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Abstract .  We discuss three different affine invariant evolution processes for smoothing planar curves. The first 
one is derived from a geometric heat-type flow, both the initial and the smoothed curves being differentiable. 
The second smoothing process is obtained from a discretization of this affine heat equation. In this case, the 
curves are represented by planar polygons. The third process is based on B-spline approximations. For this 
process, the initial curve is a planar polygon, and the smoothed curves are differentiable and even analytic. We 
show that, in the limit, all three affine invariant smoothing processes collapse any initial curve into an elliptic 
point. 
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1. I n t r o d u c t i o n  

Multiscale descriptions of signals have been the subject of extensive research. A possible 
formalism for this topic comes from the idea of multiscale filtering that was introduced 
by Witkin [44], and developed in a variety of frameworks over the past decade [5, 24, 
27, 30, 46]. The idea of scale-space (multiscale) filtering is very simple and can be 
formulated as follows: Given an initial signal ff0(X): I~ '~ ~ N "~, the scale-space is 
obtained by filtering it with a kernel E (X , t ) :  I~ n ~ Rr% where t E I~ + represents the 
scale. In other words, the scale-space representation of ff0(X) is defined as 

t) := (U 

where f2xz(.,t)['] represents the action of the filter/C(-, t). Larger values of t correspond 
to signals at coarser resolutions. 

A classical example of a scale-space kernel is the Gaussian one. In this case, the 
scale-space is linear, and the filter in (1) is defined via convolution. The Gaussian kernel 
is one of the most studied in the theory of scale-spaces [5, 24, 27, 46]. It has some very 
interesting properties, one of them being the signal ~ obtained from it is the solution of 
the heat equation (with if0 as initial condition) given by 

0~ 
- -  = A f t .  
Ot 

One of the lessons from the Gaussian example, is that the scale-space can be obtained 
as the solution of a partial differential evolution equation. The idea of connecting multi- 
scale representations to evolution equations was developed in [1-2, 3, 25, 26, 37] with 
a view to various applications. 

* Current address: LIDS, MIT, Cambridge, MA 02139, U.S.A. 
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We shall consider ' t ime '  varying closed planar curves C(u, t): [a, b] • [0, 7-) ~ ]l~ 2. 

Note that from the point of  view of image analysis, a simple closed planar curve is the 
boundary of a planar shape, and a time-varying planar curve describes an evolving shape. 
We describe three different affine invariant [16] multiscale representations of  planar 
curves, representations that give increasingly smooth curves. The first one is derived 
from a geometric heat-typeflow [35-37], where both the initial and the smoothed curves 
are differentiable (smooth). We should note, however, that this theory can be extended 
to nonsmooth initial curves using the theory of viscosity solutions as in [2] or the novel 
result for Lipschitz curves in [4]. The second one is obtain from a discretization of  this 
affine heat equation [11]. In this case, the curves are represented by polygons. The third 
process is based on B-spline approximations [33]. For this process, the initial curve is 
given by a polygon, and the smoothed curves are differentiable and analytic. As a nice 
consequence of  affine invariance, we show that all these processes shrink an arbitrary 
initial curve into an elliptic point, i.e., a curve that when normalized in order to enclose 
a given strictly positive area, it approaches an ellipse of  the same area. 

This paper is organized as follows: Section 2 presents the affine geometric heat flow. 
The discrete analogue of this flow is given in Section 3. The B-spline based multiscale 
representation is described in Section 4. A short discussion and concluding remarks are 
found in Section 5. 

2. The Affine Geometric  Heat Flow 

Consider a family of  parameterized planar curves* C(u, t): [a, b] x [0, 7-) --~ ]~2, defined 
via the evolution equation 

OC 02C 

Ot Op 2' C(u, O) = Co(u). (2) 

I f  p -- u, then (2) becomes the classical heat equation discussed in the Introduction. If, 
however, p - v, where v is the Euclidean arc-length [43], the Euclidean shortening flow, 
or Euclidean geometric heatflow, is obtained [21, 23]. Gage and Hamilton [21] proved 
that any simple convex curve converges into a circular point when evolving according 
to the Euclidean geometric flow. Then Grayson [23] proved that any simple nonconvex 
curve converges into a convex one. Therefore, any simple curve evolves into a circular 
point when evolving according to the Euclidean geometric heat flow. This flow defines 
a geometric Euclidean invariant multiscale representation [2, 26]. 

A natural question that arises is whether one can obtain a multiscale representation, 
similar to that obtained via the Euclidean heat flow, invariant under the group of affine 
transformations. In [35, 36], it was shown that if p = s in (2), where s is the affine 
arc-length, i.e., the basic affine invariant parameterization given by [8, 10, 35] 

[ _ • < ,  
o \  

then the affine shortening flow, or affine geometric heat flow, is obtained. The main 
results of  [35] are: 

* We assume that the curves  are sufficiently smooth,  such that the derivatives are well  defined. 
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Fig. 1. Example of the affine geometric heat flow. The hands are related by affine transformations. 

THEOREM 1. I f  C(., O) is convex, then it remains convex when the curve evolves accord- 
ing to (2), p - s, and the solution o f  this evolution equation exists as long as the area 
enclosed by the evolving curve is bounded away from zero. 

THEOREM 2. Any convex, smooth, and embedded curve, converges to an elliptical point 
when evolving according to (2), with p =_ s. The convergence is in the sense that the 
normalized dilated curves converge in the Hausdorf f  metric to an ellipse. 

These results were also extended for nonconvex curves. Since Cs, is not defined at 
inflection points [8, 35], this involves the study of  the following flow [36]: 

OC _ { C~ noninflection point, (3) 
0---( - 0 inflection point. 

Equation (3) is the natural extension of (2) (with p - s), and for this flow, the 
following results holds [4, 36, 38]: 

THEOREM 3. Let C(.,0): S 1 --* •2 be a smooth embedded curve in the plane. Then 
there exists a family  C: S t x [0, T)  ---+ ]~2 satisfying (3), such that C(., t) is smooth and 
embedded for  all t < T and, moreover, there is a to < T such that for  all t > to, C(., t) 
is smooth and convex. 

Therefore, by the results in [4, 35, 36, 38], any simple smooth curve converges to an 
elliptic point (becoming convex first) when evolving according to the affine geometric 
heat flow, being (3) the affine invariant analogue of the Euclidean heat flow. 
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The affine flow (3) can be implemented using an efficient numerical algorithm for 
curve evolution proposed by Sethian and Osher in [31], and based on this, a geometric 
anne  invariant multiscale representation for planar curves is available [37]. It is important 
to note that a curve evolving according to this flow, gets smoother in the sense that the 
total curvature decreases [37]. Figure 1 presents an example of outlines of a hand, related 
by affine transformations, evolving according to (3). 

3. Polygonal Affine Invariant Evolution 

Consider a planar polygon P with N vertices. P may be nonconvex and even self- 
intersecting. Each one of the vertices Pi of P, i = 0, 1 , . . . ,  N - 1, can be represented 
by a point in the complex plane, i.e., the polygon P is an N-dimensional vector over 
the complex plane, P = [P0, P1, . . . ,  PN-a] r. 

A general linear evolution of the polygon is described by 

P(n) = M P ( n  - 1), P(0)  = P, (4) 

where M is a constant N x N complex matrix, and n C N + is the discrete time. In the 
evolution described by Equation (4), the new coordinates of each vertex are obtained by 
a linear combination (with possible complex weights) of the coordinates of the previous 
polygon. The number of vertices is constant in the evolution process. 

The linear polygonal evolution given by Equation (4), is an n e  invariant if M is real, 
i.e., if the points of P(n) and/~(n) are related by an affine mapping, and P(n) evolves 

according to (4), P (n )  also evolves according to (4) with the same evolution matrix M. 
Next, we shall show that a polygonal version of the affine heat flow (3) takes the 

form of (4). (For details, and general results on linear polygonal evolutions, see [11].) 
We set the parameterization p of the polygon P to be consecutive integers (modulo N)  
at the vertices, so that for i C {0, 1 , . . . , N  - 1}, P(i ,n)  =- Pi(n) (the ith vertex 
of the polygon P(n)). Note that since polygon vertices (i.e., curve breakpoints) are 
affine invariant, a straightforward discrete affine arc-length may be chosen so that at 
the ith vertex is arc-length i. With this, naturally affine invariant parameterization, a 
straightforward discretization of (3) leads to the following evolution equation for the 
polygon vertices: 

c P ( i -  1,n) + c P(i + 1,n). (5) P( i ,n  + 1) = (1 - e)P(i,n) + ~ 

This equation implies a linear evolution of type (4), where M is a real circulant matrix 
with first row m given by 

[ m =  1 - c , ~ , 0 , . . . , 0 , ~  . (6) 

The geometric interpretation of this transformation readily follows from the observation 
that as c increases from 0 to ~, the point Pi (n) moves from its previous position, Pi ( n -  1), 
to the local center of mass of the points Pi, P~-I, Pi+l at time (n - 1). Therefore, the 
evolution of each polygon vertex is a step towards the local weighted center of mass. 

A well-known property of circulant matrices [22] is that they can be represented as 

M = UAU -1, (7) 
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where U is an orthogonal matrix such that its/-column, i = 0, 1 , . . . ,  N - 1, is given by 

exp{ 2rr}N_ ~13 2 i  , ~3i(N-l)] T, W = j , j v'C-f. w ,  . ,  = 

A = diag{)~l, ,k2, �9 �9 �9 ,XN}, and hi is the ith eigenvalue of M given by 

& = N .  I D F T d m  r) = roW,. 

Here, IDFTi(.) stands for the ith element of the Inverse Discrete Fourier Transform. It 
is easy to check that U -1 = (1/N U)* (where U* stands for the conjugate transpose of 
U) [22]. 

Now, from (4) and (7), we obtain 

N - 1  

P(n) = M ~ P  = UA~U*P = N 
i=0 

N--1 

1 Z (A')nDFT'(P)W~" 
N 

i=0 

Assume that the matrix M in (4) is normalized such that max, I)~,1 = 1, and define 

Poo(n) z~ 1 = ~ ~ exp{ jnarg( .X , ) }DFTdP)W,  (8) 
(i: tail=l} 

where arg(x) stands for the complex argument of x. We clearly have that P(n) converges 
to P~176 in the sense that 

limoolPi(n) - P~~ =O f o r i = 0 , 1 , . . . , N - 1 .  

In the case of m as in (6) (i.e., the discretized affine heat flow), it is easy to show 
that hi is real for all i. Also, ,~0, the biggest eigenvalue, is X0 = 1. Therefore, 

i.e., Poo is simply the centroid of the initial polygon. Since the limiting polygon Poo 
is a point, we can ask about the shape P(n) takes while approaching Poo. In order to 
investigate this, consider the polygon P(n) - Poo normalized as follows: 

B(n) zx 1 E(.k,) ,~DFT,(P)W,.  
N(maxir176 i#0 

Define 

Boo(n) zx 1 E exp {jn arg(.~)}DFTi(P)Wi, 
{i: tAi I=maxi#0{lAi I}} 

(lo) 

and B ~ (n) provides the geometric behavior of the polygon when n --+ oo (i.e., when 
P(n) converges to Poo). From Equation (10), it is clear that the shape of the polygon, 
when approaching Poo, is governed by the second greatest eigenvalues. 
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A polygon Q will be called a poly-ellipse if all its points are located on an ellipse, and 
Q has no self-intersections. Hence, a poly-ellipse is a natural polygonal approximation 
of  an ellipse. For the evolution defined by (4), together with (6), we have the following 
result [11]: 

THEOREM 4. Let P(n) be a polygon evolving according to the evolution Equation (6), 
with P(O) = P. If 

(1) N #4andO<~ c<~ 3, 
(2) DFTI(P) 7~ 0 or DFTN_I(P) 7 ~ 0, 

then P(n) converges to the centroid of the initial polygon, and the normalized polygon 
B ~ (n) converges to a fixed poly-ellipse. 

Proof (Outline). First of  all, for rn as in Equation (6), we already saw that the polygon 
converges to the centroid (Equation (9)). It is easy to prove that for this M,  the second 
greatest eigenvalues are obtained for i = 1 and i = N - 1, i.e., 

I ~ x I = I A N _ I I >  I~1 ( V i # 0 , 1 , N - 1 ) .  

From Equation (10), we have 

1 (DFTI(P)W1 + DFTN_I(P)W_I),  B~(n)  = -~ 

showing that B ~ is a poly-ellipse of  the form 

R [c~ cos(27ri/Y),/3 sin(27ri/N)] T + V, 

where c~ and /3 are constants, R is a rotation matrix, and V is a translation vector. 
Hence not only is B ~ a poly-ellipse but also it is an affine transformation of  a regular 
polygon. [] 

Note that B ~ is independent of  the selection of the parameter c (as long as c E [0, 2]). 
This parameter simply controls the speed of convergence. 

The result in Theorem 4 is not unexpected in the light of the observation that this 
evolution is a discretized polygonal version of  the affine curve evolution studied in [36]. 
It is also interesting to note that while the discrete analog is so simple to analyze, the 
study of  the continuous affine geometric heat flow requires advanced methods from the 
theory of  partial differential equations and affine differential geometry. Figure 2 shows 
examples of  this polygon evolution. 

We end this section by pointing out that after we studied this subject of  the discrete 
version of  the affine geometric heat flow, we learned that the topic of  linear polygonal 
evolutions has an extensive literature devoted to it, starting from a beautiful paper by 
Darboux written in 1878 [15]. He considered the problem of polygon evolution described 
by a slightly different rule: 

Consid6rons un polygone plan ou gauche de n cSt6s A h A2, �9 A,~. On forme un second polygone de mbme 
! t t nombre de cSt6s en joignant les milicux Al, A2,..., A n does cSt6s AIA2,..., AnAl du premier. De ce 

deuxi~me polygone on d6duit un troisi~me par la mSme loi, puis un quatri~me, et, en continuant ind6finiment, 
on obtain ainsi une suite illimit6e de polygones. Je me propose de d6montrer que ces polygones deviennent 
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Fig. 2. Two examples of the discrete (polygonal) model of the affine invariant evolution. 

de plus en plus petits, c'est-5-dire que tousles  sommets du polygons de rang n de la s6rie pr6cddente se 

rapprochent d'un point fixe quand n croit inddfiniment; et, en mSme temps, je d6terminerai la forrne de ce 

polygone quand il devient infiniment petit.., 

Subsequently, long after the results by Darboux were forgotten, other researchers 
rediscovered some of these results. Among them, we mention I. J. Schoenberg in 1950 
[39], J. H. Cadwell in 1953 [121, E. R. Berlekamp et al. in 1965 [7], L. Fejes Tdth 
in 1969 [20]. Many other researchers worked on this and related fascinating problems 
connecting Fourier analysis with basic geometry [9, 13, 14, 19, 28, 29, 42, 45]. 

4. The B-Spline Based Representation 

We shall discuss next yet another affine smoothing process. Note that in the first example, 
the curves are continuous, and in the second one, they are represented by planar polygons. 
In the smoothing process presented below, the original curve is a polygon, while the 
evolved smoothed curves are continuous. 

We briefly review the theory of B-spline approximations. For details, see [6, 17]. 
Let C(u): [a, b] ~ I~ 2 be a planar curve with Cartesian coordinates [x(u), y(u)]. 

Polynomials are computationally efficient to work with, but it is not always possible 
to describe well enough a curve C using single polynomials for x and y. Therefore, in 
applications, the curve is described as a sequence of segments, each one defined by a 
given polynomial. The segments are joined together to form a piecewise polynomial curve. 
The joints between the polynomial segments occur at special curve points called knots. 
The sequence Ul, u2 , . . ,  of knots is required to be nondecreasing. The 'distance' between 
two consecutive knots can be constant or not. Two successive polynomial segments are 
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joined together at a given knot uj in such a way that the resulting piecewise polynomial 
has d continuous derivatives. Of course, the order of the polynomials depends on d. 

Formally, the curve C is a B-spline approximation of the series of points V~ = [z~, y,], 
1 ~< i ~< N, called control vertices, if it can be written as 

N 

Ck(u) = Z v~g~,k(u), (11) 
i=1  

where B~,k (.) = B(-; ui, u i+l , . . . ,  ui+k) is the ith B-spline basis of order k for the knot 
sequence [ % , . . . ,  uN+k]. In particular, Bi,k is a piecewise polynomial function of degree 
< k, with breakpoints u j , . . . ,  uj+k. 

The B-spline basis Bi,k can be computed using a recursive formula of the following 
form [6, 17, 18]: 

1, ui  <~ u <~ u i+t ,  
B~,l(u) = 0, otherwise, 

B i , k ( U )  - -  U - -  U i  B i , k - 1  + U i + k  - -  U B i + l , k - 1 .  

g i + k - - 1  - -  Ui  ~ i + k  - -  ' t / ' i+l  

Several properties can be proven for this basis Bi,k: 

(1) Bi,k(u) >~ O. 
(2) Bi,k(u) =-- 0 outside the interval [ui, ui+k]. This property shows the locality of 

the approximation: Moving a given control vertex affects only a well defined 
portion of the curve. 

(3) The basis is normalized: 

~ - ~ B i , k ( u ) :  l on [uk.. .UN+,]. 
i 

The multiplicity of the knots governs the smoothness. If a given number r occurs r 
times in the knot sequence [ui, �9 �9 ui+k], then the first k - r - 1 derivatives of Bj,k are 
continuous at the breakpoint r.  

Observe that from (11), the affine invariant property of the B-spline representation is 
immediate. If {~/}N is obtained from {V/}I N by an affine transformation 
(A, T) (A being a real 2 • 2 matrix and T E 1~ 2 a translation vector), i.e., 

then 

{ V ~ } ~ = { A ~ + T }  N, 

& (u) = Agk (u) + T, 

where 

N N 

i = l  i=1  

(12) 

Based on this, we can define a B-spline based, affine invariant, multiscale shape 
representation (BALM) of the polygon described by the points {Vi} N, as the family of 
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(a) 

Fig. 3. An example of the BAlM and its affine invariant property. (a) A 12 points polygon and its 
correspondent B-spline representations or order k = 2 i, i = 1, 2, 4, 6, 7. Note the convergence to the 
centroid, with an elliptical shape. (b) The original polygon is obtained via an affine transformation of the 
one in Figure 3. The corresponding BAIM s related to the one in Figure 3a by the same transformation. 

curves Ck obtained from (11) for k = 2, 3, . . .  [33]. Note that in contrast with the multi- 
scale representations described in Section 2, the BAlM is discrete in the scale parameter 
(k = 2, 3 , . . . ) .  This representation was recently extended in [34] to obtain a continuous 
in scale representation. The extension is based on using subdivision schemes for defining 
B-spline basis in C ~, r E [0, oo). 

Figure 3* presents the first BAlM example (see also [32]). The polygon contains 12 
points. In Figure 3a, the initial polygon is given, together with the corresponding BAlM 
for k = 2 i, i = 1 ,2 ,4 ,6 ,7 .  In Figure 3b, the initial polygon is obtained via an affine 
transformation of the polygon in Figure 3a. Due to the affine invariant property, the 
corresponding BAlM is related to the one in Figure 3a by the same affine transformation. 

The following theorem shows the behavior of the B-spline approximations as the 
order k increases (see Figure 3). 

THEOREM 5. As k increases (k ---* oo), the B-spline representation converges to the 
centroid of the control points {V/) N, its shape becoming elliptical. 

Proof (Outline). Let's represent the control points as complex numbers, i.e., V/ = 
[xi +jyi]. Then, using the Fourier series expansion of  the basis functions Bi,k (u) [40, 41 ], 

* The examples here presented were implemented using the Matlab Splme Toolbox [18]. 
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Fig. 4. The smoothing property of the BAlM is shown in this example. The curve is getting more 
and more smooth when the order of the B-spline approximation is increased. 

we have that: 

N 

i = 1  

= ~ ( x i  + jYi) _~ exp{jmTri} k mTr 
i = l  m 

m = ~  ( / = ~  1 )(2sin(mTr/2)) k 
= ~ (xi +jyi)exp{jmTri} \ mTr 

m ~ - - o o  

k exp{jmTru} 1 

exp{jmTru}. 

We see that when k increases (k ~ ~ ) ,  the B-spline representation converges to the 
centroid of the initial polygon (only the term for m = 0 remains in the sum). Furthermore, 
the convergence is in such a way that the curve shape approaches an ellipse. This is so 
since high frequency components of the Fourier transform of the BAlM die out much 
faster than the low frequency ones. Therefore, the limiting curve becomes approximately 
an ellipse, when only the zero (m = 0) and first (m = 4-1) frequency components 
remain significant (compare this results with the polygonal ellipse in Theorem 4). [] 

Figure 4 gives examples showing the smoothing property of the BALM. Actually, it 
can be proven formally that the BAlM is a smoothing process with increasing exponent, 
i.e., the total difference of any order decreases with k [33, 41]. See [34] for details on 
the smoothing properties of this representation. 
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5. Concluding Remarks 

In this paper, we presented three different affine invariant smoothing processes for planar 
curves. The first one is derived from a geometric heat-typeflow, were both the initial and 
the smoothed curves are differentiable. This scheme can be extended to non-smooth initial 
curves based on the results in [4]. The second one is obtained from a discretization of this 
affine heat equation. In this case the curves are represented by polygons. The third process 
is derived from B-spline approximations. For this process, the initial curve is given by 
a polygon, and the smoothed curves are differentiable and analytic. Then, the processes 
presented can be described schematically, with respect to the type of curves involved, as 
differentiable-+differentiable, discrete---,discrete, and discrete-*differentiable (analytic), 
respectively. 

Note also that in the first model, the time scale (smoothing scale), is continuous (t C 
[0, T]). In the second one, this scale is discrete, hut c can be taken as small as required, 
and as c decreases, we approach a continuous time evolution process. In the last model, 
the smoothing scale is related to the B-spline order, therefore, it is strictly discrete (k = 
2, 3 , . . . ) .  In the first case we could also propose a 'discrete time' evolution process, where 
C(n,p) is obtained by averaging over a given constant affine arc length neighborhood 
of C(n - 1, p). This is, for small averaging neighborhoods, an affine invariant numerical 
approximation of the affine geometric heat flow. To complete the picture, it would be 
interesting to also find a 'continuous time', B-spline based, smoothing process. This was 
recently developed in [34] using subdivision schemes. 

We showed that the three processes discussed deform any initial curve into an elliptic 
point. This nice result is hardly unexpected, since the processes are affine invariant 
smoothing operations, and the ellipse is the smoothest affine invariant shape. What is 
interesting to note is that each type of smoothing process required a different approach 
to prove the result. 

We conclude this paper with an interesting question that arises from the work pre- 
sented here: Given an initial continuous curve, and a polygon obtained by sampling it, 
what is the relation between the evolving curve obtained via the affine heat flow (with 
the continuous curve as initial condition), and the curves obtained with the other smooth- 
ing processes (with the polygon as initial condition). This, and the other open questions 
mentioned above, are subject to further research. 
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