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where a, are n-dimensional column vectors. The Frobenius norm of 
A is defined by 

n m  m 

hemultiplying with Q gives 

QA=[Qal  Qaz Qa,] 

where Qa; are n-dimensional column vectors. This gives 

IIQAII; = llQa111; + IlQazII; +.. .+ IIQamll; 

=IIalII~+IIazII;+...+IIamII; = IIAII’F 
which means that the Frobenius norm is invariant under orthogonal 
transformations. 

A similar argument gives 

IIQAZIIF = I lA l l~  

where Z is an orthogonal m-dimensional matrix. 

[ 5 ] )  for the matrix A 
This gives together with the the singular value decomposition (see 

1 ,  

where p = min{m,n} and U and V are orthogonal matrices of 
appropriate dimensions. .E is an n. x m matrix where the upper left 
p x p submatrix is diag[ 01 . . . up ] and the rest of the matrix 
is zero. 

From the above it follows that, for the 3 x 6 matrix R, the Frobenius 
n o m  is 

uz 

I . ?  
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Two-Dimensional Robot Navigation Among 
Unknown Stationary Polygonal Obstacles 

Guy Foux, Michael Heymann, and Alfred Bruckstein 

Absfruct-We describe an algorithm for navigating a polygonal robot, 
capable of translational motion, in an unknown environment. The en- 
vironment contains stationary polygonal obstacles and is bounded by 
polygonal walls, all of which are initially unknown to the robot. The 
environment is lamed  during the navigation process by use of a laser 
range-finding device, and new knowledge is integrated with previously 
acquired information. A partial map of the environment is thus obtained. 
The map contains parts of the obstacles that were “seed’ by the robot and 
the free space between them. The obstacles in the map are transformed 
into a new set of expanded polygonal obstacles. This enables treating 
the robot as a point instead of a polygon, and the navigation problem 
is reduced to point navigation among unknown polygonal obstacles. A 
navigation graph is built from the transformed obstacles in the map. This 
is a partial visibility graph of the enlarged obstacles. A search is conducted 
on the graph for a path to the destination. The path is piecewise linear; at 
its comers, the robot stops, scans its environment, and updates the map, 
the obstades, and the planned path. The algorithm is proved to converge 
to the desired destination in a finite number of steps provided a path to 
the destination exists. If such a path does not exist, then the navigation 
process terminates in a finite number of steps with the conclusion that 
the destination is unreachable. 

I. INTRODUCTION 
The problem of robot navigation in an unknown environment can 

be described as follows: source and destination points are given, 
the robot being outside all obstacles when placed on any of these 
points. The navigation space is unknown and may contain obstacles 
of different kinds. The problem is to find a path from the source 
point to the destination point, so that motion of the robot along this 
path is such that the robot is safe from collision with the obstacles. 
To implement the navigation, the robot uses information on the 
environment provied by its sensors. 

An algorithm for solving the navigation problem for a polygo- 
nal robot in a two-dimensional unknown environment, where the 
obstacles are stationary polygons, is presented in this paper. The 
assumptions made in this work are that there are a finite number 
of stationary polygonal obstacles with a finite number of vertices, 
and that the robot polygon also has only a finite number of vertices. 
The robot is assumed to sense its environment with a range sensor 
providing the distance to the first obstacle in all directions. This is 
a good model for a laser-sensing device, and the range and angular 
sensing, as well as the motion, are assumed to be error free. The 
algorithm has the following properties: 

1) Convergence - If a path from source to destination exists, then 
the robot reaches the destination in a finite number of steps. If 
such a path does not exit, then, in a finite number of steps, the 
robot reaches this conclusion and halts. 

2) Leanzing - The robot learns its envimoment during the naviga- 
tion process. A map representing this knowledge (Le., obstacle 
walls and free space) is kept and updated and is used for 
planning the navigation path. 
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3 )  Monotonic Behavior-The length of paths, produced by the 
navigation algorithm, is a monotonic nonincreasing function of 
the available knowledge (which is monotonically accumulated). 
If knowledge of the environment were complete (i.e., if all the 
obstacles and the free space between them were known), the 
paths produced would be otimal in the sense of the shortest 
Euclidean length. 

4) Environment Complexiv- There are no further limitations on 
the shape of the obstacles, like convexity, and therefore the 
algorithm solves navigation problems in complex environments 
such as mazes. 

5 )  Polynomial Time Complexity - The complexity of calculations 
for any navigation step are third-order polynomials of the 
number of vertices in the obstacle polygons. The complexity of 
calculations for the whole navigation process is a fourth-order 
polynomial of the number of the vertices. 

In recent years, the navigation problem in unknown environments was 
often addressed in the literature. However, for the set of assumptions 
made in the present paper, no solution including all of the above 
properties has been published. The algorithms proposed by Cahn and 
Phillips [3], Koch et al. [9], Moravec [17], and Thompson [24] are 
not convergent. The algorithms presented by Lumelsky and Stepanov 
[13], [I41 and Lumelsky [15] are convergent. Learning, however, 
is not incorporated, and therefore there are no improvements in 
the performance, even if a specific task is repeated over and over 
again. On the other hand, these algorithms can solve navigation 
problems in very complex situations such as nonpolygonal mazes. 
Recently, Lumelsky et al. [16] addressed learning and terrain model 
acquisition within the framework of their navigation scheme. The 
algorithm proposed by Iyengar et al. [8] was not formally proven to 
converge. This algorithm employs learning of the environment and 
there are improvements in the planned paths with the accumulation 
of knowledge. However, there tend to be unnecessary detours in the 
paths due to the navigation strategy. The algorithm by Oommen et al. 
[19] works for a point robot in environments where the obstacles are 
convex polygons but does not necessarily converge in all situations. 
Rao and Iyengar [21] and Rao et al. [20] described a convergent 
algorithm that also learns the environment. Paths are generated by a 
combination of local and global strategies. This involves definition of 
subgoals, which again tend to yield unnecessary detours in the overall 
paths to the destination. More recently, Rao et al. [22] described 
an interesting algorithmic approach based on retraction in which 
navigation is implemented along the Voronoi diagram of the terrain. 

The solution presented in the following sections is a navigation 
scheme for a polygonal robot capable of translational motion only. 
In order to reduce the problem of navigating a polygon to that 
of navigating a point, the obstacles are enlarged by the robot 
polygon’s dimensions to yield a new set of polygonal obstacles. This 
“enlargement” of the obstacles is a well known method introduced 
formally by Lozano-Perez and Wesley [ 1 I ] .  

11. PROBLEM DEFINITION 

The robot is a polygon in a polygonally bounded region B in the 
plane, such that the boundary of B has a finite number of vertices. 
Inside region B, there are a finite number of stationary polygonal 
obstacle with a finite number of vertices, such that each vertex is the 
intersection of at most two edges. Therefore, an obstacle can have 
a closed polygonal boundary, or it can be an open polygonal “wall” 
(see Fig. 1). 

Let I t*  = { w 1 ,  ~ 1 . .  . . . u’,y} be the set of all obstacles in B. We 
shall denote the boundary of an obstacle w , , ~  E T I -  by bd( ) and its 
interior by int( u’,71 ) (for every open polygonal wall int( w ~ , ~  ) = E). 

Fig. 1. Domain B with the obstacles, some of which are polygonal bodies 
while others are polygonal walls. Points S and D are the source and 
destination points, respectively. 

In the same manner, bd(B) and int(B) denote the boundary and 
interior of the region B ,  repsectively. We assume that every obstacle 
is contained in int(B) (i.e., does not intersect bd(B)) and that no 
two obstacles intersect. 

Let F S  denote the feasible free space, which is the set of all 
points in B in which the robot’s reference point may be placed 
without causing collision between the robot and any of the obstacles 
U’,,, E I f - .  In F S  there is a point S in which the reference point 
of the robot is initially situated, and a point D ,  which the robot 
aims to reach. The robot can move along straight lines only, and 
therefore a feasible path from S to D is a piecewise linear path in 
F S .  When the robot’s reference point moves along such a path, the 
robot is outside all obstacles in B.  For the sake of simplicity of the 
navigation principles, we assume this reference point to be in the 
interior of the robot’s polygon and not on its boundary. 

The “navigation problem” is to find a feasible path from S to D. 
The solution to this problem, by finding a path and moving along it, 
is called a “navigation task.” The motion starts at the initial position 
SI = S and proceeds through intermediate points S,  ( i  = 2 . 3 . .  . .), 
which are vertices of a piecewise-linear path, to the destination point 
D or to a point S I ,  where it becomes evident that the destination 
is unreachable. At the points S,, the robot performs a range-sensing 
sweep in all directions, giving in each direction the distance to the 
nearest obstacle. This process supplies the robot with increasing 
amounts of information on its environment, thereby enabling it to 
make decisions concerning the next move. 

111. NAVIGATION PRINCIPLES 

A. The Learned Free Space 

We assume that the robot’s reference point is situated at a point 
Sk on the navigation path. The parts of the free space “seen” by the 
robot from S I ,  and from some specific points along the path that 
lead to SA., are called the learned free space corresponding to S k  
and marked L F S I .  The next section describes how this LFSk is 
built and updated, but for the time being it is enough to know that 
L F S A  is that part of the free space with which the robot is familiar 
(through learning). 

The boundary of L F S k  is divided into a finite number of leamed 
boundaries E,. These are connected parts of obstacle boundaries 
that were seen by the robot. Each learned boundary E, E LFSk is 
either contained in the boundary of B or in the boundary of some 
obstacle E It‘  in B. The view of some of the leamed boundaries 
might be obstructed by other learned boundaries. In such a case, the 
line segment connecting the endpoint of the obstructed obstacle with 
the corresponding endpoint of the obstructing obstacle is called a 
temporaty segment. 

It is assumed, for sake of planning a path, that, at each stage, the 
learned boundaries known to the robot constitute the complete set of 
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Fig. 2. The configuration obstacles. R is the robot, and the broken lines 
represent the temporary segments that bound LFSI; .  

obstacles in B .  This implies that the entire space between and around 
them is free space. The assumption is generally false, of course, but 
it enables planning a path in unknown regions. 

B. The Alleged Feasible Free Space 
In order to treat the robot as a point, the obstacles known to the 

robot, namely, the learned boundaries, are grown by the robot's 
polygonal dimensions. A technique for "growing" obstacles was 
presented in 1979 by Lozano-Perez and Wesley [ i l l ,  and treated 
formally in 1983 by Lozano-Perez [ 121. Growing a polygonal obstacle 
by another polygonal object (the robot) that can only perform 
translational motion yields a new obstacle that is also a polygon. 
See Fig. 2. We use the term configuration obstacle to describe the 
grown obstacle because the original obstacle was transformed into 
the configuration space of the robot's reference point (which in this 
case is the (X,E') space of the location of the reference point in 
the plane). If two configuration obstacles intersect, then their union 
is treated as a single configuration obstacle. Each vertex in the 
configuration obstacle is related to exactly one vertex of the original 
learned boundary. 

The space between the configuration obstacles is considered to be 
safe for motion (based on the assumption of the previous subsection). 
This alleged free space is marked AFSk for alleged feasible free 
space. The problem is to move the reference point from its current 
position to a new position in AFSI; in a manner that will eventually 
bring the reference point to the destination. 

C. The Navipation GraDh 
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Fig. 3. Visibility lines between vertices of the configuration obstacles. The 
full lines are Type A visibility lines, the broken lines are Type B visibility 
lines, and the dotted ones are Type C visibility lines. 

/ /  

Fig. 4. Plausible visibility lines from D. 

the configuration obstacles (unless there are V and U that fit 
in the first category). 

Comment: Since SI; E LFSk, we consider SI; to be a vertex for 
the purpose of applying the definition of visibility lines to SI;. 

We now define visibility lines and plausible visibility lines of the 
destination point D (see Fig. 4). 

A visibility line from D is the straight line segment from D, totally 
contained in LFSk, to a vertex V in LFSI;. Such visibility lines 
exist only if D E LFSk. 

A plausible visibility line from D is the straight line segment from 
D to a vertex 1' in LFSI; that does not intersect any edge of a 
configuration obstacle (except for its endpoints D and V ) ,  and at 

U 

least part of it is outside LFSI;.  

(corresponding to S k )  is the following directed graph: 

1)  visibility Lines: A visibility line between two vertices 1. and 
cr of the configuration obs~cles  is the line segment (17, U )  2, Of the Navigation Graph: The navigation graph lVGk 

that belongs to one of the following categories (see Fig. 3): 
1) A single node in the graph corresponds to the destination point 

D and to each of the vertices from the configuration obstacles. 
2) A single node in the graph corresponds to the robot's position 

S k ,  if s k  is not a vertex in any of the configuration obstacles. 

in the graph to every visibility line or plausible visibility line, 

A visibility line that is contained in LFSI;: In this case the 
visibility line between the vertices 1' and U is a true visibility 
line, because it passes in a region known to be free of obstacles. 
A visibility line along an edge (V. Cr) of a configuration 

line between the vertices 1' and IT is a Dhusible visibilitv line 
obstacle not contained in LFSk:  In this case the visibility 3) TWO antiparallel directed arcs ( k g )  and (f i) correspond 

because it relies on the assumption that the space around the 
configuration obstacles is free. 
A visibility line corresponding to a temporary segment: This 
case occurs if the vertices related to V and U ,  in the original 
learned boundary, are both endpoints of their appropriate 
learned boundaries, between which a temporary segment exists 
(i.e., an obstruction occurred), A plausible visibility line exists 
between any of the pairs of V and U related to V and CT in 

between vertices 1' and c' (including S k ) .  

4) A single directed arc (FD) corresponds in the graph to every 
visibility line or plausible visibility line (D. V )  from D. 

5 )  A cost is assigned to every arc in the graph that corresponds to 
a true visibility line between vertices or a visibility line from 
D. The cost of each such arc is equal to the Euclidean distance 
between the vertices corresponding to the nodes at its ends. 

6) A cost is assigned to every arc in the graph that corresponds to a 
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plausible visibility line between vertices or a plausible visibility 
line from D. The cost of each such arc is equal to the product of 
a constant conservatiodcuriosity factor (CCF), set by the user, 
and the Euclidean distance between the vertices corresponding 
to the nodes at its ends. The constant CCF determines the will 
of the robot to navigate in unmapped regions. A large value for 
CCF encourages conservative navigation in the known regions, 
whereas a small value for CCF encourages more adventurous 
navigation. 

The navigation graph SGk is a finite directed graph whose weights 
are non-negative, and therefore Dijkstra’s algorithm [5 1, for finding 
minimal paths in graphs, is applicable. 

If at a point Sk there is an increase in knowledge ( LFSk # 
LFSkPl  ), then the navigation graph is updated. If there is no increase 
in knowledge, then the only change in -\-Gk relative to -1-Gk-1 is 
marking a new node as corresponding to S k ,  and removing the note 
corresponding to S k P l  if Sk-1  is not a vertex of any configuration 
obstacle in AFSk .  

3) Existence of a Path to Destination D in the Navigation Graph: 
Lemma I :  If a path from S to D exists in B, then a path exists 

in A\rGk from 51 (the node corresponding to the robot position) to 
the node corresponding to the destination D .  

Proof: Let us consider the two-dimensional free-space AFSk 
between the grown learned boundaries of LFSk.  Since every learned 
boundary E, E LFSk is contained in the boundary of B (bd(B)) 
or the boundary of some obstacle U’,,? E I t -  in B (bd(u,,,,)), it 
follows that the real feasible free space F S ,  between the configuration 
obstacles in B, is contained in the alleged feasible free space, 
F S  c AFSk .  If a path from S to D exists in F S ,  then S and D 
belong to a connected subspace of F S ,  and therefore to a connected 
subspace of AFSk ,  which will be denoted A F S k .  

D “sees” some vertices of configuration obstacles in A F S k ,  and 
corresponding arcs exist in  AYGk. To each of these vertices a path 
from Sk exists in the navigation graph, because .4FSk is a connected 
region that includes both S and S k .  Therefore, a path exists in the 
navigation graph between the nodes corresponding to Sk and to D.. 

Hence, if no path from Sk to D exists in the navigation graph 
.1’Gk., then no path exists from S to D in the domain B. From this 
conclusion we draw the termination condirion of the algorithm: If 
at some point S k  on the navigation path the navigation graph -VGk 
contains no paths from Sk to D ,  then the robot halts at Sk and the 
navigation task terminates with the conclusion that the destination is 
unreachable. 

Note that in the case where no path exists from S to D, the robot 
might move from 5 1  = S to some Sk ( k  > 1)  before the process 
terminates. In J-Gk there is no path from Sk to D. However a path to 
D did exist in the navigation graphs corresponding to all the points 
51. 5 2 .  ’ ” . Sk.-I. 

D. The Navigation Algorithm 
Planning and executing motion is conceptually composed of the 

following three steps: 
Step 1: Suppose the robot’s reference point is situated at point 

SA ( k  2 l) ,  the robot scans its surroundings to obtain the “seen” 
part of the environment from 51, and updates the learned free space 
LFSk. accordingly. 

Step 2: If LFSk # LFSkP1,  then the navigation graph is 
updated (for k = 1 the graph is built), and a new path to the 
destination D is planned by applying Dijkstra’s algorithm to TGk.  If 
no path exists in .\-Gk from SA. to D ,  then the algorithm terminates 
with the conclusion that the destination is unreachable. If a path 
exists, then let the planned path be ,sk -+ -+ \ ; + I  --t ’ . .  + D. 

The robot moves from Sk to 1. along a straight line. If 1; = D ,  then 
the process terminates successfully. If 1; # D ,  then 1; is marked 
Sk+1, and step 1 is performed again. 

If LFSk = LFSk-1, then the robot continues with the 
planned path and moves along a straight line from s k  to the next 
vertex on the path 1.;. If 1; = D ,  then the algorithm terminates 
successfully. If 1; # D ,  then 1.; is marked Sk+1 and step 1 is 
performed again. 

The robot can only move along visibility lines from SI; to some 
vertex 1 ~ E AFSk .  Analysis of the visibility lines from Sk reveals all 
of them to be true visibility lines (and not plausible visibility lines), 
and therefore all these visibility lines are contained in LFSk.  is 
therefore related to a permanent vertex in LFSk.  (Had 1- been related 
to a temporary vertex, obtained through obstruction, then would 
have been obstructed by the grown part of the original obstructing 
obstacle.) 

Step 3: 

E. Convergence of the Navigation Algorithm 

Theorem I :  If a path from S to D exists, then the algorithm 
converges to the destination point D in a finite number of steps. 
If such a path does not exist, then the algorithm terminates in a 
finite number of steps with the conclusion that the destination is 
unreachable. 

Proofi If there is a planned path from S1  = S to D ,  then the 
robot moves along the path until D is reached or until a change occurs 
in L F S .  If there is no such initial path, then there is no path to D 
(Lemma 1 ) and the algorithm terminates (termination requirement). 
After every step, when the robot reaches Sk, if Sk = D ,  then the 
navigation terminates successfully. If 51 # D ,  then the updated 
LFSk is compared with LFSk-1. If a change has occurred in LFSk ,  
then the set of configuration obstacles and the navigation graph are 
updated, and a new path to D is planned. If no such path exists 
in the graph, then the destination is unreachable (Lemma I )  and 
the algorithm terminates. If there is a planned path, then the robot 
continues its motion along the path until destination D is reached or 
another change occurs in L F S .  

Changes in L F S  take place only at points that the robot visits 
for the first time because of the stationarity assumption. At each 
step, the robot moves from Sk to a vertex 1.. related to a permanent 
vertex in LFSk.  The number of permanent vertices in LFSk is finite, 
and therefore the number of vertices, in the configuration obstacles, 
related to them is also finite. Therefore, the number of changes in 
L F S  is bounded. After the last change, there either is a path to D 
(that will not change again), or there is no path at all. In the first 
case, D is reached and, in the latter, the algorithm terminates with 
the conclusion that D is unreachable. 

Note that the proof relies on the finite number of points in  B to 
which the robot can move. 

IV. LEARNING 

In this section, we discuss the methods by which knowledge is 
acquired and stored. The robot needs a sensing device that would 
enable it to sense and learn the world around it. We therefore assume 
that the robot is equipped with a laser range-finding device, capable 
of measuring the exact distance to the nearest obstacle, or to the 
boundary of B ,  in any direction 0.  

A. The Free Zone 
By performing an angular laser scan of 360” from the robot’s 

reference point, which is positioned at S, ,  the “seen” part of the 
environment from 5, is obtained. See Fig. 5 .  The boundary of this 
seen part can be represented as a single valued function r ( 0 ) ,  defined 
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Fig. 5. The ‘‘seen” part of the environment from Si. Each point on the 
boundary of the seen part has an r(8) representation. 

on the interval [0,27r). 0 is the angle that a ray from S, forms with 
a predefined reference direction in the plane, and r ( 0 )  is the distance 
from S, to the nearest point on that ray that is also on the boundary 
of B or of an obstacle in B. The function r ( 0 )  is defined for all 8 
since B has a closed boundary. 

The function r ( 0 )  has a finite number of discontinuity points, 
because discontinuities occur only at angles where there is an ob- 
struction of one obstacle by another. Between every two consecutive 
discontinuity points, r ( 0 )  describes part of a boundary of some 
obstacle which is called a leamed boundary. The learned boundary 
is composed of straight line segments called leamed edges. The 
endpoints of the learned edges are called vertices. The vertices are 
divided into two categories: 1) permanent vertices, which are closed 
ends of learned edges, and 2) temporary vertices, which are open ends 
of learned edges, created due to an obstruction by another obstacle 
(see Fig. 6). 

At each discontinuity point we have a transition from a learned 
edge with a “near” closed end to a learned edge with a “far” open 
end. In each discontinuity point, the temporary vertex is connected 
to the permanent vertex that has created it by a straight line segment 
called a temporary segment. Adding these temporary segments to the 
seen part of the environment from S, creates a region of free space 
that is called thefree zone from S, and is marked FZ,.  The boundary 
of FZ,  is a closed polygon with a finite number of edges. This region 
is a star-shaped object, with S, located in the kernel, and therefore 
it is a connected region. 

A point V in F Z ,  is chosen, as we explained in the previous 
section, and the robot moves to it. If this point is the destination 
point D, then the navigation task terminates successfully. Otherwise, 
the robot stops at V ,  marks it as S,+1, and scans the environment 
from S,+1 to obtain FZ,+1. 

B. The Leamed Free Space 
The L S F  is defined as follows: 

Since LFsk  is a finite union of free zones, where each free zone 
is a polygonal region whose boundary has a finite number of edges, 
then LFSk is also a polygonal region in the plane whose bundary 
consists of a finite number of straight line segments. These line 
segments are either learned edges or temporary segments, as depicted 
in Fig. 6. LFSk is a connected region since it is a union of free zones, 
each of which is a connected region, such that every two consecutive 
free zones have a common point. 

The endpoints of all learned edges in LFSk are called vertices, 
and therefore the number of vertices in LFSk is finite. A vertex 
is called a permanent vertex if it was a permanent vertex in either 
LFSk-1 or FZk.  Otherwise, the vertex is called temporary. 

1 D. I 

r .  - .-. - - - . - - * -._.. 

I . *  . ‘ .’ 8 

. I  ; 

Fig. 6. The free zone FZ,.  The full line segments are ‘‘learned edges” while 
the hollow ones are “temporary segments.” The endpoints of the line segments 
are the vertices, the solid dots ace permanent vertices, and the hollow dots 
are. temporary vertices. 

The boundary of LFSk is divided into a finite number of leamed 
bourtdaries E3.  which are connected groups of learned edges that 
were seen by the robot. Each learned boundary in LFSk is contained 
in the boundary of B or in the boundary of some obstacle wm E W 
in B .  

The following lemma is a straightforward observation and is 
therefore presented here without proof. The interested reader will 
find the proof in [6] (see also [7]). 

Lemma 2: Every permanent vertex in LFSk is a vertex of some 
obstacle w, E W or of bd(B). 

We say that there is an increase in knowledge of the envirnoment 
if LFSk # LFSk-1. I f  at some stage of the navigation process 
s k  = s,, where i = 1,2.. . . , k - 1 (i.e., a second visit to the 
same point), then it is clear from the stationarity assumption that 
LFSk = LFSkp1  and there is no increase in the robot’s knowledge 
of the environment. 

C. Additional Navigation Tasks 
When a navigation task terminates, either upon reaching the des- 

tination or by stopping the navigation process (when the destination 
is unreachable), the free space learned while navigating is marked as 
L F S J  ( J  = 1 , 2 , .  . .), for possible use in future navigation tasks. 

If a new navigation task from point S to point D is requested, 
then at every step IC (corresponding to a robot position at Sk) it is 
checked whether FZk has a common point with and L F S J  obtained 
in a previous navigation task in B. If no such point is detected, then 
the navigation process continues as if this was the first navigation 
task in B .  In the case where a common point is found, the LFSk 
from the current task is united with the L F S J  from the previous task. 
The current navigation process continues using this updated LFSk 
as its knowledge base. 

V. DISCUSSION 

A.  Complexi@ Analysis 
Let us begin by analyzing the complexity of a single step of the 

algorithm, which is the complexity of calculating Sk+ l  when the 
robot is at s k .  

Learning involves integrating new knownedge FZk,  with previous 
information LFSk- l .  Each line segment in the boundary of FZk 
must be checked for intersection against all line segments in LFSk-1 
to obtain the line segments of LFSk. If in LFSk-1 are Nk-1 
vertices, and in FZk are 721; vertices, then the complexity of this 
calcuation is O(nk x A r k - 1 ) .  

Calculation of the configuration obstacles corresponding to the 
learned boundaries in LFSk is of o ( N k  x N R ) ,  where Nk is 
the number of vertices in LFSk,  and N R  is the number of edges 
in the robot’s polygon. The configuration obstacles obtained have 
O(Nk x NR) vertices. 
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For determining the visibility connections inside AFSk,  the line 
segment between every two vertices of the configuration obstacles 
(i.e., the proposed visibility line) must be checked for intersection 
against all line segments in the boundary of LFSk.  The number of 
vertices in AFSk is o ( N k  x N R ) .  and therefore the complexity of 
this calculation is bounded by O( N l  x NR) .  Visibility lines along the 
edges of the configuration obstacles are calculated in o ( N k  x N R ) .  
Finding the vertices “seen” from the destination point D involves 
using a plane-sweeping technique such as the one described by Sharir 
and Shorr [23], whose complexity is o ( ( N k  X NR)’ X log(Nk x 
N R ) ) .  Therefore, the complexity of building the navigation graph 
NGk from AFSk is bounded by o ( ( N k  x N R ) ~ ) .  

Searching the graph for a path is done by using Dijkstra’s algo- 
rithm, whose complexity is O(V x E), where V is the number of 
nodes, which is o ( N k  x N R ) ,  and E is the number of arcs in the 
graph bounded by V z .  The search complexity is, therefore, bounded 
by o ( ( N k  x N R ) ~ ) .  

We have thus established that the time complexity for a single step 
is bounded by o ( ( N k  x N R ) ~ ) ,  where Nk is the numher of vertices 
in LFSk,  and N R  is the number of edges in the robot’s polygon. 

The number of vertices Nk in LFSk iS o(ili), where 1Tr is the 
number of vertices in B. The intermediate goals can be vertices of the 
configuration obstacles, related to permanent vertices in LFSk,  and 
therefore there are O( N x N R )  points that can serve as intermediate 
goals for the robot’s motion. Therefore, the time complexity of the 
whole navigation process is bounded by O( ( N  x N R ) ~  ). 

B. Monotonic Behavior 

If the robot had full knowledge of its environment, then the 
navigation graph would be the full visibility graph of the configuration 
obstacles. Dijkstra’s algorithm would then find the least expensive 
path between the vertices. Based upon total knowledge of the 
environment, this path is optimal in the sense of minimization of 
the Euclidean distance along the path. 

The learning process introduced here is monotonic since knowledge 
can only increase. Therefore, paths can only improve with the increase 
of knowledge and would be optimal if knowledge of the environment 
were complete. 

VI. SUMMARY AND CONCLUSION 

An algorithm for navigating a polygonal robot, capable of transla- 
tional motion, in an unknown environment with polygonal obstacles 
was presented. The algorithm plans and executes a piecewise-linear 
path between the source and destination points. The algorithm was 
shown to converge to the destination in a finite (and bounded) number 
of steps if the destination is reachable or to terminate in a finite 
number of steps if the destination is unreachable. The algorithm has 
also been shown to operate and converge (with minor adjustments) 
for the special cases of a point robot and a disk (two special cases 
of deteriorated polygons). See [6], [7]. 

Throughout the navigation, the robot maps and learns its environ- 
ment by performing laser scans at the comers of its piecewise linear 
path and integrating new information with the existing knowledge. 
A map depicting the free space seen by the robot from the comers 
of the path, and the walls that bound it, is thus obtained. This map 
is used for planning the navigation path and is kept for additional 
navigation tasks in the same envimoment in the future. 

The algorithm solves navigation problems in very complex en- 
vironments such as polygonal mazes. This is because the only 
assumptions made are that the obstacles are stationary polygons with 
a finite number of vertices. 

The time complexity of the process was shown to be polynomial 
in the number of vertices of the obstacles in B and its boundary. (A 

third-order polynomial for each step and a fourth-order for the whole 
process.) This complexity enables practical use of the algorithm for 
navigation in real environments. 

We have assumed throughout this paper that the robot performs 
exact motion. This assumption is not practical because of the phe- 
nomenon of wheel slippage, which creates errors between the planned 
and actual path executed by the robot. This assumption can be omitted 
if a feedback loop is introduced for motion control using the range- 
finding device so as to ensure that the desired path is accurately 
executed. An alternative approach [4] is to use the map created by the 
robot for updating the estimation of the robot’s position. The update 
is achieved by comparing the picture obtained from the current range 
scan with the map. In order to match the two maps, orientation and 
translation corrections are performed to estimate the robot’s position. 
After the estimation of the robot’s position is corrected, the map is 
updated in the manner described earlier. 

The problem of inexact range readings (as obtained with sonar 
range finders) is a much more complex problem that has received a lot 
of attention lately. Among the papers that have dealt with this problem 
are Ayache et al. [I]  and Wegman e t  al. [lo] who have represented 
the uncertainty as a normally distributed function and used the 
extended Kalman filter to minimize it. Moravec [18] used sensor 
redundancy and averaging in order to minimize uncertainty. Brooks 
[2] used a relational map that represented relationships between parts 
of the world, with their associated uncertainties, rather than trying to 
build a map of the world in a fixed coordinate system. 
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High-speed ’hajectory Control 
of a Direct-Drive Manipulator 

K. Youcef-Toumi and A. T. Y. Kuo 

Abstmcf-The trimming of three-dimensional parts using lasercutting 
industrial robots raises a control challenge when high speeds and preci- 
sion are required. Accurate control of robot movement along predeter- 
mined trajectories is necessary in order to achieve satisfactory cuts. This 
paper focuses on the control system design for directdrive manipulators 
specially designed for high-speed trajettory control applications. First, the 
concept of decoupled and invariant dynamics 5s discussed for a speci6c 
manipulator. Second, a simple procedure for system identilitation and 
control system design is presented. It is demonstrated that, through 
arm mechanism design, the control system is greatly simplified and 
satisfactory control performance is achieved. The arm mechanism design 
and control system are evaluated through simulations and experiments. 
The experimental tracking performance achieved is characterized by a 
sped of 3 d s  and an acceleration of 3.8 g, with a joint mean tracking 
error of 0.0556O. 

I. INTRODUCTION 

Motion planning of industrial robots has evolved from simple 
point-to-point playback of the end-effector to complex trajectory 
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following. Spot welding and arc welding by industrial robots differ 
in that the latter application requires the end-effector to follow a 
desired trajectory in space. Thus, arc welding requires amore complex 
trajectory planning. A greater challenge has been raised recently in the 
application of laser cutting to sheet metal. This process requires both 
high-speed maneuvering of the end-effector and accurate tracking. 
Specifically, the speed, acceleration, and tracking accuracy required 
are on the order of 1-3 m/s, 3-5 g, and 0.05-0.1 mm, respectively. 

The difficulties in perforping high-speed trajectory tracking with 
conventional robots are numerous. Limitations on the speed and 
accuracy of the robots are imposed by the drive system’s components, 
such as gearing, lead screws, and linkage, because of its compliance. 
In order to overcome these difficulties, direct-drive robots were 
introduced [2]-[4], [6]. By removing the transmission systems, the 
backlash, friction, and compliance of the drive system have been 
eliminated. In addition, advanced composite materials were used in 
the linkage of the high-speed M.I.T. direct-drive arm. Consequently, 
the arm linkage stiffness was increased significantly and the arm 
inertia reduced [6]. Therefore, the control of this direct-drive robot 
at the joint ensures fast and accurate tracking of the endpoint in task 
space. 

A few papers have been published in the area of trajectory tracking 
of direct-drive robots [l], [2], [7]. All of the results were obtained 
on direct-drive robots with open kinematic chain structures. These 
structures exhibit significant coupling and interactions between the 
different joints. Nevertheless, the main control algorithm used by 
the researchers is based on a feedforward action that can be effec- 
tive. The first experimental results for the direct-drive concept [2] 
showed promise. Maximum joint speeds ranged from 180 to 36Oo/s. 
Positioning accuracy measurements were also conducted using step 
responses. This was accomplished by commanding the direct-drive 
robot to move to a target point several times. The measured accuracy 
was -0.287. Experimental results published recently [I], [7] were also 
obtained using model-based feedforward controls. The performance 
of model-based feedforward controllers depends greatly on model 
accuracy. The feedforward model usually consists of robot dynamic 
equations used to calculate the torques/forces necessary to drive 
the robot along the desired trajectory. These equations are highly 
nonlinear and are functions of robot parameters. The parameters of the 
model include link inertial parameters, actuator characteristics, and 
other relevant system parameters. In [7], the link inertial parameters 
were estimated from detailed drawings of a geometric solid model 
of the robot. The approach adopted in [l]  is to estimate the model 
inertial parameters through arm excitation. These approaches can 
provide satisfactory results when appropriate algorithms and adequate 
computing hardware are used. Reference [lo] describes the control 
of a two-degree-of-freedom (2-DOF) decoupled parallel direct-drive 
arm using preview control. 

One of the major reasons in using feedforward control is to 
compensate for interactions between joints caused by nonlinear 
effects such as centrifugal and Coriolis forces. The published results 
mentioned above are for open kinematic chain manipulators, which 
are dynamically coupled and nonlinear. 

An alternative approach to achieving satisfactory tracking perfor- 
mance is to consider both the robot arm mechanism design and 
the controller design. The M.I.T. direct-drive arm for laser cutting 
applications was designed with these issues in mind. Through appro- 
priate design and mass redistribution techniques, the arm dynamics is 
made decoupled and inertia invariant [4]-[6], [ 111. The expressions 
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