
96 IEEE TRANSACTIONS ON ROBOBTICS AND AUTOMATION, VOL. 9, NO. 1. FEBRUARY 1993

where a, are n-dimensional column vectors. The Frobenius norm of
A is defined by

n m m

hemultiplying with Q gives

QA=[Qal Qaz Qa,]

where Qa; are n-dimensional column vectors. This gives

IIQAII; = llQa111; + IlQazII; +.. .+ IIQamll;

=IIalII~+IIazII;+...+IIamII; = IIAII’F
which means that the Frobenius norm is invariant under orthogonal
transformations.

A similar argument gives

IIQAZIIF = I lA l l~

where Z is an orthogonal m-dimensional matrix.

[5]) for the matrix A
This gives together with the the singular value decomposition (see

1 ,

where p = min{m,n} and U and V are orthogonal matrices of
appropriate dimensions. .E is an n. x m matrix where the upper left
p x p submatrix is diag[01 . . . up] and the rest of the matrix
is zero.

From the above it follows that, for the 3 x 6 matrix R, the Frobenius
n o m is

uz

I . ?

REFERENCES

Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” ASME J. Dynam.
Sysr., Meas., Conrr., vol. 108, pp. 163-171, Sept. 1986.
C. W. Wampler II, “Manipulator inverse kinematic solutions based on
vector formulations and damped least-squares method,” IEEE Trans.
Sysf. Man Cybem., vol. SMC-16, no. 1, pp. 93-101, Jan./Feb. 1986.
A. A. Maciejewski and C. A. Klein, “Numerical filtering for the
operation of robotic manipulators through kinematically singular con-
figurations,” J. Robotic Sysr., vol. 5 , no. 6, pp. 527-552, 1988.
G. Strang, Linear Algebra and ifs Applications, 2nd ed. New York:
Academic, 1980.
G. H. Golub, C. F. Van Loan, Matrix Compuration, 2nd ed. Baltimore:
John Hopkins University Press, 1989

Two-Dimensional Robot Navigation Among
Unknown Stationary Polygonal Obstacles

Guy Foux, Michael Heymann, and Alfred Bruckstein

Absfruct-We describe an algorithm for navigating a polygonal robot,
capable of translational motion, in an unknown environment. The en-
vironment contains stationary polygonal obstacles and is bounded by
polygonal walls, all of which are initially unknown to the robot. The
environment is lamed during the navigation process by use of a laser
range-finding device, and new knowledge is integrated with previously
acquired information. A partial map of the environment is thus obtained.
The map contains parts of the obstacles that were “seed’ by the robot and
the free space between them. The obstacles in the map are transformed
into a new set of expanded polygonal obstacles. This enables treating
the robot as a point instead of a polygon, and the navigation problem
is reduced to point navigation among unknown polygonal obstacles. A
navigation graph is built from the transformed obstacles in the map. This
is a partial visibility graph of the enlarged obstacles. A search is conducted
on the graph for a path to the destination. The path is piecewise linear; at
its comers, the robot stops, scans its environment, and updates the map,
the obstades, and the planned path. The algorithm is proved to converge
to the desired destination in a finite number of steps provided a path to
the destination exists. If such a path does not exist, then the navigation
process terminates in a finite number of steps with the conclusion that
the destination is unreachable.

I. INTRODUCTION
The problem of robot navigation in an unknown environment can

be described as follows: source and destination points are given,
the robot being outside all obstacles when placed on any of these
points. The navigation space is unknown and may contain obstacles
of different kinds. The problem is to find a path from the source
point to the destination point, so that motion of the robot along this
path is such that the robot is safe from collision with the obstacles.
To implement the navigation, the robot uses information on the
environment provied by its sensors.

An algorithm for solving the navigation problem for a polygo-
nal robot in a two-dimensional unknown environment, where the
obstacles are stationary polygons, is presented in this paper. The
assumptions made in this work are that there are a finite number
of stationary polygonal obstacles with a finite number of vertices,
and that the robot polygon also has only a finite number of vertices.
The robot is assumed to sense its environment with a range sensor
providing the distance to the first obstacle in all directions. This is
a good model for a laser-sensing device, and the range and angular
sensing, as well as the motion, are assumed to be error free. The
algorithm has the following properties:

1) Convergence - If a path from source to destination exists, then
the robot reaches the destination in a finite number of steps. If
such a path does not exit, then, in a finite number of steps, the
robot reaches this conclusion and halts.

2) Leanzing - The robot learns its envimoment during the naviga-
tion process. A map representing this knowledge (Le., obstacle
walls and free space) is kept and updated and is used for
planning the navigation path.

Manuscript received January 10, 1991; revised June 12, 1992. M. Heymann
and A. Bruckstein were supported in part by the Technion Fund for the
Promotion of Research

The authors are with the Center for Intelligent Systems, Department of
Computer Science, Technion, LLT., Haifa, Israel.

IEEE Log Number 9205074.

1042-296W93$03.00 0 1993 IEEE

IEEE TRANSACTIONS ON ROBOBTICS AND AUTOMATION, VOL. 9. NO. I , FEBRUARY 1993 97

3) Monotonic Behavior-The length of paths, produced by the
navigation algorithm, is a monotonic nonincreasing function of
the available knowledge (which is monotonically accumulated).
If knowledge of the environment were complete (i.e., if all the
obstacles and the free space between them were known), the
paths produced would be otimal in the sense of the shortest
Euclidean length.

4) Environment Complexiv- There are no further limitations on
the shape of the obstacles, like convexity, and therefore the
algorithm solves navigation problems in complex environments
such as mazes.

5) Polynomial Time Complexity - The complexity of calculations
for any navigation step are third-order polynomials of the
number of vertices in the obstacle polygons. The complexity of
calculations for the whole navigation process is a fourth-order
polynomial of the number of the vertices.

In recent years, the navigation problem in unknown environments was
often addressed in the literature. However, for the set of assumptions
made in the present paper, no solution including all of the above
properties has been published. The algorithms proposed by Cahn and
Phillips [3], Koch et al. [9], Moravec [17], and Thompson [24] are
not convergent. The algorithms presented by Lumelsky and Stepanov
[13], [I41 and Lumelsky [15] are convergent. Learning, however,
is not incorporated, and therefore there are no improvements in
the performance, even if a specific task is repeated over and over
again. On the other hand, these algorithms can solve navigation
problems in very complex situations such as nonpolygonal mazes.
Recently, Lumelsky et al. [16] addressed learning and terrain model
acquisition within the framework of their navigation scheme. The
algorithm proposed by Iyengar et al. [8] was not formally proven to
converge. This algorithm employs learning of the environment and
there are improvements in the planned paths with the accumulation
of knowledge. However, there tend to be unnecessary detours in the
paths due to the navigation strategy. The algorithm by Oommen et al.
[19] works for a point robot in environments where the obstacles are
convex polygons but does not necessarily converge in all situations.
Rao and Iyengar [21] and Rao et al. [20] described a convergent
algorithm that also learns the environment. Paths are generated by a
combination of local and global strategies. This involves definition of
subgoals, which again tend to yield unnecessary detours in the overall
paths to the destination. More recently, Rao et al. [22] described
an interesting algorithmic approach based on retraction in which
navigation is implemented along the Voronoi diagram of the terrain.

The solution presented in the following sections is a navigation
scheme for a polygonal robot capable of translational motion only.
In order to reduce the problem of navigating a polygon to that
of navigating a point, the obstacles are enlarged by the robot
polygon’s dimensions to yield a new set of polygonal obstacles. This
“enlargement” of the obstacles is a well known method introduced
formally by Lozano-Perez and Wesley [1 I] .

11. PROBLEM DEFINITION

The robot is a polygon in a polygonally bounded region B in the
plane, such that the boundary of B has a finite number of vertices.
Inside region B, there are a finite number of stationary polygonal
obstacle with a finite number of vertices, such that each vertex is the
intersection of at most two edges. Therefore, an obstacle can have
a closed polygonal boundary, or it can be an open polygonal “wall”
(see Fig. 1).

Let I t* = { w 1 , ~ 1 u’,y} be the set of all obstacles in B. We
shall denote the boundary of an obstacle w , , ~ E T I - by bd() and its
interior by int(u’,71) (for every open polygonal wall int(w ~ , ~) = E).

Fig. 1. Domain B with the obstacles, some of which are polygonal bodies
while others are polygonal walls. Points S and D are the source and
destination points, respectively.

In the same manner, bd(B) and int(B) denote the boundary and
interior of the region B , repsectively. We assume that every obstacle
is contained in int(B) (i.e., does not intersect bd(B)) and that no
two obstacles intersect.

Let F S denote the feasible free space, which is the set of all
points in B in which the robot’s reference point may be placed
without causing collision between the robot and any of the obstacles
U’,,, E I f - . In F S there is a point S in which the reference point
of the robot is initially situated, and a point D , which the robot
aims to reach. The robot can move along straight lines only, and
therefore a feasible path from S to D is a piecewise linear path in
F S . When the robot’s reference point moves along such a path, the
robot is outside all obstacles in B. For the sake of simplicity of the
navigation principles, we assume this reference point to be in the
interior of the robot’s polygon and not on its boundary.

The “navigation problem” is to find a feasible path from S to D.
The solution to this problem, by finding a path and moving along it,
is called a “navigation task.” The motion starts at the initial position
SI = S and proceeds through intermediate points S, (i = 2 . 3),
which are vertices of a piecewise-linear path, to the destination point
D or to a point S I , where it becomes evident that the destination
is unreachable. At the points S,, the robot performs a range-sensing
sweep in all directions, giving in each direction the distance to the
nearest obstacle. This process supplies the robot with increasing
amounts of information on its environment, thereby enabling it to
make decisions concerning the next move.

111. NAVIGATION PRINCIPLES

A. The Learned Free Space

We assume that the robot’s reference point is situated at a point
Sk on the navigation path. The parts of the free space “seen” by the
robot from S I , and from some specific points along the path that
lead to SA., are called the learned free space corresponding to S k
and marked L F S I . The next section describes how this LFSk is
built and updated, but for the time being it is enough to know that
L F S A is that part of the free space with which the robot is familiar
(through learning).

The boundary of L F S k is divided into a finite number of leamed
boundaries E,. These are connected parts of obstacle boundaries
that were seen by the robot. Each learned boundary E, E LFSk is
either contained in the boundary of B or in the boundary of some
obstacle E It‘ in B. The view of some of the leamed boundaries
might be obstructed by other learned boundaries. In such a case, the
line segment connecting the endpoint of the obstructed obstacle with
the corresponding endpoint of the obstructing obstacle is called a
temporaty segment.

It is assumed, for sake of planning a path, that, at each stage, the
learned boundaries known to the robot constitute the complete set of

c

98 IEEE TRANSACTIONS ON ROBOBTICS AND AUTOMATION, VOL. 9. NO. 1. FEBRUARY 1993

Fig. 2. The configuration obstacles. R is the robot, and the broken lines
represent the temporary segments that bound LFSI; .

obstacles in B . This implies that the entire space between and around
them is free space. The assumption is generally false, of course, but
it enables planning a path in unknown regions.

B. The Alleged Feasible Free Space
In order to treat the robot as a point, the obstacles known to the

robot, namely, the learned boundaries, are grown by the robot's
polygonal dimensions. A technique for "growing" obstacles was
presented in 1979 by Lozano-Perez and Wesley [i l l , and treated
formally in 1983 by Lozano-Perez [121. Growing a polygonal obstacle
by another polygonal object (the robot) that can only perform
translational motion yields a new obstacle that is also a polygon.
See Fig. 2. We use the term configuration obstacle to describe the
grown obstacle because the original obstacle was transformed into
the configuration space of the robot's reference point (which in this
case is the (X,E') space of the location of the reference point in
the plane). If two configuration obstacles intersect, then their union
is treated as a single configuration obstacle. Each vertex in the
configuration obstacle is related to exactly one vertex of the original
learned boundary.

The space between the configuration obstacles is considered to be
safe for motion (based on the assumption of the previous subsection).
This alleged free space is marked AFSk for alleged feasible free
space. The problem is to move the reference point from its current
position to a new position in AFSI; in a manner that will eventually
bring the reference point to the destination.

C. The Navipation GraDh

I *
/ 1

I c - - - q
: I

I ..' / A
I ' * - - * ... I i

4-•
' a

I : I I

I /
I ,

I
I I

t I
I

f I I

i I I

I I
\ I

\ . I

I *
c - - - q
: I

I ..' / A .. - - 4 :. I i

D ' . - *

Fig. 3. Visibility lines between vertices of the configuration obstacles. The
full lines are Type A visibility lines, the broken lines are Type B visibility
lines, and the dotted ones are Type C visibility lines.

/ /

Fig. 4. Plausible visibility lines from D.

the configuration obstacles (unless there are V and U that fit
in the first category).

Comment: Since SI; E LFSk, we consider SI; to be a vertex for
the purpose of applying the definition of visibility lines to SI;.

We now define visibility lines and plausible visibility lines of the
destination point D (see Fig. 4).

A visibility line from D is the straight line segment from D, totally
contained in LFSk, to a vertex V in LFSI;. Such visibility lines
exist only if D E LFSk.

A plausible visibility line from D is the straight line segment from
D to a vertex 1' in LFSI; that does not intersect any edge of a
configuration obstacle (except for its endpoints D and V) , and at

U

least part of it is outside LFSI;.

(corresponding to S k) is the following directed graph:

1) visibility Lines: A visibility line between two vertices 1. and
cr of the configuration obs~cles is the line segment (17, U) 2, Of the Navigation Graph: The navigation graph lVGk

that belongs to one of the following categories (see Fig. 3):
1) A single node in the graph corresponds to the destination point

D and to each of the vertices from the configuration obstacles.
2) A single node in the graph corresponds to the robot's position

S k , if s k is not a vertex in any of the configuration obstacles.

in the graph to every visibility line or plausible visibility line,

A visibility line that is contained in LFSI;: In this case the
visibility line between the vertices 1' and U is a true visibility
line, because it passes in a region known to be free of obstacles.
A visibility line along an edge (V. Cr) of a configuration

line between the vertices 1' and IT is a Dhusible visibilitv line
obstacle not contained in LFSk: In this case the visibility 3) TWO antiparallel directed arcs (k g) and (f i) correspond

because it relies on the assumption that the space around the
configuration obstacles is free.
A visibility line corresponding to a temporary segment: This
case occurs if the vertices related to V and U , in the original
learned boundary, are both endpoints of their appropriate
learned boundaries, between which a temporary segment exists
(i.e., an obstruction occurred), A plausible visibility line exists
between any of the pairs of V and U related to V and CT in

between vertices 1' and c' (including S k) .

4) A single directed arc (FD) corresponds in the graph to every
visibility line or plausible visibility line (D. V) from D.

5) A cost is assigned to every arc in the graph that corresponds to
a true visibility line between vertices or a visibility line from
D. The cost of each such arc is equal to the Euclidean distance
between the vertices corresponding to the nodes at its ends.

6) A cost is assigned to every arc in the graph that corresponds to a

IEEE TRANSACTIONS ON ROBOBTlCS AND AUTOMATION, VOL. 9, NO. I . FEBRUARY 1993 99

plausible visibility line between vertices or a plausible visibility
line from D. The cost of each such arc is equal to the product of
a constant conservatiodcuriosity factor (CCF), set by the user,
and the Euclidean distance between the vertices corresponding
to the nodes at its ends. The constant CCF determines the will
of the robot to navigate in unmapped regions. A large value for
CCF encourages conservative navigation in the known regions,
whereas a small value for CCF encourages more adventurous
navigation.

The navigation graph SGk is a finite directed graph whose weights
are non-negative, and therefore Dijkstra’s algorithm [5 1, for finding
minimal paths in graphs, is applicable.

If at a point Sk there is an increase in knowledge (LFSk #
LFSkPl), then the navigation graph is updated. If there is no increase
in knowledge, then the only change in -\-Gk relative to -1-Gk-1 is
marking a new node as corresponding to S k , and removing the note
corresponding to S k P l if Sk-1 is not a vertex of any configuration
obstacle in AFSk .

3) Existence of a Path to Destination D in the Navigation Graph:
Lemma I : If a path from S to D exists in B, then a path exists

in A\rGk from 51 (the node corresponding to the robot position) to
the node corresponding to the destination D .

Proof: Let us consider the two-dimensional free-space AFSk
between the grown learned boundaries of LFSk. Since every learned
boundary E, E LFSk is contained in the boundary of B (bd(B))
or the boundary of some obstacle U’,,? E I t - in B (bd(u,,,,)), it
follows that the real feasible free space F S , between the configuration
obstacles in B, is contained in the alleged feasible free space,
F S c AFSk . If a path from S to D exists in F S , then S and D
belong to a connected subspace of F S , and therefore to a connected
subspace of AFSk , which will be denoted A F S k .

D “sees” some vertices of configuration obstacles in A F S k , and
corresponding arcs exist in AYGk. To each of these vertices a path
from Sk exists in the navigation graph, because .4FSk is a connected
region that includes both S and S k . Therefore, a path exists in the
navigation graph between the nodes corresponding to Sk and to D..

Hence, if no path from Sk to D exists in the navigation graph
.1’Gk., then no path exists from S to D in the domain B. From this
conclusion we draw the termination condirion of the algorithm: If
at some point S k on the navigation path the navigation graph -VGk
contains no paths from Sk to D , then the robot halts at Sk and the
navigation task terminates with the conclusion that the destination is
unreachable.

Note that in the case where no path exists from S to D, the robot
might move from 5 1 = S to some Sk (k > 1) before the process
terminates. In J-Gk there is no path from Sk to D. However a path to
D did exist in the navigation graphs corresponding to all the points
51. 5 2 . ’ ” . Sk.-I.

D. The Navigation Algorithm
Planning and executing motion is conceptually composed of the

following three steps:
Step 1: Suppose the robot’s reference point is situated at point

SA (k 2 l) , the robot scans its surroundings to obtain the “seen”
part of the environment from 51, and updates the learned free space
LFSk. accordingly.

Step 2: If LFSk # LFSkP1, then the navigation graph is
updated (for k = 1 the graph is built), and a new path to the
destination D is planned by applying Dijkstra’s algorithm to TGk. If
no path exists in .\-Gk from SA. to D , then the algorithm terminates
with the conclusion that the destination is unreachable. If a path
exists, then let the planned path be ,sk -+ -+ \ ; + I --t ’ . . + D.

The robot moves from Sk to 1. along a straight line. If 1; = D , then
the process terminates successfully. If 1; # D , then 1; is marked
Sk+1, and step 1 is performed again.

If LFSk = LFSk-1, then the robot continues with the
planned path and moves along a straight line from s k to the next
vertex on the path 1.;. If 1; = D , then the algorithm terminates
successfully. If 1; # D , then 1.; is marked Sk+1 and step 1 is
performed again.

The robot can only move along visibility lines from SI; to some
vertex 1 ~ E AFSk . Analysis of the visibility lines from Sk reveals all
of them to be true visibility lines (and not plausible visibility lines),
and therefore all these visibility lines are contained in LFSk. is
therefore related to a permanent vertex in LFSk. (Had 1- been related
to a temporary vertex, obtained through obstruction, then would
have been obstructed by the grown part of the original obstructing
obstacle.)

Step 3:

E. Convergence of the Navigation Algorithm

Theorem I : If a path from S to D exists, then the algorithm
converges to the destination point D in a finite number of steps.
If such a path does not exist, then the algorithm terminates in a
finite number of steps with the conclusion that the destination is
unreachable.

Proofi If there is a planned path from S1 = S to D , then the
robot moves along the path until D is reached or until a change occurs
in L F S . If there is no such initial path, then there is no path to D
(Lemma 1) and the algorithm terminates (termination requirement).
After every step, when the robot reaches Sk, if Sk = D , then the
navigation terminates successfully. If 51 # D , then the updated
LFSk is compared with LFSk-1. If a change has occurred in LFSk ,
then the set of configuration obstacles and the navigation graph are
updated, and a new path to D is planned. If no such path exists
in the graph, then the destination is unreachable (Lemma I) and
the algorithm terminates. If there is a planned path, then the robot
continues its motion along the path until destination D is reached or
another change occurs in L F S .

Changes in L F S take place only at points that the robot visits
for the first time because of the stationarity assumption. At each
step, the robot moves from Sk to a vertex 1.. related to a permanent
vertex in LFSk. The number of permanent vertices in LFSk is finite,
and therefore the number of vertices, in the configuration obstacles,
related to them is also finite. Therefore, the number of changes in
L F S is bounded. After the last change, there either is a path to D
(that will not change again), or there is no path at all. In the first
case, D is reached and, in the latter, the algorithm terminates with
the conclusion that D is unreachable.

Note that the proof relies on the finite number of points in B to
which the robot can move.

IV. LEARNING

In this section, we discuss the methods by which knowledge is
acquired and stored. The robot needs a sensing device that would
enable it to sense and learn the world around it. We therefore assume
that the robot is equipped with a laser range-finding device, capable
of measuring the exact distance to the nearest obstacle, or to the
boundary of B , in any direction 0.

A. The Free Zone
By performing an angular laser scan of 360” from the robot’s

reference point, which is positioned at S, , the “seen” part of the
environment from 5, is obtained. See Fig. 5 . The boundary of this
seen part can be represented as a single valued function r (0) , defined

...

100 IEEE TRANSACTIONS ON ROBOBTICS AND AUTOMATION, VOL. 9, NO. 1, FEBRUARY 1993

..._._._._._.-._. -.-..--- --_.-.. -..-
D‘

r--------- - ,-.-.-.- .-.-. , -.-,-

-.-.--_ I

‘ - 2 .i , . I ;’ . .

Fig. 5. The ‘‘seen” part of the environment from Si. Each point on the
boundary of the seen part has an r(8) representation.

on the interval [0,27r). 0 is the angle that a ray from S, forms with
a predefined reference direction in the plane, and r (0) is the distance
from S, to the nearest point on that ray that is also on the boundary
of B or of an obstacle in B. The function r (0) is defined for all 8
since B has a closed boundary.

The function r (0) has a finite number of discontinuity points,
because discontinuities occur only at angles where there is an ob-
struction of one obstacle by another. Between every two consecutive
discontinuity points, r (0) describes part of a boundary of some
obstacle which is called a leamed boundary. The learned boundary
is composed of straight line segments called leamed edges. The
endpoints of the learned edges are called vertices. The vertices are
divided into two categories: 1) permanent vertices, which are closed
ends of learned edges, and 2) temporary vertices, which are open ends
of learned edges, created due to an obstruction by another obstacle
(see Fig. 6).

At each discontinuity point we have a transition from a learned
edge with a “near” closed end to a learned edge with a “far” open
end. In each discontinuity point, the temporary vertex is connected
to the permanent vertex that has created it by a straight line segment
called a temporary segment. Adding these temporary segments to the
seen part of the environment from S, creates a region of free space
that is called thefree zone from S, and is marked FZ,. The boundary
of FZ, is a closed polygon with a finite number of edges. This region
is a star-shaped object, with S, located in the kernel, and therefore
it is a connected region.

A point V in F Z , is chosen, as we explained in the previous
section, and the robot moves to it. If this point is the destination
point D, then the navigation task terminates successfully. Otherwise,
the robot stops at V , marks it as S,+1, and scans the environment
from S,+1 to obtain FZ,+1.

B. The Leamed Free Space
The L S F is defined as follows:

Since LFsk is a finite union of free zones, where each free zone
is a polygonal region whose boundary has a finite number of edges,
then LFSk is also a polygonal region in the plane whose bundary
consists of a finite number of straight line segments. These line
segments are either learned edges or temporary segments, as depicted
in Fig. 6. LFSk is a connected region since it is a union of free zones,
each of which is a connected region, such that every two consecutive
free zones have a common point.

The endpoints of all learned edges in LFSk are called vertices,
and therefore the number of vertices in LFSk is finite. A vertex
is called a permanent vertex if it was a permanent vertex in either
LFSk-1 or FZk. Otherwise, the vertex is called temporary.

1 D. I

r . - .-. - - - . - - * -._..

I . * . ‘ .’ 8

. I ;

Fig. 6. The free zone FZ,. The full line segments are ‘‘learned edges” while
the hollow ones are “temporary segments.” The endpoints of the line segments
are the vertices, the solid dots ace permanent vertices, and the hollow dots
are. temporary vertices.

The boundary of LFSk is divided into a finite number of leamed
bourtdaries E3. which are connected groups of learned edges that
were seen by the robot. Each learned boundary in LFSk is contained
in the boundary of B or in the boundary of some obstacle wm E W
in B .

The following lemma is a straightforward observation and is
therefore presented here without proof. The interested reader will
find the proof in [6] (see also [7]).

Lemma 2: Every permanent vertex in LFSk is a vertex of some
obstacle w, E W or of bd(B).

We say that there is an increase in knowledge of the envirnoment
if LFSk # LFSk-1. I f at some stage of the navigation process
s k = s,, where i = 1,2.. . . , k - 1 (i.e., a second visit to the
same point), then it is clear from the stationarity assumption that
LFSk = LFSkp1 and there is no increase in the robot’s knowledge
of the environment.

C. Additional Navigation Tasks
When a navigation task terminates, either upon reaching the des-

tination or by stopping the navigation process (when the destination
is unreachable), the free space learned while navigating is marked as
L F S J (J = 1 , 2 , . . .), for possible use in future navigation tasks.

If a new navigation task from point S to point D is requested,
then at every step IC (corresponding to a robot position at Sk) it is
checked whether FZk has a common point with and L F S J obtained
in a previous navigation task in B. If no such point is detected, then
the navigation process continues as if this was the first navigation
task in B . In the case where a common point is found, the LFSk
from the current task is united with the L F S J from the previous task.
The current navigation process continues using this updated LFSk
as its knowledge base.

V. DISCUSSION

A. Complexi@ Analysis
Let us begin by analyzing the complexity of a single step of the

algorithm, which is the complexity of calculating Sk+ l when the
robot is at s k .

Learning involves integrating new knownedge FZk, with previous
information LFSk- l . Each line segment in the boundary of FZk
must be checked for intersection against all line segments in LFSk-1
to obtain the line segments of LFSk. If in LFSk-1 are Nk-1
vertices, and in FZk are 721; vertices, then the complexity of this
calcuation is O(nk x A r k - 1) .

Calculation of the configuration obstacles corresponding to the
learned boundaries in LFSk is of o (N k x N R) , where Nk is
the number of vertices in LFSk, and N R is the number of edges
in the robot’s polygon. The configuration obstacles obtained have
O(Nk x NR) vertices.

IEEE TRANSACTIONS ON ROBOBTICS AND AUMMATION, VOL. 9, NO. 1, FEBRUARY 1993 101

For determining the visibility connections inside AFSk, the line
segment between every two vertices of the configuration obstacles
(i.e., the proposed visibility line) must be checked for intersection
against all line segments in the boundary of LFSk. The number of
vertices in AFSk is o (N k x N R) . and therefore the complexity of
this calculation is bounded by O(N l x NR) . Visibility lines along the
edges of the configuration obstacles are calculated in o (N k x N R) .
Finding the vertices “seen” from the destination point D involves
using a plane-sweeping technique such as the one described by Sharir
and Shorr [23], whose complexity is o ((N k X NR)’ X log(Nk x
N R)) . Therefore, the complexity of building the navigation graph
NGk from AFSk is bounded by o ((N k x N R) ~) .

Searching the graph for a path is done by using Dijkstra’s algo-
rithm, whose complexity is O(V x E), where V is the number of
nodes, which is o (N k x N R) , and E is the number of arcs in the
graph bounded by V z . The search complexity is, therefore, bounded
by o ((N k x N R) ~) .

We have thus established that the time complexity for a single step
is bounded by o ((N k x N R) ~) , where Nk is the numher of vertices
in LFSk, and N R is the number of edges in the robot’s polygon.

The number of vertices Nk in LFSk iS o(ili), where 1Tr is the
number of vertices in B. The intermediate goals can be vertices of the
configuration obstacles, related to permanent vertices in LFSk, and
therefore there are O(N x N R) points that can serve as intermediate
goals for the robot’s motion. Therefore, the time complexity of the
whole navigation process is bounded by O((N x N R) ~).

B. Monotonic Behavior

If the robot had full knowledge of its environment, then the
navigation graph would be the full visibility graph of the configuration
obstacles. Dijkstra’s algorithm would then find the least expensive
path between the vertices. Based upon total knowledge of the
environment, this path is optimal in the sense of minimization of
the Euclidean distance along the path.

The learning process introduced here is monotonic since knowledge
can only increase. Therefore, paths can only improve with the increase
of knowledge and would be optimal if knowledge of the environment
were complete.

VI. SUMMARY AND CONCLUSION

An algorithm for navigating a polygonal robot, capable of transla-
tional motion, in an unknown environment with polygonal obstacles
was presented. The algorithm plans and executes a piecewise-linear
path between the source and destination points. The algorithm was
shown to converge to the destination in a finite (and bounded) number
of steps if the destination is reachable or to terminate in a finite
number of steps if the destination is unreachable. The algorithm has
also been shown to operate and converge (with minor adjustments)
for the special cases of a point robot and a disk (two special cases
of deteriorated polygons). See [6], [7].

Throughout the navigation, the robot maps and learns its environ-
ment by performing laser scans at the comers of its piecewise linear
path and integrating new information with the existing knowledge.
A map depicting the free space seen by the robot from the comers
of the path, and the walls that bound it, is thus obtained. This map
is used for planning the navigation path and is kept for additional
navigation tasks in the same envimoment in the future.

The algorithm solves navigation problems in very complex en-
vironments such as polygonal mazes. This is because the only
assumptions made are that the obstacles are stationary polygons with
a finite number of vertices.

The time complexity of the process was shown to be polynomial
in the number of vertices of the obstacles in B and its boundary. (A

third-order polynomial for each step and a fourth-order for the whole
process.) This complexity enables practical use of the algorithm for
navigation in real environments.

We have assumed throughout this paper that the robot performs
exact motion. This assumption is not practical because of the phe-
nomenon of wheel slippage, which creates errors between the planned
and actual path executed by the robot. This assumption can be omitted
if a feedback loop is introduced for motion control using the range-
finding device so as to ensure that the desired path is accurately
executed. An alternative approach [4] is to use the map created by the
robot for updating the estimation of the robot’s position. The update
is achieved by comparing the picture obtained from the current range
scan with the map. In order to match the two maps, orientation and
translation corrections are performed to estimate the robot’s position.
After the estimation of the robot’s position is corrected, the map is
updated in the manner described earlier.

The problem of inexact range readings (as obtained with sonar
range finders) is a much more complex problem that has received a lot
of attention lately. Among the papers that have dealt with this problem
are Ayache et al. [I] and Wegman e t al. [lo] who have represented
the uncertainty as a normally distributed function and used the
extended Kalman filter to minimize it. Moravec [18] used sensor
redundancy and averaging in order to minimize uncertainty. Brooks
[2] used a relational map that represented relationships between parts
of the world, with their associated uncertainties, rather than trying to
build a map of the world in a fixed coordinate system.

ACKNOWLEDGMENT

The authors would like to thank the referees for their constructive
comments and suggestions.

REWRENCES

[I] N. Ayache and 0. D. Faugeras, “Maintaining representations of the
environment of a mobile robot,” IEEE Trans. Robotics Automat., vol. 5,
no. 6, pp. 804-819, Dec. 1989.

[2] R. A. Brooks, “Visual map making for a mobile robot,” in Pmc. IEEE
Int. Con$ Robotic Automat., 1985, pp. 824-829.

[3] D. F. Cahn and S. R. Phillips, “ROBNAV-A range-based robot
navigation and obstacle avoidance algorithm,” IEEE Trans. Syst. Man
Cybern., vol. SMC-5, no. 5, pp. 544-551, Sept. 1975.

[4] J. Crowley, “Navigation for an intelligence mobile robot,” IEEE J.
Robotics Automat., vol. RA-I, no. 31, pp. 3141 , Mar. 1985.

[5] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numer. Math., vol. 1, pp. 269-271, 1959.

[6] G. Foux, M. Heymann, and A. Bruckstein, “Two-dimensional robot
navigation among unknown stationary polygonal obstacles,” Technion,
IIT, Haifa. Israel, CIS Rep. 9001, Dec. 1990.

[7] G. Foux, ‘Two-dimensional disk-robot navigation in an unknown en-
vironment among polygonal obstacles,” M.Sc. thesis, Technion-Israel
Institute of Technology, Haifa, Israel, Feb. 1990 (in Hebrew).

[8] S . S. Iyengar, C. C. Jorgensen, S. V. N. Rao, and C. R. Weisbin, “Robot
navigation algorithm using learned spatial graphs,” Robotica, vol. 4, pp.
93-100, 1986.

[9] E. Koch, C. Yeh, G. Hillel, A. Meystel, and C. Isik, “Simulation of path
planning for a system with vision and map updating,” in Pmc. IEEE
Int. Con$ Roborics Automat., vol. 1, pp. 146-160, Mar. 1985.

[IO] D. J.’ Kriegman, E. Triendl, and T. 0. Binford, “Stereo vision and navi-
gation in buildings for mobile robots,’’ IEEE Trans. Robotics Automat..
vol. 5 , no. 6, pp. 792-803, Dec. 1989.

[1 I] T. Lozano-Perez and M. A. Wesley, “An algorithm for planning collision
free paths among polyhedral obstacles,” Communication, vol. ACM-22,
no. 10, pp. 560-570, Oct. 1979.

[121 T. Lozano-Perez, “Spatial planning-A configuration space approach,”
IEEE Trans. Comput., vol. C-32, pp. 108-120, Feb. 1983.

[I31 V. J. Lumelsky and A. A. Stepanov, “Dynamic path planning for a
mobile automaton with limited information on the environment,” IEEE
trans. Automat. Contr., vol. AC-31, no. 1 I, pp. 1058-1063, Nov. 1986.

IEEE TRANSACTIONS ON ROBOBTICS AND AUTOMATION, VOL. 9. NO. I, FEBRUARY 1993

- , “Path planning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape,” Algorithmica, vol. 2, pp.
403430, Nov. 1986.
V. J. Lumelsky, “Dynamic path planning for a planar articulated robot
arm moving amidst unknown obstacles,” Automatica, vol. 23, no. 5, pp.

V. J. Lumelsky, S . Mukhopadhyay, and Kang Sun, “Sensor-based
terrain acquisition: The “Sightseer” strategy,” in Proc. 28th IEEE Con$
Decision Contr., (Tampa, FL), Dec. 1989, pp. 1157-1 161.
H. P. Moravec, “Rover visual obstacle avoidance,” in Proc. 7th IJCAI
(Vancouver, B.C., Canada) Aug. 1981, pp. 785-790.
-, “Visual mapping by a robot rover,” in Proc. 6th IJCAI (Tokyo),
Aug. 1979, pp. 589-600.
B. J. Oommen, S . S . Iyengar, N. S . V. Rao, and R. L. Kashyap, “Robot
navigation in unknown terrains using learned visibility graphs, Part 1:
The disjoint convex obstacle case.,” IEEE Trans. Robotics Auromat., vol.
RA-3, no. 6, pp. 672-681, Dec. 1987.
N. S . V. Rao, S . S . Iyengar, and G. desaussure, “The visit problem:
Visibility graph based solution,” in Proc. IEEE In?. Con. Robotics
Automat., vol. 3, 1988, pp. 1650-1655.
N. S . V. Rao and S . S . Iyengar, “Autonomous robot navigation in
unknown terrains: Incidental learning and environmental exploration,”
IEEE Trans. Syst. Man Cybem., vol. 20, pp. 143-1449. 1990.
N. S . V. Rao, N. Stoltzfus, and S . S . Iyengar, “A retraction method
for learning navigation in unknown terrains for a circular robot,’’ IEEE
Trans. Robotics Automat., vol. 7, pp. 699-707, 1991.
M. Sharir and A. Schorr, “On shortest paths in polyhedral spaces,” Siam
J. Comput., vol. 15, no. 1, pp. 193-215, Feb. 1986.
A. M. Thompson ‘The navigation system of the JPL robot,” in Proc.
5th IJCAI (MIT, Cambridge, MA) Aug. 1977, p. 749-757.

551-570, 1987.

High-speed ’hajectory Control
of a Direct-Drive Manipulator

K. Youcef-Toumi and A. T. Y. Kuo

Abstmcf-The trimming of three-dimensional parts using lasercutting
industrial robots raises a control challenge when high speeds and preci-
sion are required. Accurate control of robot movement along predeter-
mined trajectories is necessary in order to achieve satisfactory cuts. This
paper focuses on the control system design for directdrive manipulators
specially designed for high-speed trajettory control applications. First, the
concept of decoupled and invariant dynamics 5s discussed for a speci6c
manipulator. Second, a simple procedure for system identilitation and
control system design is presented. It is demonstrated that, through
arm mechanism design, the control system is greatly simplified and
satisfactory control performance is achieved. The arm mechanism design
and control system are evaluated through simulations and experiments.
The experimental tracking performance achieved is characterized by a
sped of 3 d s and an acceleration of 3.8 g, with a joint mean tracking
error of 0.0556O.

I. INTRODUCTION

Motion planning of industrial robots has evolved from simple
point-to-point playback of the end-effector to complex trajectory

Manuscript received December 10, 1987; revised January 18, 1992. This
work was supported by the National Science Foundation and by ShinMaywa
Co. of Japan.

K. Youcef-Toumi is with the Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139.

A. T. Y. Kuo was with the Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139. He is now
with the Tuntex Group, Tuntex Petrochemicals, Inc., Taiwan.

IEEE Log Number 9205079.

following. Spot welding and arc welding by industrial robots differ
in that the latter application requires the end-effector to follow a
desired trajectory in space. Thus, arc welding requires amore complex
trajectory planning. A greater challenge has been raised recently in the
application of laser cutting to sheet metal. This process requires both
high-speed maneuvering of the end-effector and accurate tracking.
Specifically, the speed, acceleration, and tracking accuracy required
are on the order of 1-3 m/s, 3-5 g, and 0.05-0.1 mm, respectively.

The difficulties in perforping high-speed trajectory tracking with
conventional robots are numerous. Limitations on the speed and
accuracy of the robots are imposed by the drive system’s components,
such as gearing, lead screws, and linkage, because of its compliance.
In order to overcome these difficulties, direct-drive robots were
introduced [2]-[4], [6]. By removing the transmission systems, the
backlash, friction, and compliance of the drive system have been
eliminated. In addition, advanced composite materials were used in
the linkage of the high-speed M.I.T. direct-drive arm. Consequently,
the arm linkage stiffness was increased significantly and the arm
inertia reduced [6]. Therefore, the control of this direct-drive robot
at the joint ensures fast and accurate tracking of the endpoint in task
space.

A few papers have been published in the area of trajectory tracking
of direct-drive robots [l], [2], [7]. All of the results were obtained
on direct-drive robots with open kinematic chain structures. These
structures exhibit significant coupling and interactions between the
different joints. Nevertheless, the main control algorithm used by
the researchers is based on a feedforward action that can be effec-
tive. The first experimental results for the direct-drive concept [2]
showed promise. Maximum joint speeds ranged from 180 to 36Oo/s.
Positioning accuracy measurements were also conducted using step
responses. This was accomplished by commanding the direct-drive
robot to move to a target point several times. The measured accuracy
was -0.287. Experimental results published recently [I], [7] were also
obtained using model-based feedforward controls. The performance
of model-based feedforward controllers depends greatly on model
accuracy. The feedforward model usually consists of robot dynamic
equations used to calculate the torques/forces necessary to drive
the robot along the desired trajectory. These equations are highly
nonlinear and are functions of robot parameters. The parameters of the
model include link inertial parameters, actuator characteristics, and
other relevant system parameters. In [7], the link inertial parameters
were estimated from detailed drawings of a geometric solid model
of the robot. The approach adopted in [l] is to estimate the model
inertial parameters through arm excitation. These approaches can
provide satisfactory results when appropriate algorithms and adequate
computing hardware are used. Reference [lo] describes the control
of a two-degree-of-freedom (2-DOF) decoupled parallel direct-drive
arm using preview control.

One of the major reasons in using feedforward control is to
compensate for interactions between joints caused by nonlinear
effects such as centrifugal and Coriolis forces. The published results
mentioned above are for open kinematic chain manipulators, which
are dynamically coupled and nonlinear.

An alternative approach to achieving satisfactory tracking perfor-
mance is to consider both the robot arm mechanism design and
the controller design. The M.I.T. direct-drive arm for laser cutting
applications was designed with these issues in mind. Through appro-
priate design and mass redistribution techniques, the arm dynamics is
made decoupled and inertia invariant [4]-[6], [111. The expressions

1042-296X/93$03.00 0 1993 IEEE

