by
Mn (D, E) =']1

defining
15 o [o
i=n ,bi a; Lo E

and noting that symmetry implies _
T2Mn (D, E)T2 = Ma(E, D)

Since the .entries of M,(D, E) are homogeneous-poly-

nomials in D and E, of the form Z;y;D/E"*"7/, the above -
equation jmplies that the corresponding coefficients of

mmu, My and My, My respectively, have the order reversal

property (5.7). We also note that the first entry in M lis

always zero, as a consequence of having m«(n — 1,D) =
D{polyhomial of degree n — 1}.

Using the symmetry results we can rewrite the
equations (5.5) in terms of My and M+, only. The classical
equations arise by using scattering data that is either the
medium impulse response i.e., W.(0,t) = [0s18283°" Jthat
corresponds to Wx(0,t) = [1000...], or another partlcu-
lar type of data, obtained when the medlum is probed with

an.impulse and the returning echos are sent back into the

medium as new inputs; this implies that we shall have
Wz(0,0) =1 and Wx(0,t) = W.(0,t) = r, for ¢ > 0. This
latter type of scattering data corresponds to a perfectly
reflecting interface encountered by the reflected waves
atdepth 0, and in the geophysical literature, it is known as
a marine seismogram (see e.g. Robinson, 1982; Berryman
and Greene, 1980). Using the impulse response qunckly
-leads to the Marchenko equations, whereas the perfect

reflection data yields the Gelfand-Levitan equations. We .
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In the case of a-lossless medium, and in fact”
whenever the gain matrices X{Z(K)} are symmetric we have '

shall not go into-more.detail on these here (for further

- developments see Bruckstein and Kailath 1986), but shall
-show how the Krein equation arises because of the link to

the Levinson algorithm used in linear prediction theory.

Using the perfect reflection scattering data in (5.5), and
the symmetry. results (5.7) that hold for the lossless case
{(but not only. then!), we obtain

N—1 T
M +-L(R) My + M) = [00- 01T (= K:Z)m:l (5.8)
~ - i=0 .
“‘IN+1 M12 + L(R) IN+1(M12 + 'M11) = [00 ‘ OO]T

where R = [0y rN]T Now, left-multlplylng the second
set.of equations by IN+1, and adding it to the first set of
equatlons, leads to

{/N+1 + [I-(C) + Tnet L(C)/N+1]} (M11 + Mu)

= [00. .0 H a- Kz)m] (5.9
which is the Krein equation, having the symmetric Toeplltz
matrix of coefficients, {In+1 + [L(C) + [n+1 L(C)IN+1]}
Suppose that the solution Ay = My + Mz, of this equa-
tion is already available. Then in order to obtain Ky we
have to compute, by (5.6) the following inner product

[OfN+1 Intn-1"*1]JAn = Ky ﬂ (1 - KH"™  (5.10) .
Therefore in order to obtain the next solution Ay,q of
the Krein equation (with dimension N + 2), we have to
determine Ky from (5.10) and determine My.4(D) and
add the corresponding coefficients of mu(N + 1,D)
and my(N + 1,D). In fact by defining the ponnom|a|s
a(N,D) = mu(N,D) + mu(N, D) (corresponding to
An+1) and the reverse polynomial a*(N,D) =
DMa(N,D™") (corresponding to [Ayss), which from
symmetry considerations was seen equal to
ma(N, D) + myu(N, D), we have

,La,f(’;lv :‘11”%))J - MN+1(D)m - (- Kp™

1 —Kn D 0 1
[—KN 1 ] [o 1]M”_(D)[1]
,( KZ)_1/2[ 1 —KN} [D 0] [a(N,D) ]
Ky 1 0 1 a*(N, D)
Many readers will recognize that the above recursion for
a(n, D), together with the formula (5.10), providing the
next reflection coefficient Ky from the data and a(N, D), is
in fact the well-known Levinson-Durbin fast (i.e. O(N?)
algorithm for solving Toeplltz (or Krein) equations of the
form (5.9)..The Krein equation is identical to the normal
equations of discrete Wiener filtering and Levinson de-
rived the above algorithm, in 1942, as a numerical, iterative
process for determining the optimal linear predictor coef-
ficients {see Levinson, 1947).
We have seen that the layer-adjoining algorlthm is the
Levinson-Durbin procedure solving Toeplitz matrix equa-

tions. For lossless media with parameters as in (3.7), the
layer-peeling method is the so-called Schur algorithm for

5.1



determining the reflection coefficients associated with a
stationary covariance sequence: {Dewilde, Vieira and
Kailath, 1978; Kailath, 1985, 1986). It is important to remem-
ber that, for general transmission-line models, the
computation of Ky requires the numbers Wr(N, N) and
WL(N, N + 1), and finding the later from the original data
and M, (D) implies performing two .inner products. Inner
products become unnecessary, as-in the tapped-delay line
example, when the layer-peeling approach is used. How-
ever, the layer adjoining method also provides My (D) for
all N, as the inversion process proceeds (and this infor-
mation might be useful, or even required). Since inner
products are computational bottlenecks when parallel
processing is possible, one would generally like to avoid
them. Therefore in order to determine the medium
parameters only, layer peeling algorithms should be the
natural choice; moreover we may note that by propaga-
ting the LP and LA algorithms in parallel, one can avoid the
inner product computation and obtain the transfer finc-
tions M, (D) as well. '

Example 3— INVERSION FOR DELAYED-FEEDBACK
STRUCTURE (MINIMAL PARTIAL REALIZATION)

The delayed-feedback structure of Fig. 6 can also be
recursively identified from-an arbitrary' (causally gener-

ated) scattering data pair, since the ao + 2 parameters of

the vector Ko = [ao, Bo, B1,°1*, Bay are readlly determined
from Wz (0, t) and W.(0, t). Indeed, first note that a, is just
the number of leading zeros in W,(0, t) (under the assump-
tion that Wz(0,0) # 0): Then, to identify the parameters
{B:}, consider the cascade factorization of the first layer’s
transfer description (see Fig. 6a) to see that the parameters
can be identified recursively as follows:

1) right shift-W.(0,t) by ao to align the first nonzero
element of the response sequence with Wx(0,0) # 0.
2) interchange the sequences. Wg(0,¢) and
WL(OIt + a.O)-

3) recursively identify Bo,B4,...
Note that Bo # 0.

,Bn as in Example 1.

At the end of this process we obtain Wk(1, t) (which will
equal W,(0, t), by inspection) and W.(1, t), with which data
the identification of the next layer can be performed. Note
the algorithmensures that W.(1, t) will have at least oo + 1
leading zeros. Therefore a4 will be at least 1.

The importance of the above example is in the fact that
it provides a complete solution to the famous minimal
partial realization problem, in a generalized setting (see
e.g. Kalman, 1979; Gragg and lLindquist, 1983; Citron,
Bruckstein and Kailath, 1984). This problem.requires to
determine, for all N, the linear system: of minimal order
that matches the first N lags of a given input-response

. pair (scattering data). The partial realization problem is
very important in the theory of linear systems and also in
algebraic coding theory, thus it received considerable
attention in the literature. The more recent results on
this problem have stressed the nestedness property of
partial realizations of a given infinite impulse-response

sequence. It was proved (see e.g. Kalman, 1979; Gragg and
Lindquist, 1983) that if we wish to realize a given impulse
response sequence for increasing values of N, then the
partial realizations may be realized with a canonical,
nested feedback structure similar to the cascade system
considered in Example 3, which enables the determina-
tion of the realization parameters recursively, Two types of
fast algorithms for determining the realization parameters
have been proposed. One is the algorithm of Berlekamp
for decoding error-correcting codes, which was inter-
preted by Massey (1969) as a minimal order shift-register
synthesis procedure. The other is based on a procedure of
Lanczos for factoring Hankel matrices (see Kung, 1977;
Citron and Kailath, 1986). ' ’

The algorithm presented above is, obviously; a layer-
peeling type identification method. In the particular case
when ‘Wi (0, t) is a unit impulse, i.e., when the weighting
sequence of the system is given, the process of deter-
mining the minimal partial realization is known to be
equivalent to a block factorization of the Hankel matrix
of the Markov parameters (see Kailath, 1980). The layer-
peeling process can be identified as a generalized Lanczos
algorithm (see Kung, 1977). If the corresponding and easily.
derived layer-adjoining method is called upon, then the
celebrated Berlekamp-Massey- algorithm is recovered
(Citron, Bruckstein and Kailath, 1984). ‘

Let us show that the delayed-feedback structure as-
sumed above does indeed provide minimal partial realiza-
tions (and hence the factorization of Hankel matrices
displaying the scattering data), for the response of the
medium. First, it is immediate from the structure of the
elementary layers that the forward transfer matrix of

“the first n + 1 layers M, (D) is constructed according to

Mn+1(D) = X{E(K/D)} = l;(l) _ D—an T (D)

]Mnro)
(5.12)

Note that D™*"T(D) is a polynomial of degree a in D™,
since always Bo # 0. Thrs means that the entries mx(n, D)
and ma(n, D) can be obtained as a result of propagating
the following recursion (S|mply by reading (5.12) in reverse
order)

m%(u + 1,D) = m#%u, D)
mzz(u +1,D) =m%(u,D)
+ mzz(u D){ D™%n- YT u(D)}

(5.13)

wrth lnmal .conditions mz1(0 D) =0 and m%(0,D) = 1.
Now observe that (5.13) may be recognized as an
Euclidean division algorithm in reverse, which implies that
for all n, the polynomials m2(n, D} and mz(n, D) will
be coprime.

Also from the structure of the basrc layers, this time
examined in the scattering domain, it follows that the scat-
tering representation of M, (D) is of the form
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-D*n{a causal transfer function}{a causal function}

mai(n, D o
——-27?7—5 D*n{a causal transfer function}
m2n, (5.14)
where A, = do + a1 + ... + a,. This shows that the im-

pulse response of the medium at dépth 0, represented

by the formal power series So(D) = 's1D + s2D? +
ssD? + «++, is related to the impulse response (or the
input-reflection transfer function, see Section 6) of the
medium at depth n + 1, S,41(D), which has an+1 leading
zeros, as follows:

mx(n; D)

SolD) = = n, D)

+ DZA"Sn+1(D,) {a causal transfer
function}

(5.15)

Combining this with the coprimeness of max(n, D) and
ma2(n; D) shows that the partial sequence. {so,s1,...,
S2as+ansqt IS realized by the strictly proper irreducible
transfer function —mx(D)/m=(D). Furthermore, the cas-

cade of the first n layers of the medium provide an-order

A,, hence'minimal, realization of this I/O map. The rela-

tion (5.15) when: written out.as 'a convolution relation, -

So(D)Y*myy(n, D) = —mai(n, D) mod(D¥**r+1)," readily
yields the classical Hankel matrix formulations of the par-
tial realization problem, and also shows that the realiza-
tion polynomials are uniquely determined at the points
where a layer was completely identified. We shall not go
into further detail on this here (see Citron, Bruckstein and
Kailath, 1984); however it is important to note that at the
points where a layer was completely identified, we have
uniqueness of the minimal reallzatlon, and this minimal
partial realization remains unique up to the point where
the first nonzero lag of the response of the medium start-
ing with the next-layer appears. At this moment the order

of the partial realization jumps by the . amount a,+1, and

the minimal realization will become unique only when the
entire next layer has been identified. It is also nice to
realize that the parametrization of nonunique realizations
- isimmediate in terms of the yet unidentified B parameters
(see Fig. 6). The above framework thus yields in a very
straightforward manner some rather advanced results of
partial realization theory (see Kalman, 1979). ‘

Generalizations and Other Applications

" In all the above examples the medium identification
process-used only an initial portion of the data sequences
to-determine the next layer; this property was due tg the
fact that, as a result of delay in signal propagation, the
initial phase of the response was:not affected by echoes
returning from deeper layers. Consequently the identi-

fication algorithms we derived were both recursive and

nested in the sense that N lags of the data sequences were
sufficient to identify N layers in the medium and this was
also the source of their computational efficiency—only

O(N? computations were required to identify. N parame-

ters; However, this need not be the case in general. The
function F{:,+}, determmmg the next layer of the scattering
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data could in: principle represent'a complicated com-

‘putation involving the whole time history of Wx(0, t) and

W.(0, t). This would immediately raise the computational
complexity. of the inversion algorithms, which would re-
main tecursive but not nested any more.

As a simple example, suppose that we wish to realize a
gain-delay scattering structure that has a prescribed ratio-
nal transfer function of the form

aop + a{Dv + a2D2 +
bo + b1D +‘b2D2. +
Thus we want a scattering structure that, to the input se-

quence Wi = .[bo, b1, bz,***, b, 0,0, .. .] responds with the
sequence [ag,a1,82,***,a,,0,0,.:.]. We shall also assume

.+ a, D"
..+ b,D"

H(D) = 5.16)

" that the realization has to be done with a scattermg struc-
ture as depicted in Fig. 10. :

<Here the identification algorithm proceeds-as follows.
The gains y1 and p; can be set to provide W.(1,0) = 0 and
We(1,n) = 0. This is achieved by

do

« _ _bn :
"= and  p; = 2 (5.17)

n

Thus' the first and last lags of the scattering data are

needed for the determination of the first layer. Then the"
propagated data for the rest of the medium will consist of

two sequences of length n, rather than.n + 1 so that an

order reduction was achieved. Proceeding in this manner,

"after at- most n' steps we shall have to determine a scatter-

ing medium that responds to one number with another
single number, and this will be a terminating gain element.
Therefore the transfer function-synthesis is completed in
n steps viaa general inversion procedure that uses whole
scattering data in order to achieve order reduction at each
step. In practical examples several problems may arise.
We could have an early termination 6f the process due to
the appearance of an all-zero W; sequence, orit may be
impossible-at some point to achieve degree reduction,

because of a longer nonzero Wk sequence than the corre-

sponding W,. We shall not enter a detailed discussion of

" these issuies here, however we should mention that such
_problems are related to the possibility of having as mput a
knonmlmmal transfer function (i.e. the numerator and de-

nominator could have common polynomial divisors), or
the impossibility to realize a given transfer function in the

‘form implied by the assumed scattermg model with a

finite-length structure.

The realization algorithm described above is a very sim-
ple example.of a general approach to digital filter design,
based .on inverse scattering or layer identification ideas
(see e.g. Mitra, Kamat and Huey, 1977 and the further
developments in recent work of S. Rao and T. Kailath,
1985). In this work, various degree one scattering sections
with propérties suitable for implementation.in VLS| are
postulated and the synthesis process is an algorithm that

identifies the parameters of local procéssors so as fo real-

ize various desired /O maps. The structural constraints
are then automatically met by the assumed scattering

- structures.



CONTINUED FRACTIONS AND INVERSE SCATTERING

The above presented inverse scattering theory is closely
connected to the theory of linear fractional maps and:con-
tinued fractions, which have long been used in circuit
theory. Indeed, considering the scattering data Wk(0, t)
and W.(0, t) and recalling the linearity of the infinite cas-

cade systems under consideration, we can associate with

the data an equivalent impulse response-—or a so-called
reflection transfer function (RTF),

W.(0, D)
WR(OI D)

where W.(0, D) = Z5 W.(0, t)D" is defined as a function of
the (complex) variable D. Then we may ask the question:
how does the RTF at the n-th section, S,(D), defined in
an obvious manner, evolve as we proceed deeper and
deeper into the medium?

Since Wk and W, propagate according to a set of linear
equations we shall have (cf. (2.1))

So(D) = (6.1)

_ Wi(n+1,D)
Snua(D) = Wk(n +1,D)
=‘ 021(Kn/D)WR(n/D) + on(Kn/D)WL(n/ D)
011(Kn‘, D)WR(n/D) + 012(Kn;_D)WL(n/'D)
S ’ (6.2)
yielding
Spen(D) = K0, D)+ 0o, D)D)

01(Kn, D) + 81(Ks, D)S,(D)

This is a linear fractional transformation (recursion) and
therefore we see that S, (D) can be found by applying a
sequence of such transformations to the-original data
So(D). Conversely it is easy.to recognize that So(D) will be
implicitly expanded in a continued fractlon expressed in
terms. of the {0 (K, D)}
In the case of a tapped delay-hne model, the. fractlonal
- transformation is

~Kn +.5,(D)

Sp+i(D) = D

with K, = S, (0) and we simply get the power series repre-
‘sentation of the function So(D). However, (6.4) together
with the identification formula yielding K, from S,(D) at
D =0, may also be interpreted as an algorithm for in-
verting a formal Z(here D)-transform, see e.g. Jenkins,
1967, who points this out together with a short discussion
. of what happens if So(D) is a rational function in-D. Not
surprisingly, he arrives at a practical algorithm which is
exactly the Layer Adjoining process for determining the K,
sequence, where the scattering data are the finite denoml-
nator and numerator sequences.

For the lossless transmission-line model, where ®(K, D)

is given by (cf. (3.7) and (3.6))
= {1 — g~ 1 _K] [D ,0]
o0y =1 -ky | T P

(6.4)

the linear fractional transformation becomes

Sn#(D) _ 1 =Ko + 5,(D)/D 6.5)
D D1-K,S.(D)/D '
Here we have that - :
K, = Sn(D)/‘D|D=O (6.6)

Such fractional transformations were used by I. Schur in
1917, as a test for boundedness of functions analytic insidé
the unit disc. In our formulation, his result is the foliow-
ing: a function has the boundedness property provided it
is the RTF of a lossless transmission line structure, which
means, under the assumption of the model (3.5) and (3.7),
that the inversion algorithm yields a sequence -of reflec-
tion coefficients obeying |K,| < 1 for all n (see e.g. Bruck-
stein and Kailath, 1983, 1986).

The delayed feedback structure of Figure 6 corresponds
to the linear fractional recursions

1= 5:(D)D"*"T,(D)
S.(D)
which, as pointed out to us by W. Gragg, corresponds to
the so-called principal part continued fraction expansion
introduced by A. Magnus (see e.g. Gragg and Lindquist,
1983). Indeed, by writing (6.7) as
D*'T~™(D) .

1+ D*"T"(D)S,+(D)

we can obtain. a continued fraction expansion of Sy(D).

Sn+1(D) =

67

Sn(D) = (6.8)

‘Here again, from §,(D) we can determine a, and T,(D),

as described in Example 3. of the previous section, and
therefore (6.7) may be regarded as a recursive way .of
determining the continued fraction expansion of the
data So(D).

Note also the following mterestmg result: if we have the
forward transfer matrix for the medium composed of the
first n layers, M n=1(D) then we can write

[WR('n,D)] _ [mﬂ(n -1,D) mu(n - 1,,0)]

W.(n, D) ma(n = 1,D) mxn(n—1,D)
Wk (0, D)]
w0 6
from which it follows that
Sn(D) m21(n 1,D) + ms(n — 1,D)S(D) (6.10)

m11(n - 1,D) + m12(n -1, D)SO(D)

We can also rewrite (6.10) to display So(D) as a function of
S, (D), and then we obtain

—1,D) + mu(n — 1,0)5,(D)

_ —mxu(n
So(D) = mzz(n' = 1,D) — mu(n —1,D)S,(D)
_manln 2 1,D)
- mxn(n —1,D)
L _ mu(n = 1,D)mx(n = 1,D)
* [m11(n .1’D) ‘map(n —1,D) ]
Sh(D)

1,D)
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If we consider the scattering representation of M, (D),

sime [t —1,D) p(n =1,D)
M"(D)_[(”—1D) #n —1,D)

'and recall (2.4), we have that (6.11) can be written as
follows:

S.(D).
p(n —1,D)S,(D)

SO(D)= r(n - 1ID)'+ t(n —1fD)1

“7(n - 1/D)

Therefore we see that So(D) is simply the left reflection
transfer function of the scattering representation of
" M,-1(D) added to a contribution which is-due to
“feedback” through S, (D). This result explains equation
(5.15) of the previous section, used there to show.that, due
to the delay structure of the delayed-feedback medium,
the impulse response So(D) is not influenced by S, (D) up
to a lag equal to the delay incurred in passing a signal
back and forth tFrough the first n layers of the scattering
medium.

‘As far as inverse scatterlng is concerned when the me-
dium is identifiable, as was the case in all the examples
discussed above, all the recursions for $,(D).can be func-
tionally propagated in an autonomous manner, starting
from So(D). This immediately follows from the observation
that S,(D), being the impulse-response (scattering) data
for the medium extendmg over [n, «), contains all the in-
formation necessary to identify ‘®(K,, D). Therefore the
scattering data, and also the impulse response one section
deeper-into the medium, S,++(D) can be determined via
(6.3), and so one can propagate the identification - algo-
rithm-indefinitely.

We may remark that several mterestmg connections
between: continued fractions and digital filtering, as well
as their relations to stability testing, are further discussed
by Jones and Steinhardt (1982). :

CONCLUDING REMARKS

We have described:in this paper inverse scattering algo-

" rithms that solve the problem of identifying a system hav-
ing a cascade structure, from its response to some (given)
probing signal. This problem underlies a variety of signal
processing algorithms, such as the determination of linear
prediction coefficients from covariance data, the design of
digital filters with desired impulse responses, the minimal
partial realization problem of system theory, decodmg al-

gorithms for certain error correcting codes; etc. lnverse_
scattering procedures are also applied in geophysics; -

where the properties of earth-layers are to_be identified
from the echoes of explosions; in physics, where we wish
to recover a potential field from particle scattering experi-
ments; in acoustic sounding, where material properties

are to be determined from reflected sound waves, in
speech research, where the changes in the vocal tract area -
with depth are needed to investigate the productlon of

speech; and in many other problems. The crucial assump-
tion in' deriving inversion algorithmsis the model of the
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jl (6.12)

(6.13)

scattering medium, and different algorithms are obtained
for different elementary layer structures. We have shown
however that in all cases there are two basic algorrthms
called layer-peeling and layer adjoining, which lead to
a variety of efficient computational procedures that
were arrived at in the literature rather indirectly, by
analyzing each problem separately and using different
methodologies.

A basic difference between the layer adjoining algo-.
rithm and the corresponding layer-peeling process is that
the latter avoids the computation of inner products at the
expense of passing the entire data sequences through the
successively identified elementary layers. If a large num-

ber of processors is available, say a number equal to the

length of the data sequence, then the layer peeling algo-
rithm can be implemented by acting in parallel on all the
data with the transfer operator that is identified from the
already available data. In this case an algorithm that had a
complexity of O(N?) with a single-processor will take O(N)
time with N processors. The layer adjoining algorithm
however, even with N processors available will:require at

least O(NlogN) time, because the computation of the sum

in an inner product cannot be dong faster than in logN
time on N processors.

* We.may also point out here that for most of the prob-
lems discussed above, even more efficient than O(N?)
algorithms can be found by using a doubling technique.
The idea is to use the linearity of the layered system and,
after having identified P layers to use the joint transfer
representation of these layers in order to ‘compute the
waves at depth P via fast convolutions using the Fast
Fourier Transform algorithm. Then the propagated waves
can be used to identify P more layers of the medium and
the transfer function of 2P layers are used to propagate the
data necessary to identify 2P more layers, and so on... A
count of operations: for the doubling procedure shows
that O(Nlog®N) operations will be needed in order to re-
cover'N medium layers. In the context of solving struc-
tured systems of equations, the doubling idea is originally
due to Brent, Gustavson and Yun (1980); and. it was then
applied to problems involving inversion of symmetric
Toeplitz matrices and optimal linear prediction, see e.g.
the papers of Morf, 1980, Bitmead and Anderson, 1980,
Musicus, 1981 and Delosme, 1982. Interestingly, two
papers that appeared at about the same time in the geo-
physical literature independently proposed similar divide-
and-conquer type procedures for the generation and
inversion of one-dimensional seismograms (see Choate,
1982 and McCIary, 1983).

It should be noted that almost alI the problems and
solutlon algorithms presented here have continuous

- counterparts, where the models become partial differ-

ential equations of wave-propagation and the inversion
algorithms become differential equations (see Bruckstein,
Levy and Kailath, 1983, and the references therein), '
We did not discuss in this paper issues related to the
numerical stability of thése algorithms. It is well-known,

for example that partial realization algorithms are numeri-



cally unstable (De jong, 1978). However the behavior of

the efficient algorithms for matrix inversion, which are
inverse scattering processes for lossless transmission: line
type media, have been thoroughly investigated, and these
were found stable numerically (see e.g. Cybenko, 1980 or
Bultheel, 1981). Also we did not address the problem of
doing inverse scattering with noisy data; however some
new results in this direction are reported in (Bruckstein,
Koltracht and Kailath, 1985 and Koltracht and Lancaster,
1986). These issues are of crucial importance in all the
applications, since it is obviously. quite useless to have
extremely fast algorithms that provide wrong results. We
feel however that the basic and unified theory that
emerges by investigating several signal processing and
system theoretical problems in acommon, inverse scatter-
ing framework is a good foundation for further numerical
investigation and for applications in other areas.
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