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Abstract. A new framework for computing the Euclidean distance and weighted distance from the boundary of 
a given digitized shape is presented. The distance is calculated with sub-pixel accuracy. The algorithm is based 
on an equal distance contour evolution process. The moving contour is embedded as a level set in a time varying 
function of higher dimension. This representation of the evolving contour makes possible the use of an accurate 
and stable numerical scheme, due to Osher and Sethian [22]. The relation between the classical shape from shading 
problem and the weighted distance transform is presented, as well as an algorithm that calculates the geodesic 
distance transform on surfaces. 
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1. Introduction 

Distance maps on a pixel array picture are usually 
defined as discrete functions reflecting the minimal 
Euclidean distance of each pixel from the boundary 
pixels, see [6, 17, 33]. Algorithms that calculate such 
maps usually operate on segmented objects, i.e., ob- 
jects that have been transformed into a binary picture. 
In the process of mapping the shape into "White" inte- 
rior and "Black" exterior pixels, information that may 
be crucial, if we desire to establish an accurate distance 
map, is usually lost. 

A distance map may be found with the help of a prop- 
agating equal distance contour, or wave front, which 
starts from the boundary and propagates inwards (into 
the shape) with a unit velocity. The moving wave front 
assigns the distance to each pixel as it passes through 
it. See for example [2, 5], where the equal distance 
contour is referred to as the front of the flame in the 
prairie-fire model. 

In [22] Sethian and Osher have shown that by con- 
sidering the evolving curve as a level set of a higher 
dimensional function that propagates according to a 
well-defined rule, topological changes and numerical 
problems are inherently solved. We propose to con- 
struct an accurate and efficient distance map algorithm 
based on this idea. 

The problem of finding the distance becomes more 
interesting when considering a different cost or weight 
to each point in the domain. This leads to the idea of 
weighted distance transforms. We shall show that the 
weighted distance transform may be used to solve the 
classical shape from shading problem where one de- 
sires to reconstruct a three dimensional object from its 
gray level image. Considering other metrics than the 
Euclidean metric, introduces the continuous scale mor- 
phology, [3]. In [27] it was shown that morphological 
operations at any given scale may be performed via 
curve evolution, the 'structuring element' of the mor- 
phological operation being determined by the metric. 
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Taking off from planes to surfaces, we search for 
distance transform of a given area on a given surface, 
[12]. Calculating this geodesic distance map is per- 
formed by an equal distance curve propagating on the 
given three dimensional surface. 

The solutions to all the above problems may be 
achieved by referring to the Osher-Sethian algorithm 
for propagating the equal distance contour, or by 
solving a Hamilton Jacobi type of equation that mini- 
mizes the difference between a given function gradient 
and the gradient of the desired solution. Two good ex- 
amples of the last approach are the viscosity solutions 
to the shape from shading problem [18, 26], and [31] 
where such a formulation is used to find the distance 
map as part of a numerical algorithm that simulates in- 
compressible two-phase flow, see also [14]. We shall 
study the relation between the two approaches. 

This paper presents a new framework for calculating 
all the above defined distance maps. In Section 2, the 
propagation rule of a planar curve evolving with con- 
stant velocity along its normal is introduced, as well 
as the level set formulation for that simple propaga- 
tion rule. Section 3 introduces a cost function over the 
planar domain and studies the relation of the weighted 
distance transform and the shape from shading prob- 
lem. In Section 4, the continuous scale morphology 
via level sets is used to achieve the distance maps for 
any given metric. In Section 5, propagation of equal 
distance contours on surfaces is used to calculate the 
geodesic distance map. Two possible applications are 
given in Section 6, followed by some examples, and 
concluding remarks in Section 7. 

In the next section we start by considering the evolu- 
tion equation of a planar curve propagating with con- 
stant velocity along its normal direction. This sim- 
ple planar case is reformulated to the evolution of an 
implicit representation of the curve. The new implicit 
formulation (the heart of the Osher-Sethian algorithm, 
called the EuIerian formulation) enables us to imple- 
ment an efficient numerical scheme that approximates 
the evolution equation on a pixel grid. By tracking the 
propagating curve on the grid, the Euclidean distance 
transform is achieved. 

2. Equal Distance Contour--Propagation Rule 

Consider the propagating planar curve C(p,t): 
[0, S] x [0, T) - +  ~t~2, evolving according to the prop- 
agation rule 

G(p,  t) = ~(p), 

where p parameterizes the curve, t is the time (which 
represents the distance in the simple constant velocity 
case), and ~(p) is the planar unit normal to C(p, t) 
atp.  

The evolution process generates the propagating 
family of simple and closed planar curves X (t) which 
represent the traces of C(p, t), 

X(t) = {(x,y) c C(p,t) ] (x, y) c p2}. 

Embedding these planar curves as zero level sets 
of a time varying three dimensional function 
~b(x, y, t): p2 x [0, T) ~ N., means that we require 
the following [22]: 

a. ~ (x, y, 0) = 0 is an implicit representation of X (0). 
b. ~b (x, y, 0) is smooth, positive in the interior and 

negative in the exterior of X (0). 
c. ~b(x, y, t) = 0 provides X(t). 

Applying the chain rule on the last requirement yields 

~t + VO . Xt = O. 

The planar normal to each level set is given by ~ ---- 
re Using the constant (unit) propagation velocity IIVNl" 

constraint Ct(p, t) • ~ -- 1, we can write 

v ~  
x , .  II V~b I---~ = 1. 

Therefore, an evolution rule given by 

q~t = - [ I V ~ l l ,  

meets the desired requirements. 
Without any prior segmentation or edge detection 

procedures, let qS(x, y, 0) --= E(x, y) - T, where 
E(x, y) is the gray level picture, and T is the thresh- 
old separating the object from the background, see [15] 
(T may also be adaptive, see e.g., [34]). We establish 
the following distance transform algorithm 

1. initialize ~b(x, y, 0) = E(x, y) - T, see also [15]. 
2. Propagate ~b according to qSt = -II Vq~ll, using a sta- 

ble and accurate numerical algorithm (as provided 
by Osher and Sethian in [22]). 

3. Using a rectangular grid approximation (the pixel- 
grid), at each grid point: Check whether the zero 
level set has passed through the grid point. Assign 
the proper distance to the point if it does, using a 
simple linear interpolation. 
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This is a conceptually simple algorithm that calcu- 
lates the distance map with sub-pixel accuracy. It can 
also solve the so-called shape offsetting problem in 
CAD, see [15]. The accuracy is governed by the pixel 
grid resolution and the distance (time) step of the it- 
erative numerical scheme. When not considering any 
possible redundancy, the calculation effort is of order 
O ( ° m  . n), where D is the maximal distance from the 
boundary and m,  n in the number of grid points used 
in the numerical scheme. A parallel implementation 
reduces the calculation complexity to O ( ~ ) .  

3. Weighted Distance Transforms 

In this section we argue that solutions of the classical 
Shape from Shading problem in which the viewer and 
the light source have the same location and the surface 
reflects the light with a "Lambertian" shading rule, see 
e.g., [4], also solve a problem of distance transforms 
with a given traversability map. We first introduce the 
weighted distance transform problem, and then present 
the approaches to its solution. 

3.1. The Path of MinimaI Cost 

Consider a problem where we search for a planar path 
from a source to a destination, so that the accumulation 
of a penalty function along that path is minimal. This 
minimization problem may be defined as follows. Let 
s, d E R 2 be the given source and destination points, 
and f (x, y): IR 2 ~ IR + be a given cost function. Then, 
find the planar curve l ° connecting s to d so that 

f 
d 

l/°] -= f (x, y)dI ° 

ifs = min f(l(p))dp, = 1 , 
l c L  

(1) 

where L is the set of all planar curves I ~ ~2 connecting 
s to d, with arclength parameterization p. 

The relation between the weighted distance trans- 
form and the shading from shape or contours from shad- 
ing was dealt with in [25, 32]. The problem of finding 
the weighted distance may be shown to be equivalent to 
the well known Shape from Shading problem in Com- 
puter Vision, in the simple case where the light source 
and viewer have the same direction. In the recent years 
various solutions to this problem were proposed [1, 7-  
10, 23, 24, 26]. In [4, 11, 13] a solution to the shape 

from shading problem via level sets is described. Mo- 
tivated by this work, we propose to similarly solve the 
weighted distance transform problem and also to find 
the path of minimal cost from s to d. 

As a first step propagate an equal cost contour (equal 
height contours according to [4]) that obeys the planar 
curve evolution rule 

OC 1 

Ot f t x ,  y) 

Here ~ is the unit normal to the curve, and the initial 
curve is given as a very small contour around the source 
point C(0) = Co. Formulating this evolution in the so 
called Eulerian representation, see [30], yields the level 
set evolution version 

1 

¢ ( o )  = 4,0, 

see [13] for the numerical implementation. In the case 
of shape from shading, E(x, y)-- the gray level (shad- 
ing) image--equals (under reasonable assumptions) to 
cos(a), where a is the angle between the surface nor- 
mal and the light source direction. When the viewing 
and the light source direction are the same, see Fig. I, 
the evolution of an equal height contour is given by 

OC 
- -  = cot(a)~, 
Ot 

Figure I .  Descending dt in height, the equal height contour should 
evolve by d t  • cot(a) along its normal direction. 
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or  

OC E 
Ot - ~ ~ t ,  

see [4, 13] for further details. Observe that defining 
the cost function as function of E(x, y) to be 

f ( x ,  y) = tan(a) = f f l  - EZ(xl y) 
E(x, y) ' 

the shape from shading problem coincides with the 
problem of finding the weighted distance transform. 

As it propagates, the equal cost contour assigns the 
proper time to each grid point it touches. The time 
assigned to every grid point therefore corresponds to 
the minimal cost it takes to reach that point (minimal 
height in the shape from shading case). Define u~ (x, y) 
and ua(x, y) to be the weighted distance maps from 
the source and destination points, respectively. We can 
proceed and search for the minimal level of the function 
Us(X, y) + u d ( x , y ) , where u ~ ( x , y) is the accumulated 
cost at point (x, y) when starting from s. This may be 
formally represented by 

1 ° = {(x, y) ] Us(X, y) + ue(x, y) 

= inf {u,(x, y) + ua(x, y)}}. 
(x.y) 

This way of obtaining the paths of minimal cost may 
serve as a simple and direct approach for solving many 
energy or cost minimization problems. 

Considering the problem in which the cost function 
is a traversability map, and the initial source is an area 
rather than a point, we are led to the "weighted dis- 
tance transform" problem. In this problem a cost is 
assigned to each point in the continuous domain (the 
penalty function), and traveling from the source area 
to any point in the domain should accumulate the least 
possible cost. 

We have shown in [13] a solution to the shape from 
shading problem, which also applies in this case. An- 
other approach to this problem was recently presented 
by Rouy and Tourin in [26]. They propose to consider 
the "Hamiltonian" of this minimization problem 

H(Vu(x,  y)) = IVu(x, Y)[ - f ( x ,  y), 

and present a viscosity solution to it which is imple- 
mented either via a numerical scheme based on Osher 

and Rudin [20], or via a simple, but longer procedure 
that evolves the discretization of the following PDE: 

ut = H(Vu(x,  y)). 

In the shape from shading problem H(Vu(x,  y)) = 
IVu(x, Y)I - tan(a), where u is the reconstructed sur- 
face and tan(a) is the cost function dependent on the 
gray levels as before. This formulation explains the 
relation between the two approaches. In equal height 
contour evolution, the local propagation velocity of the 
curve is proportional to cot(c 0 , i.e., when the gradient 
of the reconstructed shape is high, 'jumping' from one 
equal height contour to the next involves small steps. In 
the minimization problem, we try to modify u, so that 
the magnitude of its gradient will agree with tan(a), as 
obtained from the shading image. Observe that the q~ 
function introduced in the Eulerian approach is an arbi- 
trary initialized auxiliary function used for an implicit 
representation of the propagating curve C, while u is 
the reconstructed surface itself and may also be referred 
to as the "weighted distance function", "weighted dis- 
tance map" or "weighted distance transform". 

Note that this procedure might also be used to solve 
the simple distance transform, where H(Vu(x,  y)) = 
]Vu(x, Y)I - 1. It is easy to see that the above PDE- 
s' steady-state is for IVu(x, Y)I -- 1 (ut = 0), which 
agrees with the distance function whose gradient is 1 al- 
most everywhere. In [31] the distance is computed 
inward and outward simultaneously by modifying the 
above PDE to 

ut = S(uo)(t - I V u l ) ,  

where S(.) is a smoothed version of a sign function, 
e.g., 

//0 
S(uo)  = 

V ~ o  - t- E 2 

This way the zero level set, that specifies the shape 
boundary in our case, is kept fixed while the rest con- 
verges to the proper distance from the boundary, nega- 
tive distance in the interior and positive in the exterior 
of the shape. 

4. Other Metrics: Continuous 
Scale Morphology 

Let us consider other metrics than the simple Euclidean 
metric. Let r(O) be the set of points of unit distance 
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Figure 2. A structuring element is defined by the 'unit sphere' of 
the given metric. In this example the diamond is the unit sphere of 
the L 1 (city block) metric. 

from the origin (0, 0), that is determined by a given 
metric. In Fig. 2, an L1 metric determines the set of 
points of a 'unit' distance from the origin as a diamond 
shape. The distance function imposed by a given met- 
ric may be determined by evolving the given shape 
boundary with a structuring element that is determined 
by the set r(O) that characterizes the given metric. 

It may be shown, see [27], that the above operation is 
the result of dilating the given shape by r(O). In order 
to find the set of points of distance T from the bound- 
ary of the original shape, we can dilate the shape with 
a structuring element r(O)T. The same morphological 
operation may be achieved as a Minkovsky addition 
by successively applying an infinitesimal structuring 
element ~r (0), the number of successive dilation oper- 
ations being given by T/e. In the continuous case the 
structuring element must be taken to have an infinitesi- 
mal value. Observe a given point on the boundary, ap- 
plying the infinitesimal dilation operation is the same 
as splitting the point into many points and moving or 
"propagating" each point to the boundary determined 
by the structuring element. The same procedure is 
carried out for each point along the curve. Our search 
is after the envelope (hull) of all the evolved points. 
This is a version of the Huygens principle form optics 
[29]. A known result from the theory of curve evolution 
states that the image (also known as trace, or geomet- 
ric shape) of the evolving curve may be determined by 

only considering the normal component of the velocity 
at each point [28]. Using this fact we may determine 
only the maximal projection of the splitting point on the 
normal, and thereby get the evolution rule that agrees 
with the continuous scale morphology. 

Formally, given the boundary of a shape Co(s), the 
result of dilating the shape by r(0)T is given by prop- 
agating the boundary according to: 

Ct = sup {r(0).~}~, 
0~[0,27r] 

starting with C(0) = Co and stopping the propaga- 
tion at t = T, getting C(T) as the desired result. We 
have shown in [27] (see also [3]), that the above curve 
propagation rule in the level set formulation is given by 

q~t = sup {r(0). VqS}. 
Oc[0,2Jr] 

In this framework we are after the distance imposed 
by the given metric. Using the above curve evolution 
we may assign each point a distance equal to t, which 
is the time the zero level set passed through that point. 
It was shown that the metric defines the structuring 
element that is used to dilate the boundary. The dilation 
operation may be performed in a continuous scale using 
the above curve evolution rule. The curve evolution is 
reformulated in the level set (Eulerian) formulation. 
And the distance is obtained by assigning the time of 
arrival of the zero level set to each point. 

5. Surfaces: Geodesic Distance Map 

Up to this point planar curves were propagated to cal- 
culate distances from given planar shapes. The above 
techniques still apply when considering more than two 
dimensions, that is, by propagating zero set R n mani- 
folds of functions in ]R n+l. A different kind of prob- 
lem is calculating distance maps on surfaces in IR 3, (or 
manifolds in I t  n, in the general case). 

Consider the simple case of a given boundary of a 
shape defined on a given surface $ c p3. The bound- 
ary of the shape may be presented as a three dimen- 
sional curve ~: [a, b] ~ ]R -+ ]R 3, where ee ~ S. It 
was shown in [12] that the evolution rule of an equal 
distance contour that propagates on a surface is given by 

at = T x H ,  

where 7 is the tangent vector of the curve 7 = et'/l~'[, 
and f/" is the normal of the surface $. Propagating a 3D 
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curve is hard to implement. We, therefore, project the 
evolution to the plane, and consider only the tangential 
component to the planar curve. Define the projection 
operation as Jr, i.e., Jr o (x, y, z) -- (x, y). The evolu- 
tion rule of the planar curve, C, that is the projection 
of the evolution of the surface curve oe, is given by 

c,  = (~ o (? x ~ ) ,  ,~),~, 

where C = Jr o ~, and ~ is the normal of the planar 
curve C. 

A level set formulation of the above planar evolution 
rule is given by 

~b t - -  
1 

~/I + p2 q_ q2 

x ~/(1 q- q2)¢~ _1_ (1 + p2)¢2 _ 2pqqbx(Jy ' 

where p = dz /dx ,  and q = dz /dy  are the derivatives 
of the surface S, and 8 is assumed to be given as a 
function (z(x, y), x, y). 

The distance map on the surface may then be cal- 
culated as before, by propagating the planar curve (in 
its level set formulation) and assigning the distance to 
each point as the curve passes through that point. All 
the evolution rules presented here are implemented by 
numerical schemes that are consistent with the contin- 
uous propagation rule, and are motivated by numeri- 
cal schemes that where developed in solving Hamilton 
Jacobi type of equations, [16, 21, 22]. Observe that all 
the planar evolutions described here are of that type. 
The consistency condition, that is satisfied when con- 
structing the numerical scheme, guarantees that the so- 
lution converges to the true one as the grid is refined and 
the time step in the numerical scheme is kept with the 
right proportion to the grid size. This is known not to 
be the case in general graph search algorithms (e.g., Di- 
jkstra) that suffer from digitization bias due to the met- 
rication error when implemented on a grid, see [19]. 

6. Applications and Results 

In this section two examples of possible applications of 
using the sub-pixel distance maps based on the level set 
approach are presented. The first is the search for the 
Voronoi diagram between given points on surfaces (or 
weighted planar domains). The second deals with three 
point Steiner problems with cost function defined on 
the planar domain (the same procedure still apply when 

considering three points on a surface). Some examples 
of the distance and weighted distance transforms then 
demonstrate the capability of the algorithms devised. 

6.1. Voronoi Diagram on Surfaces 

It is possible to formulate a procedure that finds the 
Voronoi diagram on surfaces using the level set tech- 
nique. Observe that the line that separates two points 
on the surface is given as the zero level set of the dis- 
tance map from the first point, AA1, subtracted from 
the distance map form the second point, Adz. The 
projection of that curve is given by l = {(x, y) I 
Ad1(x, y) - A//2(x, y) = 0}. When more than two 
points are involved things become more complicated, 
and similar approaches as those that are used in the 
planar case should be followed. A possible procedure 
that finds the projection of the diagram is the following 

Voronoi Projection 

= [(x, y) [ ViVj, i ~ j: Adi - Adj = 0 

where i, j ,  k 6 {1, 2 . . . . .  N} are indexes of the given 
points on the surface. 

6.2. Solving the Three Point Steiner Problem 

The Steiner problem is defined as follows: given three 
points (or areas), find the graph of minimal cost con- 
necting the three points. In this problem we still try to 
solve the problem as defined in Eq. (1), but now L is 
defined to be the set of all planar curves connecting the 
three points that may have junctions (brunches). The 
cost is accumulated by integrating along all brunches. 
With uniform penalty, the solution is quite simple and 
looks like a "Y", connecting the three points, the junc- 
tion in the "middle" usually forming three 120 ° angles. 
Given three points and a cost function on the domain, 
it is easy to show that the situation is similar, but now 
there might be more than one solution. 

In order to solve the problem we first calculate the 
weighted distance map from each of the given points, 
then find the infimum of the sum of the three maps. 
There might be more than one point achieving this in- 
fimum if there is more than one solution. These points 
will be junction points of the solution. The last stage 
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Figure 3. Sub-pixel distance map of a low resolution (64 x 64) gray level picture, a. The picture is given as 8-bit gray level numbers taking 
the values 0 (white) to 255 (black). b. ~b(x, y, 0) --- (E(x,  y )  - 128)/256. c. The outward distance map as equal distance contours on gray 
levels indicating the distance, d. The distance map given as elevation array. 
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Figure 5. The weighted distance transform is used to find the path of minimal cost, between two points on two opposite sides of a low resolution 
picture (64 x 64). The picture displays the two different traversability factors as two gray levels. 

involves computing the weighted distance map from 
the junction, and determining the path of minimal cost 
from the junction to each of the original regions using 
the technique described in the previous sections (that is, 
finding the minimal level set of the sum of the weighted 
distance map from the junction and the distance map 
from the point). Combining the paths to the junctions 
results in the desired solution. The "cost" of the graph 
is the infimum of the sum of the three weighted distance 
maps calculated on the first step. 

This is only a simple example of a wide variety of 
possibilities for using calculated weighted distance 
maps. 

negative picture to achieve the inwards distance map, 
is shown in Fig. 4. 

In the last example, Fig. 5, the weighted distance 
transform is used to find the path of minimal cost 
between two points on a plane with two different 
traversability factors (two regions with different cost). 
The same result is obtained by using well known S nell's 
law in optics, and of course this is not surprising in view 
of the fact that what we are doing is solving efficiently 
an eikonal equation. 

7. Concluding Remarks 

6.3. Examples 

The first example shows the sub-pixel distance map 
of a given gray level picture. The low resolution 
(64 × 64) gray level picture Fig. 3 is used to initial- 
ize the ~b function, i.e., ~(x, y, 0) = E(x ,  y) - T, 
where the threshold T = 128, and each gray level 
pixel is represented by an 8-bit number taking the 
values 0 (white) to 255 (black). Figure 3b shows 
~(x ,  y, O) = ( E ( x ,  y) - T)/256. The outward dis- 
tance map is shown in Fig. 3c as equal distance con- 
tours on a gray level indicating the distance, and 3d 
as distance array. The same procedure applied to the 

We have presented a new approach to find sub-pixel 
accuracy distance transforms, by efficiently propagat- 
ing equal distance contours. The proposed numerical 
approximation uses an implicit representation of the 
evolving contour. The contour is propagated as a level 
set of bivariate function. This way numerical problems 
and topological changes, encountered in traditional di- 
rect wave propagation schemes are naturally overcome. 
A natural initialization to the algorithm was suggested, 
according to which the gray level image of the shape 
provides the initial surface. This surface serves as the 
implicit representation of the initial contour. 

A way to calculate the sub-pixel weighted dis- 
tance transform was described. We have presented the 
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relation of the weighted distance transform and the 
shape from shading problem, and used shape from 
shading solutions to calculate the path of minimal cost 
between two and then three points. 

Continuous scale morphology via curve evolution 
was used to calculate distance maps for any given met- 
ric. Calculating the geodesic distance on surfaces was 
carried out by propagating a planar curve that is the pro- 
jection of the three dimensional equal distance contour 
propagating on the surface. 

Two examples of using the distance transforms were 
presented, the solution of the three points Steiner prob- 
lem (on surfaces or on weighted domains), and the 
Voronoi diagram on surfaces. 
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