
COMPUTER VISION AND IMAGE UNDERSTANDING

Vol. 63, No. 2, March, pp. 367–379, 1996
ARTICLE NO. 0026

The Curve Axis
DORON SHAKED*

Hewlett–Packard, Israel Science Center, Technion City, Haifa 32000, Israel

AND

ALFRED M. BRUCKSTEIN

Department of Computer Science, Center for Intelligent Systems, Technion, Haifa 32000, Israel

Received October 7, 1994; accepted January 10, 1995

often reduces similar shapes to the same set of pixels, it
should be no surprise that skeletonization algorithms sufferIn this paper we examine various aspects of the medial axis

representation of shapes, resulting in a novel, highly accurate from many implementation problems. Those problems fol-
skeletonization algorithm suitable for shapes with parametri- low mainly from various implicit assumptions about the
cally described boundaries such as, for example, polygons or pre-image of the digital shape. Some skeletonization algo-
‘‘spline’’-gons. The medial axis representation is first shown to rithms stress this point by incorporating parameters setting
be efficient in calculating local boundary features. Then the the scale at which the shape should be interpreted, e.g.,
problem of deciding whether an axis-like function is indeed an

[1, 7].axis of a shape is addressed, and two necessary and locally
Most skeletonization algorithms are area oriented.sufficient restrictions on axis functions are derived. The pro-

Those algorithms refer to and use pixels inside the shape.posed skeletonization approach is based on another result which
Their complexity is therefore proportional to the shapeshows that the medial axis is the solution of a system of first
area. On the other hand, boundary oriented skeletoniza-order differential equations. The new skeletonization algorithm

provides a discrete parametric representation of the axis for tion algorithms refer to and use only boundary descriptors.
smooth shapes, the input to the algorithm being a parametric Their complexity is potentially lower. Boundary oriented
description of the shape boundary. Skeletonization examples skeletonization algorithms traditionally assume that the
using the proposed algorithm are presented.  1996 Academic pre-image (i.e., the image before digitization) was a poly-
Press, Inc. gon. Skeletonization relying on boundary descriptions has

been addressed by Montanari [13] and by Lee [11], who
suggested exact solutions for polygonal shapes. Some good1. INTRODUCTION
algorithms approximating the exact solutions were sug-
gested by Bookstein [4] and by Brandt et al. [5].The medial axis of a planar shape consists of the locus

Due to the inherent edginess of polygonal shapes, theof centers of maximal discs in the shape, and of their
medial axes of polygonal approximations of a shape arecorresponding radii. A maximal disc in the shape is a disc
quite different from each other and from the axes of itscontained in the shape such that no other disc in the shape
smoother approximations. In contrast to edgy (e.g., polygo-contains it [2]. The medial axis is considered an attractive
nal) models of shapes, smooth models have axes that arerepresentation of the shape. It is a lossless representation,
much more stable. Skeletonization from smooth boundaryand its planar part (or so-called Skeleton) often provides
descriptors is discussed in the CAD literature. Analyticalan intuitively appealing thin version of the shape.
solutions to the case where the boundary is an ‘‘arc-gon,’’Skeletonization is defined as a process that finds the
i.e., a sequence of circular arc segments, was suggested bymedial axis of a given shape. It is also sometimes referred
Persson [14]. In [17] Yap and Alt assert that an analyticalto as ‘‘The Medial Axis Transform’’ of a shape. The medial
solution for more general boundaries exists; however, it isaxis is a highly unstable shape feature; i.e., similar shapes
impractical. They show that the axis curve of boundarymay have very different axes. Since the digitization process
segments with algebraic degree m is of algebraic degree
16m2. Recently Kimmel et al. have proposed a pixel driven,* Work done while in the Department of Electrical Engineering at

the Technion. boundary oriented skeletonization based on a numerical
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solution for the distance map of curve segments [10]. In the necessary stabilization of the skeletonization process.
The restrictions on legal axes provide insight into somethe sequel we present a novel skeletonization algorithms

for shapes with parametric smooth boundaries. of the flow control rules of the algorithm. The resulting
skeletonization algorithm provides a discrete parametricThe new skeletonization algorithm is derived from a

connection between the parametric descriptions of the representation of the axis of smooth simply connected
shapes.boundary and the axis described via parametric curves. In

the paper we analyze this connection and address three The next three sections address the three questions
raised above. In Section 2 we address the problem ofquestions:
boundary reconstruction and show how we can use the

• Can we transform the axis representation of a shape
new boundary representation to extract boundary features

into its boundary representation? Due to the ease of the
from the axis function. In Section 3 we present the local

transformation from the axis to an explicit representation
restrictions on the axis function. A theorem stating the

of the spatial contents of the shape, this question has not
main result of the section is cited, its proof appearing in

gained a lot of interest since the initial work of Blum
the Appendix. In Section 4 we address the problem of axis

and Nagel [3]. Blum and Nagel were mainly interested in
generation and suggest a novel skeletonization approach.

extracting boundary features from the axis, rather then a
In Section 5 we present a highly accurate and quick skele-

full boundary representation. While the feature extraction
tonization algorithm incorporating the suggested skele-

in [3] is based on geometric considerations, the algebraic
tonization approach. Skeletonization examples are pre-

boundary representation proposed herein makes possible
sented. We conclude with a short summary in Section 6.

the extraction of the basic features as well as more complex
The rest of the introduction is devoted to the notation and

features having less obvious geometric meanings. Similar
terminology that we use.

algebraic representations are used by Bruce and Giblin
A medial axis of a simple planar shape is a collection of

[6] to derive the generic forms of continuously deforming
axis segments, each being a continuous three dimensional

symmetry sets, and by Ponce [15] to compare different
parametric function M (a) 5 (X(a), Y(a), R(a))T. The first

types of ribbons.
two coordinates of the medial axis function, X(a) and Y(a),

• Is there an easy way to tell whether a given axis repre-
are the parametric description of a planar curve, the third

sentation is legal? By a legal axis function we mean a
coordinate R(a) being the radius or so-called ‘‘quenching

function that is indeed the axis of some shape, and by an
function.’’ In the sequel we sometimes refer separately

‘‘easy way’’ we mean avoiding an attempt to reconstruct
to the medial axis curve as A (a) 5 (X(a), Y(a))T. The

the corresponding shape. This problem has been addressed
parameter a that we normally use is the standard arc-length

previously by Rosenfeld [16]. Rosenfeld argued that ulti-
parameter of the curve A. If p is an arbitrary parameteriza-

mately some reconstruction process has to be carried out,
tion of A, then

in order to approve a proposed axis function. He also
indicated that in some cases it is possible to detect an illegal a( p) 5 Ep

0
ÏX92(t) 1 Y92(t) dt.

axis function by some local inspection of the axis. We
present two local conditions for an axis function to be

From now on we shall use subscripts to indicate deriva-legal, and prove that they are sufficient local conditions.
tives; thus Ra 5 R/a and Aa 5 A /a.All further investigations would have to be of a global

The trivial way to describe the shape S of a given axisnature, involving some kind of shape or boundary recon-
function M is through the union of axis disks:struction.

• Can we transform a boundary representation of a S 5 <
a[Domain(M )

BM (a). (1)
shape to its axis representation? Or in other words, does
this new look at axis representation also point to a new
way to skeletonize shapes with smooth boundaries? We An axis disk BM (a) is a disk of radius R(a) centered on
show that the medial axis is the solution to a system of (X(a), Y(a))T. Of course, not every three dimensional para-
first order ordinary differential equations driven by the metric function is a legal axis function. In order for it to
boundaries. These equations indeed form the basis for a be one, it must be the axis of some shape. Since a union
highly accurate skeletonization algorithm. shape (1) is defined for every axis-like function, we may

say that to be a legal axis function, an axis-like function
Equations and insights from the answers to the three

must be the axis of its union shape, S.
questions above are incorporated in the novel skeletoniza-
tion algorithm introduced toward the end of this paper. 2. RECONSTRUCTION
The system of equations describing the skeletonization is
highly unstable; therefore we supplement them with equa- Suppose we have the medial axis of a certain shape and

we want to reconstruct the shape. We can obtain the shapetions suggested by Giblin and Brassett [8], which provide
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After second order infinitesimal terms are removed,

DR 5 Da cos u,

which, in the limit, results in (2).

2.1. Boundary from Medial Axis Description

An axis point usually corresponds to two boundary
points. Hence, an axis segment generically corresponds to
two boundary segments, L (a) and R (a), located on the left
side and on the right side of the medial axis respectively. A
boundary point corresponding to the medial axis point
with parameter a of the axis, is located at a distance R(a)FIG. 1. The azimuth from the axis to the boundary.
from the axis curve point A (a). The azimuth of the bound-
ary point is u degrees from the direction of the tangent
2Aa(a) to the axis curve at a. Here u is determined by
(2). Hence, we have the following reconstruction formulausing (1). This would give us an area description whose

boundary we seek. We can, however, also reconstruct
a boundary description of the shape directly from the
axis description. This is made possible using a result by L 5 A 2 RS Ra Ï1 2 R2

a

2Ï1 2 R2
a Ra

DAa

(3)Blum.
In [2, 3], Blum asserted that each boundary point has

at least one medial axis disk tangent to it, and that generic-
R 5 A 2 RS Ra 2Ï1 2 R2

a

Ï1 2 R2
a Ra

DAa .
ally, each medial axis disk is tangent to the shape bound-
ary at two points. Of the two points, one is located on
the left of the medial axis and the other on its right. Note that Aa is a unit vector indicating a direction tan-
Blum also indicated that each of the two points is located gent to A. The matrix multiplying it from the left is a unit
at an angle (1808 2 u) from the tangent to the axis so size rotation matrix, rotating Aa by u 5 arccos Ra clockwise
that for L (or counterclockwise for R ). The directions obtained

are the directions of L (a) and R (a) from the axis point
A. The distance to the boundary is the radius value R(a).

Ra(a) 5 cos u. (2)
The reconstruction formula (3) is formalized in the fol-

lowing lemma.

Let us examine this statement in an intuitive way; an LEMMA 1. If a segment of a C1 three dimensional para-
elegant argument based on differential geometry may also metric function is an axis segment, then the curves L and
be found in [15]. Our proof of (2) appears in the appendix. R of (3) are on the boundary of the shape the axis describes.
Consider an infinitesimal axis segment as depicted in Fig.

The lemma is proven in the appendix. Relying on the1. The lower line segment in Fig. 1 is the infinitesimal axis
above explanation of (3) the proof concentrates on prov-segment, and the upper line segment is a corresponding
ing (2).segment of the boundary. The lines connecting the ends

The only exception to the above reconstruction rule isof the segments are the radii corresponding to the axis
the case when either of the derivatives Ra(a) or Aa(a) issegments end points. Since the upper right triangle is nearly
not continuous. While the axis derivatives are not alwaysright angle, we can approximate
continuous, the axis functions R(a) and A (a) always are.
Approaching a discontinuity at a0 from one side of the
axis, the boundary reaches a certain point in a directionD2 P Dl 2 1 (R 1 DR)2.
corresponding to the limit value (a R a0) of Ra(a) and
Aa(a) from that side. While approaching from the other
side, the boundary similarly reaches a different point. BothThe large lower triangle is right angle, hence also
points are, however, on the same circle of radius R(a0)
centered on A (a0). The gap between the two points is
completed by a circular arc segment of this circle.D2 5 R2 sin2 u 1 (R cos u 1 Da)2.
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2.2. Boundary Features from Medial Axis The radius of curvature of a boundary is the inverse of its
curvature; hence

From the boundary description, boundary features are
easily derived. The derivatives of (3) with respect to a are

rL 5 R 1
1 2 R2

a

KAÏ1 2 R2
a 2 Raa (8)

La 5S1 2 R2
a 2 RRaa

Ï1 2 R2
a

1 KARDSÏ1 2 R2
a 2Ra

Ra Ï1 2 R2
a
DAa

rR 5 R 2
1 2 R2

a

KAÏ1 2 R2
a 1 Raa

.

Ra 5S1 2 R2
a 2 RRaa

Ï1 2 R2
a

2 KARDSÏ1 2 R2
a Ra

2Ra Ï1 2 R2
a
DAa , The above results are not new. They correspond to re-

sults obtained by Blum and Nagel [3], who derived them
geometrically. Nevertheless, the technique presented here(4)
makes possible the derivation of other (more complex)
boundary features that do not have a simple geometric

where KA is the curvature of the axis curve A. The unit meaning, such as derivatives of the curvature or higher
tangent vectors to L and R are the derivatives of each order derivatives of the boundary.
curve segment with respect to its own arclength (l and r,
respectively). From (4) it is easy to derive the left and right

3. LOCAL RESTRICTIONS ON THE MEDIAL AXIS
arclength information. Note that by the chain rule La 5
Ll ? la and Ra 5 Rr ? ra . Ll and Rr are both unit vectors, As mentioned in the introduction, the way to verify that
and la and ra are the scalar length coefficients of La and an axis-like function is indeed an axis of a shape is a global
Ra , respectively. In (4), the vector part and the magnitude problem involving a reconstruction of the shape via either
part are apparently easy to separate. Note that Aa (1) or (3). The question raised in this section is to what
multiplied by a rotation matrix is of unit length, and extent local restrictions on the axis function can help us
therefore reject candidate axes. Two such local restrictions are intu-

itively apparent:

• The cosine in (2) is bounded to [21, 1]. Hence the
Ll 5SÏ1 2 R2

a 2Ra

Ra Ï1 2 R2
a
DAa

(5)
first restriction is

uRau # 1. (9)
Rr 5SÏ1 2 R2

a Ra

2Ra Ï1 2 R2
a
DAa .

• The arclength sign in (6) should always be positive (or
more accurately, the tangent of the boundary cannot flip

The derivatives of the mappings of axis arclength into its direction), hence the second restriction:
boundary arclengths are the scalar magnitude parts of (4),

1 2 R2
a 2 RRaa $ uKAuRÏ1 2 R2

a . (10)

la 5 S1 2 R2
a 2 RRaa

Ï1 2 R2
a

1 KARD
(6) Indeed the following lemmas are proven in the Appendix.

LEMMA 2. If at a parameter value a0 of an axis-like
ra 5 S1 2 R2

a 2 RRaa

Ï1 2 R2
a

2 KARD .
parametric function uRau . 1, then this function is not an
axis function.

If we differentiate (5) with respect to a, and divide the LEMMA 3. If at a parameter value a0 of an axis-like
result by (6), we get the second derivatives of the boundary parametric function 1 2 R2

a 2 RRaa , uKAuRÏ1 2 R2
a , then

with respect to its arclength, the norm of which is the this function is not an axis function.
boundary curvature:

The next theorem formalizes the above two intuitive
restrictions. The theorem is formally proven in the Ap-
pendix.KL 5

KAÏ1 2 R2
a 2 Raa

1 2 R2
a 2 RRaa 1 KARÏ1 2 R2

a (7) THEOREM. Every medial axis obeys the above two re-
strictions (9) and (10). Consider an infinitesimally shortKR 5 2

KAÏ1 2 R2
a 1 Raa

1 2 R2
a 2 RRaa 2 KARÏ1 2 R2

a

.
3D parametric C1 function (X(a), Y(a), R(a)), with a the
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arclength of (X(a), Y(a)). If that segment obeys (9) and
(10) with a strict inequality, it is a legal medial axis segment.

The proof of the theorem is based on Lemmas 2, 3, and 4:

LEMMA 4. If a parametric function obeys restrictions
(9) and (10) with a strict inequality, then any axis disk is
tangent to a boundary reconstruction as in (3) at two points.
Also, the disk’s curvature is larger then the reconstructed
boundary’s curvature at those points.

4. AXIS REPRESENTATION

In this section we show that the axis function M of a
shape is a solution of a system of ordinary differential
equations. Note that the vector valued reconstruction
formulae (3) constitute a system of four first order equa-
tions having the left and right boundary segment coordi-

FIG. 2. The initial condition for the axis differential equation.
nates as inputs. This system should be enough to solve for
the three unknown functions X(a), Y(a), and R(a). In the
following section we describe skeletonization as a solution
of a system of differential equations. Considering the norm of the above vector equation we get

We want to extract a description of the first order deriva-
tive of the axis function, Ma 5 (Aa , Ra) from (3). Note

Ra 5
i2A 2 (L 1 R )i

2R
. (12)that the vector Aa is unit length. We therefore only need

to describe its direction.
The description of Ma will necessarily depend on the Equations (11) and (12) describe the axis from corre-

left and right boundaries L and R. As in (3), the boundaries sponding boundary information L (l(a)), R (r(a)). To en-
L and R in the description will be parameterized by the sure that the correspondence between the boundary seg-
axis arclength parameter a. This causes a problem, since ments, and between them and the axis segment, is
we assume that the boundaries L and R are given and maintained, we need to simultaneously solve for l(a) and
represented in terms of their respective arclength parame- r(a). To do this we replace the axis terminology of (6) with
ters l and r. Every point on the boundaries corresponds boundary terminology, using (7), thereby obtaining
to some point on the axis which is in turn parameterized
by a. Therefore, we will have to describe l and r as functions

la 5 Ï1 2 R2
a

1
1 2 KLR

ra 5 Ï1 2 R2
a

1
1 2 KRR

. (13)l(a) and r(a) of a.
Taking the difference of the equations in (3) we have

The initial condition for the axis corresponds to Leyton’s
symmetry curvature duality [12]. The initial point is located

L 2 R 5 2RÏ1 2 R2
aS0 21

1 0
DAa . normal to the boundary’s curvature maximum, at a dis-

tance of 1/KM , where KM is the maximal curvature; see
Fig. 2. The initial condition for the radius parameter is the

Extracting the directional information of the above vector local radius of curvature R(0) 5 1/KM . The same point of
equation we get the equation describing the direction of maximal curvature on the boundary is the point where we
Aa , ‘‘cut’’ the boundary, defining the two curves: L to the left

of the axis and R to its right.
We have described the axis as the solution of a systemAa ' L 2 R (11)

of ordinary differential equations (11), (12), (13), and an
initial condition. Starting at an initial condition we could,

(Aa is perpendicular to the segment connecting L and R ). in theory, find the axis via a numerical solution of the
We now sum L and R from (3) to get system. Such a numerical solution would usually result in

a series of densely spaced points on the axis (each comple-
mented with the corresponding radius value). The imple-2A 2 (L 1 R )

2R
5 RaAa .

mentation issues are discussed in the next section.
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The ‘‘smart’’ part of the algorithm is the control process.
The control process considers global shape information. It
first scans the boundary for positive local curvature max-
ima. Those curvature maxima are locations in which the
control process initiates the generation process. The con-
trol process also keeps record of all the boundary segments
scanned, and all the axis segments calculated so far by the
generation process. The control process may interrupt the
generation process, to either stop or redirect it.

5.1. The Axis Generation Process

Since Eqs. (11), (12), and (13) constitute a highly unsta-
ble differential equation system, it is impossible to imple-
ment the approach suggested in Section 4 directly. A stabi-
lization process is necessary for implementation. Each step
of the proposed skeletonization approach is therefore split
into two phases: An estimation phase that relies on the
differential equations, and a stabilizing phase that ensures

FIG. 3. Control of the axis generation at a junction. that the axis location and the corresponding boundary pa-
rameters are accurate.

In the stabilizing phase we use a description of the sym-
5. THE SKELETONIZATION ALGORITHM metry set of planar shapes, proposed by Giblin and Brassett

[8]. A symmetry set of a planar shape is a thin planar setThe application of the previously discussed results to a
that contains the medial axis. Like axis points, each pointpractical skeletonization algorithm faces two serious diffi-
in the symmetry set corresponds to a pair of boundaryculties. The first problem is that the system of differential
points. Symmetry points that are also axis points corre-equations (11), (12), (13) is highly unstable. The second
spond to the same pairs of boundary points the axis pointsproblem is that the above scheme refers to a single axis
correspond to. Giblin and Brassett [8] argued that the setsegment. To obtain the full axis of a shape some control
of all valid pairs of boundary points corresponding to theprocess should be applied to the differential evolution of
symmetry set is the zero set ofthe axes in order to detect meeting axes segments, create

a junction, and redirect the differential equation based
kL (l) 2 R (r), Ll(l) 1 Rr(r)l, (14)axis generation process to derive the third branch of the

junction; see Fig. 3. In this section we describe solutions
to the two problems described above. The full details of where k?, ?l is the scalar product of vectors.

A valid pair of boundary points are boundary pointsthe algorithm will not be described in this paper. Those
may be found in a fully documented C program implement- whose distance from the intersection of their normals is

equal. Given a valid pair of points on the boundary weing the algorithm accessible by anonymous ftp from
ftp.technion.ac.il in the directory/pub/supported/cs/misc/ estimate the next valid pair using (13). The parameters of

the estimated valid pair initiate a simple search algorithmdorons.
The skeletonization algorithm is roughly divided into for the zeros of (14). Since the estimation phase is accurate

enough, the zero search is very quick, and the accuratetwo processes: The generation process and the control
process. The former solves the first problem via a stabilized valid pair is close to the estimated pair. The location of

the corresponding axis point is the intersection of normalsimplementation of the differential evolution equations for
the axis. The latter solves the second problem of flow to the boundaries L and R at the new valid pair. The radius

function is the distance from the axis point to each of thecontrol.
The generation process is the ‘‘dumb’’ part of the algo- boundary points.

It has to be noted that the estimation phase in the aboverithm. It is initiated with a valid pair of points on the
boundary of the shape, i.e., two boundary points corre- scheme is important. Zero searching on (14) stabilizes the

skeletonization only when the search is initiated closesponding to an axis point. Once initiated it produces a
series of equally spaced axis points along the axis segment. enough to the accurate value of the parameters. If for

example, we replace the estimation via (13) with a simpleCalculating an axis point, the generation process is aware
of no more then an infinitesimal region around the two incrementation of the parameters, we face serious conver-

gence problems in the stabilization phase. The zero searchcorresponding boundary points.
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A generation process is sequentially started by the con-
trol at each positive curvature maximum. The generation
process produces an axis segment and updates the control.
The generation is stopped by the control if either of the
stopping conditions described below is fulfilled. Once the
axis generation is stopped, a new generation process is
started at the next curvature maximum in the ordered list,
unless the control decides the axis is complete.

The control process maintains a list of boundary seg-
ments scanned so far by the generation process. Every
boundary segment corresponds to an axis segment or to a
tree structure of axis segments, maintained separately by
the control process; see Fig. 4. The axis corresponding to
a scanned boundary segment is its axial description.FIG. 4. Boundary and corresponding axis segments at an intermediate

stage of the skeletonization algorithm. A new boundary segment is created whenever the gener-
ation process is initiated on a new curvature maximum. As
the generation progresses, the boundary segment grows.
When an active boundary segment meets an existing seg-always converges; however, it might take more iterations,
ment (e.g., the contact between boundary segments A andand would sometimes converge to parameters correspond-
B or C and D in Fig. 4), the control interrupts the genera-ing to axis points that are far away from the previous axis
tion and declares a conflict situation. The conflict arisespoint. Those convergence problems usually occur when
from the fact that a boundary point may correspond onlythe correct incrementation of the left side parameter is
to one axis segment. The conflict situation is resolved insubstantially different from the corresponding incremen-
three possible ways arbitrated by the relative size of thetation of the right side parameter. An additional conse-
radius value at the two conflicting axis points:quence of the estimation via (13) is that the resulting axis

points are generally equally spaced. • If the radius value of the active axis point is larger
than the radius value of the older axis point, the generation

5.2. The Control Process
process terminates. For example, Fig. 5a describes the in-
termediate stage when the active boundary segment B metAfter scanning the boundary for local curvature maxima,

the control process keeps a clockwise ordered list of an older segment A. The axis disks corresponding to the
two segments touch the boundary at the end points of thepointers to boundary locations in which the generation

process is to be initiated. From that point on, the control segments. Since the boundary segments meet, the larger
(new) axis disk contains the smaller (old) axis disk. Hence,process ‘‘learns’’ the boundary curve only through the gen-

eration process. However, in contrast to the former, it it also contains a boundary point (the second end point of
the old boundary segment). This implies that the largerkeeps record of the information and does not ‘‘forget’’ it.

FIG. 5. Examples of conflicts where the radii are different.
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The control process stops the axis generation in three
more cases:

• When the left and right boundary segments cannot
support an axis segment any more. From the boundary’s
point of view, this situation may be detected when one of
the boundary segments contains a twist that penetrates the
previously calculated axis disk; see Fig. 7a. From the axis
point of view this situation is indicated by an axis that
does not obey restriction (10). Practically the situation
is detected by the algorithm when the new parameters
estimated to correspond to the next axis point via (13),
retreat into the scanned boundary segment instead of ad-
vancing outward. Note that in Lemma 3 in the appendix weFIG. 6. Creation of a junction.
prove that if restriction (10) is not obeyed then necessarily
either la , 0 or ra , 0. This in turn implies that indeed
one of the incrementations estimated by (13) will have the
wrong sign.axis disk can not be a maximal disk in the shape. Hence,

the new axis point is not recorded, and the generation • When the axis segment is obviously too long. A global
control process can tell that an axis segment is obviouslyprocess is terminated.

• If the radius value of the active axis point is smaller too long if it extends beyond the borders of the shape. To
check whether a point is outside of a given shape is athan the radius value of the older axis point, as in segments

C and D of Fig. 5b, the older axis point is not part of the difficult task. Therefore, we suggest to check only whether
the axis is inside the frame of the shape. The frame ofshape axis. Hence the axis point of the older axis segment

is deleted. With its deletion, the corresponding boundary the shape is the box enclosing the maximal and minimal
coordinate values of the boundary points. Clearly, thesegment is shrunk.

• If both radius values are equal, the location of both shape itself is inside its frame. In Fig. 7b axis segment B
is stopped as it exceeds the frame of the shape. Note thataxis points is the same. They are both located at the same

distance in a direction normal to the common boundary in order to give the example of Fig. 5a (which is, by the
way, quite rare), it was necessary to extend the frame ofsegment. In this case the location is declared a junction,

the two boundary segments are merged to one, and both the shape.
• When the axis is complete. In this case the algorithmaxis segments are merged as branches of a tree structure

whose root is a third axis segment that is initiated at the is stopped altogether. The axis is complete when the entire
shape boundary has been scanned. Note that the end condi-junction. The generation process is redirected to operate

on a new valid pair of boundary points, the end points of tion occurs before the list of curvature maxima is ex-
hausted. This happens because the last axis segment isthe newly merged boundary segment, (see Fig. 6).

FIG. 7. Two situations in which the axis generation process is stopped.
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by the algorithm described above. The shapes in the figure
are defined by spline boundaries.

6. SUMMARY

This paper is about a novel accurate skeletonization
algorithm for shapes with smooth boundaries. Throughout
this paper, we advocated a connection between the para-
metric descriptions of the boundary and the medial axis.
This connection has been shown useful in calculating
boundary features. It has also led to two necessary and
locally sufficient restrictions on axis functions. We have

FIG. 8. End condition for the skeletonization algorithm. proposed a new skeletonization approach determining the
medial axis as a solution of a first order system of ordinary
differential equation. Finally, we have applied parts of
the proposed approach in a skeletonization algorithm for
simply connected shapes whose boundaries are describeddeveloped from a junction towards a curvature maximum

from which axis generation has not yet been initiated, as via parametric curves.
As a final note we would like to stress again the impor-for example axis segment A in Fig. 8.

tance of the smooth boundary input in the context of skele-
tonization. In the CAD community the need for accurateAfter stopping a generation process, the control process

initiates a new generation process at the next curvature skeletonization techniques from smooth parametric
boundary descriptors is quite clear because those are com-maximum. The fact that the curvature maxima which initi-

ate the generation processes are ordered in a clockwise monly used descriptors in CAD. The most common shape
descriptor in computer vision is however the pixel. Indeedorder is a key element in the control process. The results

of the skeletonization algorithm are, however, invariant to many skeletonization algorithms rely on pixel or polygonal
inputs. Since the axis is a very unstable feature, especiallythe nature and location of the curvature maximum driving

the first generation process. This includes curvature max- when rough or edgy shapes are concerned, skeletonization
algorithms produce unsatisfactory results especially whenima that do not correspond to a free end of some axis in

the final axis of the shape (a few such maxima appear in the input is pixel or polygonal data. Smoothing the data
before skeletonization stabilizes the resulting axis consid-Fig. 9b). Note that in contrast to the medial axis, end points

of the local symmetry axes described by Leyton [12] do erably. The novelty in the skeletonization algorithm pre-
sented in this paper is in the smooth parametric boundaryreach every curvature extremum.

Figure 9 presents two examples of medial axes produced description it operates on.

FIG. 9. Results of the skeletonization algorithm.
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Let us examine the distance R 1 Dd from A (a 1 Da)
to L (a). By the cosine law,

(R 1 Dd)2 5 R2 1 Da2 2 2RDa cos(1808 2 f).

Removing second order infinitesimal terms, we get

Dd
Da

5 cos f. (16)

From (15) and (16),

Dd , DR

Therefore, points lying on the azimuth c . u from Aa , are
inside the axis disk of a neighboring points, contradicting
the assumption that it is a boundary point of the shape.

A similar argument is valid for the assumption of an
azimuth c , u. n

LEMMA 5. Let AB and CD be two segments in the plane,FIG. 10. The azimuth of the boundary from the axis point correspond-
ing to it. intersecting at a point E. Then either B [ CD

C or D [
CB

A , where CB
A denotes the circle centered at A and passing

through B, and CD
C denotes the circle centered at C and

APPENDIX
passing through D.

LEMMA 1. If a segment of a C1 three dimensional para- Proof. We have to show (see Fig. 11), that either
metric function is an axis segment, then the curves L and BC # CD or DA # AB. Suppose the contrary is true, i.e.
R of (3) are on the boundary of the shape that the axis de- BC . CD and DA . AB. adding the two inequalities we
scribes. get BC 1 DA . CD 1 AB 5 CE 1 ED 1 AE 1 EB 5

Remark. An elegant argument based on differential
geometry may be found in [15].

Proof. Every axis disk touches the boundary of the
shape at two points. Those points are R(a) distant from
the axis point A (a). The only exceptions to the two point
correspondence may be found at the axis end point. (Expla-
nations about boundary axis point correspondences, may
be found in [2], and more formally in [8] and [9]). What
we shall show is that the azimuth of the boundary points
on the disk, is the angle u on both sides of the tangent Aa

to the axis curve, with u as in (2).
Let us assume the contrary, and suppose that the azimuth

of a boundary point is at angle c from Aa , such that c .
u with cos u 5 Ra . Since the tangent Aa to the axis is
continuous, for a sufficiently small Da also the angle f of
the azimuth from the infinitesimal line segment connecting
axis points a and a 1 Da will be, such that f . u. See Fig. 10.

We have cos f , cos u 5 Ra . Since Ra is also continuous,
we can find a sufficiently small Da so that

DR
Da

. cos f, (15)

FIG. 11. If the radii intersect, at least one of their end points is inside
the other circle.where DR 5 R(a 1 Da) 2 R(a).
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segment to a line (the dotted line in Fig. 13), obtaining
two half planes. By (5), the tangent Ll to the L at a0 , is
pointing toward the same half plane as Aa (the tangent to
A ). However, the derivative La in (4) is pointing to the
same side only if la in (6) is positive.

Suppose, however, that la , 0. Then, for a sufficiently
small Da, the radius connecting the axis point at parameter
a0 1 Da on one side of the line to the boundary point
L (a0 1 Da) on the other side of the line intersects it; see
Fig. 13. According to Lemma 5 this means that either L (a0)
is in the axis disk of parameter a0 1 Da or L (a0 1 Da) is
in the axis disk of parameter a0 . Hence, either L (a0) or
L (a0 1 Da) is not a boundary point, contradicting the
assumption that the function is an axis function.

A similar argument can be made for ra , 0. Note that
if 1 2 R2

a 2 RRaa , uKAuRÏ1 2 R2
a , as in the hypothesis

of the lemma, then by (6) either la , 0 or ra , 0. n

LEMMA 4. If a parametric function obeys restrictions
(9) and (10) with a strict inequality, then any axis disk is
tangent to a boundary reconstruction as in (3) on two points.
The disk’s curvature in this case is larger than the recon-FIG. 12. If the radius function changes too quickly, the proposed

function can not be an axis function. structed boundary’s curvature at those points.

Proof. First note that a boundary reconstruction is pos-
sible only for parametric functions obeying (9); otherwise

(CE 1 EB) 1 (DE 1 EA) in contradiction to the triangle the expressions in (3) do not exist.
inequality BC # CE 1 EB and DA # DE 1 EA. n From the reconstruction equations it is evident that ev-

ery axis disk touches the reconstructed boundary at twoTHEOREM. Every medial axis obeys (9) and (10). Con-
points. The disk centered at A (a) touches the left andsider an infinitesimally short 3D parametric C1 function

(X(a), Y(a), R(a)), with a the arclength of (X(a), Y(a)). If
that segment obeys (9) and (10) with a strict inequality, it
is a legal medial axis segment.

We separate the theorem into a few lemmas.

LEMMA 2. If at a parameter value a0 of an axis-like
parametric function uRau . 1, then this function is not an
axis function.

Proof. Suppose Ra(a0) . 1; then for a sufficiently small
Da, we have DR/Da . 1, with DR 5 R(a0 1 Da) 2 R(a0).
Since DR . Da, the axis disk of parameter a0 , is totally
contained in the axis disk of parameter a0 1 Da. See Fig. 12.

A similar argument can be made for the assumption
Ra , 21. n

LEMMA 3. If at a parameter value a0 of an axis-like
parametric function, 1 2 R2

a 2 RRaa , uKAuRÏ1 2 R2
a , then

this function is not an axis function.

Proof. Suppose the contrary is correct, and the func-
tion is an axis function. By Lemma 1 the curves L and R

in (3) are on the boundaries of the shape corresponding
to the axis function. Consider the line segment connecting
the axis point A (a0) to L (a0), the left boundary point

FIG. 13. Boundary parameter is monotone in axis parameterization.corresponding to it according to (3). Now extend the line
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right boundary segments at L (a) and R (a) respectively. the boundary, and the radius of curvature at every bound-
ary point is larger then the radius of the axis disk touchingThe tangent vectors to the boundary segments in (5) are

perpendicular to the directions of their respective axis disk it. Therefore, the constructed boundary points are outside
the axis disks corresponding to neighboring boundaryradii. Those are given by substituting (3) into (1/R) (L 2

A ) and (1/R) (R 2 A ). Hence every axis ball is tangent points. Since the axis segment is infinitesimal, we conclude
that every point of the boundary is outside all other axisto the boundary at two points. (The points are different

or else Ra 5 1.) disks of the axis segment. Hence, the boundary constructed
above is the boundary of the union shape.To prove the second part of the lemma we have to

show that the axis disk curvature (1/R) is larger then both Since all the disks of the proposed axis touch the bound-
ary at two different points, they are all maximal disks inboundary curvatures KL and KR in (7). If either of the

boundary curvatures is negative, then the respective prob- the union shape. The proposed axis function describes
therefore a collection of centers of maximal disks. All thatlem is solved. Therefore, we show that if KL . 0 then

rL . R and if KR . 0 then rR . R. is left to be shown is that the collection is complete, and
that there exists no other maximal disk in the union shape.If

Assume the contrary is correct, and there is another
maximal disk in the union shape. Being a maximal disk it

KL 5
KAÏ1 2 R2

a 2Raa

1 2 R2
a 2 RRaa 1 KARÏ1 2 R2

a

. 0 has to either touch the boundary at two different points,
or at one point in which case, its radius has to be equal to
the radius of curvature at that point. In any case, the maxi-

then from restriction (10) the denominator is positive, and mal disk has to be tangent to the boundary at the touch-
ing points.

KAÏ1 2 R2
a 2 Raa . 0. (17) If an internal disk touches a point of the two arc segments

connecting L with R, its radius is bound to be less than or
We have to show that in this case rL . R or, by substitution equal to the radius of the axis disk at the corresponding
from (8), end of the axis segment. Hence, such a disk may not be a

maximal disk. If an internal disk touches a point of either
L or R, it has to be tangent to the boundary at the point.1 2 R2

a

KAÏ1 2 R2
a 2 Raa

. 0. Also, the axis disk corresponding to the same point is
tangent to the boundary. Hence, either the new maximal
disk contains the axis disk or vice versa. In both cases weBut this is a direct conclusion from (17) and the restric-
get a contradiction to the assumptions.tion (9).

The only alternative allowing the two disks to be simulta-A similar argument asserts that if KR . 0 then rR . R. n
neously maximal in the union shape is a negative disconti-
nuity of the tangent at the relevant boundary point. In thisProof of the Theorem. The first part of the theorem is:

All axis functions obey (9) and (10). This part is directly case both disks may be ‘‘tangent’’ to the boundary but not
to each other; see Fig. 14. The boundary point is then aderived from Lemmas 2 and 3.

The second part is: An infinitesimal axis like function
M obeying (9) and (10) with a strict inequality is a legal
axis function. In order to show this, we have to show that
M is the axis of its union shape (1).

Let us first describe a shape by its boundary. The bound-
ary is composed of the two boundary segments L and R

defined by the reconstruction equations (3), and of two
arc segments connecting them at both ends (the arc seg-
ments of the disks at the ends of the proposed infinitesimal
axis). Next we show that the boundary described above is
the boundary of the union shape. The boundary is closed.
Furthermore, since each boundary point is on the boundary
of at least one axis disk, none of the points of the boundary
described above is outside the union shape. What remains
to be shown is that non of the boundary points is inside
the union shape, or equivalently, non of the points is inside
any of the axis disks.

FIG. 14. An example of a union shape with a concave ‘‘corner.’’From Lemma 4, all proposed axis disks are tangent to
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