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Abstract. Several interesting mathematical problems arising in computer vision are discussed. Computer 
vision deals with image understanding at various levels. At the low level, it addresses issues like 
segmentation, edge detection, planar shape recognition and analysis. Classical results on differential 
invariants associated to planar curves are relevant to planar object recognition under partial occlusion, and 
recent results concerning the evolution of closed planar shapes under curvature controlled diffusion have 
found applications in shape decomposition and analysis. At higher levels, computer vision problems deal 
with attempts to invert imaging projections and shading processes toward depth recovery, spatial shape 
recognition and motion analysis. In this context, the recovery of depth from shaded images of objects with 
smooth, diffuse surfaces require the solution of nonlinear partial differential equations. Here results on 
differential equations, as well as interesting results from low-dimensional topology and differential 
geometry are the necessary tools of the trade. We are still far from being able to equip our computers with 
brains capable to analyze and understand the images that can easily be acquired with camera-eyes; 
however the research effort in this area often calls for both classical and recent mathematical results. 

Mathematics Subject Classifications (1991). 68T10, see: 53A04, 35F25, 35Q80, 57N25, 58A99. 
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1. Introduction 

Recent advances in technology enabled computers to acquire images with inexpensive 
high resolution cameras, creating a pressing need to interpret and analyze visual data. 
In the beginning, this need was met by various ad-hoc algorithms, some quite 
successful. However, quite early on there also was a trend to import advanced 
mathematical results to attack some of the better understood and defined problems of 
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the field. Today, group theory, discrete geometry, differential and algebraic geometry, 
topology, and partial differential equations have become the tools of the trade. Indeed, 
it is generally agreed in the vision community that the import of mathematics to the 
field of computer vision helps greatly in understanding some of the key problems, and 
focuses the research on the need to work and experiment within precisely defined and 
accepted paradigms. 

There are several directions in computer vision research. Some very interesting 
problems arising in visual inspection of industrial products and robotics lead to 
research in so-called low level vision. Work in model based shape analysis and 
recognition has already resulted in many useful products, such as optical character 
recognizers, handwriting recognizer interfaces to computers, printed-circuit board 
inspection systems and quality control devices. In spite of such successes many low- 
level vision problems remain to be addressed. Efficient ways for analyzing, recogniz- 
ing, and understanding even planar shapes, when they do not come from a well- 
defined and documented library of shapes, when they are distorted by a geometric 
viewing transformation, such as perspective projection or when they are partially 
occluded, have yet to be developed. 

The mainstream of research in computer vision are the so-called high level topics, 
such as depth perception from single or stereo images, the use of shading clues to infer 
object shapes and surfaces, the use of image sequences to recognize objects in motion 
and analyze dynamic three-dimensional scenes, with a view to applications like robot 
navigation and collision avoidance. Such problems require good understanding of the 
imaging processes, i.e., the projection geometry, light propagation and surface 
reflectance properties. While many of these problems are mathematically well-defined, 
they often lead to ill-posed inverse problems. For example, the imaging process 
produces images of objects, and we want to extract the shape of these three 
dimensional objects from such images. Certain intriguing facets of questions in this 
domain can be successfully modeled and dealt with mathematically, however it is fair 
to state that the problems that can be mathematically adequately treated at this point 
are special cases, i.e., heavily simplified versions of the real issues to be dealt with. 
Sometimes the simplifications that lead to well-posed mathematical problems are 
reasonable in view of controlled environments in robotics problems; good examples 
are the problems arising from active vision and structured light research. The 
problems involved in developing general-purpose vision algorithms with human-like 
performance still seem as formidable as they were when the first computers were built. 
A very promising trend in addressing this issue is the placement of emphasis on 
qualitative rather than quantitative image understanding. 

In this paper we shall discuss four problems in computer vision, emphasizing the 
mathematical tools that were found to be useful in dealing with them. The problems 
are motivated by real issues and their mathematical solution should be viewed as a 
guidance toward possible real-world implementation and application. The problems 

are: 
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(1) recognition of planar objects with smooth boundaries under partial occlusion, 
when the objects are distorted by general viewing transformations; 

(2) planar object analysis and decomposition by boundary evolution; 
(3) recovering the shape, or the depth to the surface of a diffuse three-dimensional 

object from a shaded image taken under controlled illumination conditions; 
(4) shape recovery of diffuse objects from two images taken under different 

illumination conditions (photometric stereo). 

The mathematical results that found applications to the above problems are the 
theory of differential invariants for smooth planar curves, the theory of planar curve 
evolution under curvature-dependent differential deformation laws, some elements 
from the theory of nonlinear first-order partial differential equations, and some basic 
consequences of integrability on smooth surfaces. The four sections that follow will 
describe these problems and their solutions in some detail. 

2. Local Invariants and Planar Curve Recognition 

The problem of recognizing and locating a partially visible planar object, whose shape 
is distorted by a viewing transformation arises in several machine vision tasks. Such 
problems raise the question of invariants under viewing transformations. We describe 
here a theory of local invariants of smooth planar curves under projective, affine and 
similarity transformations. The roots of this theory go back to some classical results 

of Elie Cartan; see [W], ILl,  [SB]. We follow the approach described in [BN] to the 
use of local invariants for recognition of partially occluded planar objects. 

2.1. PROBLEM D E F I N I T I O N  

A simple, closed planar curve, the, say [0, 1], to points in R 2. The curve may also be 
regarded as the trajectory of a point moving in the plane, the position at time t being 
given by P(t) = Ix(t), y(t)]. We have, by assumption, P(1) = P(0) and P(ti) r P(t;) for 
any tl ~ tj; ti, t;e [0, 1]. Further assume the boundary curves and their traversal are 
smooth, implying that the functions x(t), y(t) are differentiable several times. Obvious- 
ly, a simple closed planar trajectory in the plane may be traversed at various speeds 
and therefore P~(t)), where ~(t) = to + ~b(t) and q~(t) is a smooth monotone function 
qS: [0, 1] ~ [0, 1], describes the same trajectory as P(t), with a different initial position 
and different traversal schedule. Such elementary transformations of planar curve 
descriptions are called curve reparametrizations. To separate the geometric concept of 
a planar curve from its formal algebraic description, we refer to the planar curve 
described by P(t) as the image of P(t), Im{P(t)}. Denoting P(7(t)) by RT(t)[P(t)] we have 
that 

I m { P ( 0 }  = Im{R~( t ) [P ( t ) ]} ,  (2.1) 

for any ~(t) = to + ~b(t) as above; thus all smooth reparametrizations are equally good 
descriptions of any given curve. For  a planar curve we may choose to work with any 
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valid traversal as its formal description. Suppose that the points of R 2 are subjected to 
a geometric transformation, To: R 2 ~ R 2, 

ToE(x, y)] = EXo(x, y), Yo(x, y)] (2.2)  

parametrized by a vector of parameters ~. A planar curve will be distorted by T o, and 
the points of Im{P(t)} will be mapped to another simple and closed curve in the plane. 
Choosing an arbitrary parametric description for the distorted curve,/~(7), we have 
that 

P61 = E~(/), Y(/)] = To [x(~), y(~)] 

= T o ERa(t) Ex(t), y(t)]] = T o ER?(t)[P(t)]] = R?(t) ETo EP(t)]], (2.3) 

i.e. the curve description /~(t) is always a ToE.]-distorted version of a repara- 
metrization of P(t), or equivalently, a reparametrization of a T o [- ]-distorted version 
of P(t), We shall analyze ways to account for the consequences of looking at a planar 
object with smooth boundaries from various unknown points of view. This induces 
several types of geometric transformations, T 0E.], that distort the boundaries. The 
questions we address are: 

(1) Given a library of planar objects and a distorted view of one of them, recognize 
(identify) the object from its distorted image (see Figure l a). 

(2) Given a library of objects and the profile of a cluster of objects from the library, 
distorted by possibly different viewing transformations, resolve the cluster into 
its components (see Figure lb). 

In both problems above, we assume the distortions to be of a given class T o [. ], with 
no knowledge of its parameters ~. The most general geometric transformations on 
planar shapes that we shall deal with are the so-called projective mappings. They arise 
in the context of the laws of perspective projection, and can be best described by 
representing points in the plane in homogeneous coordinates, as follows 

Ix, y] ~ Ex2-1, y2 1, 2-1] (2.4) 

where the third coordinate is an arbitrary scaling factor. Using homogeneous 
coordinates, a planar object or curve is lifted into projective space. To 
P(t) = [x(O,y(t)] we may associate a projective curve described by [x(t)2 1(0, 
y(t)2-1(0, 2-l(t)], where 2(0 is any continuous smooth function with 2(t) > 0. The 
general projective transformation is then any linear mapping applied to the "lifted" 
trajectory, i.e. 

[X(t), Y(t), Z(t)] --= [x(t)Z l(t), y(t)Z-l(~), )o l(0]A (2.5) 

where A = [au] is any full rank matrix. Notice that the arbitrary scaling function 
chosen, 2(0, multiplies all entries of IX(t), Y(t), Z(t)], and projecting this homogenized 
curve back to its 2D representation we obtain 

[allx(t)  + a21y(t) + a31 al2x(t) + aa2y(t) + a32] 
/~(t) = [2(0, ~(t)] =/[_ai3x(t) + a23y(0 + a33 'a13x(t) + a23y(t) + a33A.I 

(2.6) 
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Fig. 1. (a) Shape identification, (b) cluster resolution. 
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This transformation is the most general one encountered as the embedding of a 
viewing transformation. The important particular cases of this transformation that 
are usually analyzed in detail are the rigid motions in the plane, similarity 
transformations and affine mappings. The equations describing rigid (Euclidean) 
motion mappings in the plane are 

I COS co - sin co : ]  

[2, .~, 1] = Ix, y, 1] sin co cos co , (2.7) 

[_ V x Vy 
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the parameters of the transformation being the rotation angle co, that defines a 

rotation matrix Rot(o)), and the translation vector V = [v x, vy]. The equations for 

similarity transformations are the same as the ones for rigid motions with the rotation 
matrix Rot(co) in (2.4) replaced by e rot(o)), where :~ is a scaling factor. The parameters 

in this case are o), vx, vy and c~. Affine mappings are defined by a general non singular 
matrix A, replacing the rotation matrix Rot(co) in the definition of rigid motions. 
The parameters of an affine transformation are the entries of A, and the translation 
vector V. 

These are the geometric transformations To[. ] . The general projective map is 

defined by 8 parameters (one of the entries of A may be normalized to 1, with no effect 
on the 2D---, 2D transformation). This map generalizes both a perspective viewing 
transformation and an affine map. Note however that a true perspective projection 
has fewer parameters. The affine map has 6 independent parameters, while the 

similarity transformation has 4 and rigid (Euclidean) motions are characterized by 3 
parameters. Note that for all the above transformations there exists a parameter  
choice r that maps the transformation T0[.]  into the identity transformation I [ - ] ,  

i.e. I[P(t)] = P(t). In fact, since the matrices involved are invertible, the transformation 
types discussed are continuous groups of transformations. 

2.2. CANONICAL CURVE PARAMETRIZATIONS VIA DIFFERENTIAL 1NVARIANTS 

Suppose we are given a planar object with a smooth boundary, the image of a closed 

planar curve described by P(t). If the object is subjected to a geometric transformation 
of the type discussed in the previous section, the transformed planar object will have 

boundary that can be described by/~(t) 

/~(~) = Tq, [R~( 0 [P(t)]] - R~(t)[Tq, [P(t)]. (2.8) 

We do not know the parameters ~9 of the geometric transformation and we are only 
given the images of two closed boundary curves in the plane, Im{P(t)} and Im{fi(~')}. 

To solve the first object recognition problem posed above, we must be able to 

decide whether an arbitrary description/~(7) could be related to P(t) via the equation 
(2.5), for some reparametrization t(t) and some transformation parameters ~. In order 
to solve the second, more difficult, cluster resolution problem we should be able to 

identify even portions of a given curve P-(~) as transformed and reparameterized 
portions of an original shape boundary described by P(t). 

An example: The Euclidean Invariants 
In order to illustrate a general approach to attack these problems, let us first analyze 
the way they are solved for the simplest case of rigid (Euclidean) motion trans- 
formations. It  is well-known that a smooth planar curve has an intrinsic curvature 
versus arc-length representation k(s). The arc-length is a rotation-translation inva- 
riant and so is the curvature. Therefore, in so representing a closed contour the only 
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arbitrary choices are an initial position on the curve and the direction of traversal. If 

there are no unambiguously defined 'landmark' points on the boundary, or in the case 

of partial occlusion situations, the initial point will remain arbitrary. The direction of 
traversal may usually be chosen a priori. In any case, all shapes that are rotated and 
translated versions of the original will have boundaries described by k ( s -  So), i.e., 
translated versions of the same intrinsic-description function. Thus, both the object 
recognition and the cluster resolution problem may be solved via a total or partial 
correlation, or 1D function-matching (string matching), process�9 The curvature versus 
arc-length representation solves both our problems by first devising a curve-dependent 
reparametrization of the boundary curve and associating to the curve a signature 
.[unction that is invariant under the given class of geometric transformations. The 
curve-dependent reparametrization, given the description P(t) = [-x(t), y(t)], is readily 
obtained as 

d 2 
s ( t ) : f o [ ( ~ x ( ~ ) )  -+-(d~. y(~))211/2d~ (2.9) 

by using the metric 

ds = [(dx(t)/dt) 2 + (dy(t)/dt) 2] 1/2 dt (2.10) 

and, after reparametrizing P(t) to get P(s) = [x(s), y(s)], the curvature invariant k(s) is 
given by 

dx(s) d2y(s) d2x(s) dy(s) 
k(s) - d~- ds 2 ds 2 ds - xll~(s)y(2~(s) - x(2)(s)y(~(s). (2.1t) 

Having obtained the curvature invariant, we may ask whether we can obtain others, 
independent of it (since clearly we could obtain other invariants by performing 
various operations on k(s)). Such questions are central to the theory of differential 
invariants. 

The above procedure for identifying planar objects from portions of their 
boundaries in case of (Euclidean) rigid motion transformations serves as a model for 
the type of solutions that we seek in the case of general transformations�9 Given a 
parametric family of transformations on R 2, T o[x, y] = [2, ~], and a planar curve 
P(t) = Ix(t), y(t)], we have to determine a reparametrization, 

dz = F{P(t)} dt, (2.12) 

so that for/;(~(t)) we shall have 

d? = F{/~(t)} d~]? -- dr. (2.13) 

Here F{P(t)} is a positive function of x(t), y(t) and their derivatives, x(k)(t), y(k)(t), 
(k = 1, 2, 3,. �9 ), i.e., it depends on the local behavior of the curve at the point P(t). 
Reparametrizing both P(t) and/~(7) by r and ?, respectively, we have from (2.13) that 

fi(~) = To[P(~ + to)] (2.14) 
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and the next step is the search for a s ignature function invar iant  under  T 0 [- ]. Suppose 
we find a t rans format ion  A mapp ing  P(T) into a function p(Z), based also on the local 
behavior  of the curve P(T) 

p(T) = A[P(T)], (2.15) 

so that  the function p( . )  is an invar iant  s ignature function, i.e., 

p(z) = AEP(T)] = AEP(~(T))] = ~(z -- T0). (2.16) 

Then, given a curve P(t) that  undergoes a T 0 t rans format ion  and a reparamet r iza t ion  

~(t), to yield fi(7) = T o ERa(t)[P(t)]], we m a y  define the function p(T) associated to P(t) to 
be a generalized ' curvature '  versus 'arc- length '  representat ion of P(t). We first need to 

find a function of the local behavior  of the p lanar  curve that  t ransforms,  under  
reparametr iza t ion ,  as follows 

dT(t) (2.17) r { P ( t ) }  = d t  

Then with the reparamet r iza t ions  (2.12) and (2.13) we shall have that  ~ = To + T, and 

for this reparametr iza t ion ,  we have by (2.17) 

F{P(T)} = F{/~(~)} �9 1. (2.18) 

It might  seem that  we have also produced  an invar iant  s ignature function. However ,  

applying (2.17) to the identity t rans format ion  T o [ . ]  = I [ . ]  we obtain  

dt 1 
F{P(T)} = F { P ( t ) } . ~  = r{P(t(v))} F{P(t(T)} - 1, (2.19) 

showing that  we have associated a trivially invar iant  signature (a constant)  to the 

curve, that  hardly  was wor th  working  for. If, however,  we could obtain  two different 
functions F1 and F 2 bo th  satisfying (2.17), then we could use one of them for 
reparamet r iza t ion  and the second for an invar iant  signature, since then 

dt _ Fz{P(t)} (2.20) 
F2{P(T)} = F2{P(t)} dT FI{P(t)} ' 

and using (2.17) repeatedly we have 

d7 Fz{/~(7)} F2{P(t('i))} = F2{P(~ - %)}. (2.21) 
F2{/~('~)} = F2{/~(0} d-? F I ~  - Fl{V(t(t)) } 

This is a key observa t ion  showing how to use differential invariants  for shape 
recognition. Suppose we managed  to provide  for a class of geometr ic  t ransformat ions  
a generalized 'p -curva ture '  vs. 'T-arc-length'  representat ion.  This representa t ion 
enables us to locate corresponding points  on the curves Im{P(0} and Im{P(7)}, i.e., if 
we are given some point  f~ on Im{P(t)},f~ = P(tn), we can look for fi  = To{~ } by 
locating the point  on P(~) that  the same value for the generalized curvature  p(T). 
Locat ing the corresponding points  for several f~i on Im{P(t)} and writing the 
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equations 

fii = To {f~i}, (2.22) 

we obtain a system of equations for the parameters of the geometric transformations, 
and in some cases we might be able to uniquely determine ~,. Therefore, we could use 
two images of a planar object to identify the geometric transformation that affected an 
image under consideration. This could be done even if the boundary of the object is 
only partially visible in the image distorted by a viewing transformation, since the 
above-discussed generalized curvature versus arc-length representations are based on 
the local behavior of the boundaries. 

Several papers in the computer vision literature deal with problems of object 
recognition under distorting, geometric viewing transformations. According to 
whether it was assumed that the entire object is visible in the distorted image, or only 
portions of it, we may classify the approaches to such problems as based on global or 
local information. When global information is available we could attempt to identify 
the parameters ~ of the geometric transformation by analyzing how global shape 
parameters, like perimeters, areas, higher order moments, etc., are affected by a T 0 
transformation. For object recognition we may also rely on so-called global invariants 
associated to shapes; these are quantities that remain invariant when the planar shape 
undergoes a T o transformation. The search for global invariants under various 
geometric transformations is an ongoing concern of current pattern recognition 
research. However, here we discussed methods that employ only local information. It 
is only through such methods that one can solve object identification problems under 
partial occlusion. An approach to using local information that is very popular in the 
pattern recognition literature advocates the use of special-feature points on the 
boundary, such as breakpoints, ends of straight portions or inflection points. Such 
points can relatively easily be located based on local information and can also be 
identified on transformed object boundaries. Then they may serve either for seg- 
mentation or for the identication of the transformation T o. These methods however, 
are unsuitable for smooth boundaries and in cases where occlusion wipes out feature 
points. It is then worthwhile to study generalized, invariant signatures or, p-curvature 
versus >arc-length type representations. The pair of functions F~{-} and 172{'}, are 
provided for the common viewing transformations by a theory of differential 
invariants, developed in the late 19th and early 20th centuries by Halphen (see [L]), 
Wilczynski [W], and Cartan (see [SB]). For  more details and references see [IWl] ,  
[COCO],  [BN]. 

Unfortunately, from a practical point of view, the problem with this approach is 
that high derivatives of the curve representations are required to produce the 17{. } 
functions (the highest derivative needed being by one less than the number of 
parameters of the continuous group of deformations). Thus there is a need to move 
away from differential to 'neighborhood behavior'-based invariants and here the 
classical mathematical theories no longer seem to help. Thus, we must find ways to 
exploit the local properties of the curve to yield invariant functionals to be used for 
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recognition. As an example see the paper [BKLP] ,  for tricks enabling similarity 
invariant recognition of partially occluded boundaries, and [VKO] for a Lie-group 
approach to semi-differential invariants for recognition, reducing the number of 
derivatives needed by exploiting some point-match information that might be 
available. For further developments see also [BPB], [IW2] and [BHNR].  

3. Shape Analysis via Boundary Evolution Equations 

When we look at a planar shape we usually give it an interpretation, such as a 
conglomerate of some elementary parts or as a basic shape with some structured 
protuberances. Very early on in computer vision, researchers wanted to understand 
and model mathematically the way in which we make such 'gestalt' decisions, that 
seem to be crucial in the process of associating meaning to the picture we see. Planar 
shapes are described in the computer in various ways, using either contour or region 
descriptions, each of them making different types of information explicit. While 
complete descriptions are obviously equivalent we would like to have algorithms to 
choose a description that is readily suited for the task at hand and algorithms that use 
the description of choice to come up with the 'right' interpretations. Blum [HB] 
argued that a useful concept for shape analysis is the notion of the 'shape skeleton', a 
planar graph, made of curve portions retaining some of the characteristics of a shape, 
and perhaps enabling its decomposition into meaningful parts. The skeleton of a 
planar shape is formally defined as the set of points, whose minimal distance to the 
boundary is attained at two or more different points on it. This concept is perhaps best 
understood via a dynamic, so-called 'prairie fire model' [-HBl, [RCC]: assume that the 
shape under consideration is set on fire simultaneously along its boundary and the fire 
propagates in the normal direction at unit speed. The skeleton is the set of points 
where the fire quenches (Figure 2), and it can be shown that complete reconstruction 
of the original shape is possible given the skeleton and the so-called 'quenching 
function', providing the distance from each skeleton point to the outside world! Below 
we show the differential equation describing such a prairie fire propagation. It is easy 
to see that the skeleton is defined by the shock fronts that this equation generates. An 
extension of such a shape analysis process was found to be very useful in providing 
reasonable interpretations to planar shapes. We shall outline this approach for 
representing and analyzing shape, an approach based on a parametrized class of 
boundary evolution equations. It is based on the recent work of ]~BK~, [KTZ1],  
[KTZ21. One of the main ideas in this work is to show that some natural 
requirements on boundary evolution are realized by a modification of the prairie fire 
model. The evolution equations postulated enable an explicit treatment of singular- 
ities, based on a series of conservation laws. As the boundaries evolve, singularities 
develop and separate the shape into subregions, a natural hierarchy of 'parts '  emerges. 
This approach, which is inherently non-linear, stands in contrast and generalizes some 
earlier linear (e.g., heat equation) scale-space models, incorporating direct handling of 

discontinuous events. 
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o n u p e  

Fig. 2. 'Prairie fire' propagation yielding the skeleton. 

The differential equations which we postulate for boundary evolution were 
previously used in mathematical physics as models for the evolution of phase 
boundaries [Gur]  (and references therein), as well as models of curve shortening [Gr], 
[-GH]. The numerical properties of implementing such equations were thoroughly 
analyzed by Sethian and Osher [Sel l ,  [Se2], [OS]. The subject has much mathemat- 
ical depth and is rapidly developing, and we will touch on a number of the more 
relevant aspects to vision here. 

3.1. CURVATURE-DEPENDENT EVOLUTION EQUATIONS FOR PLANAR CURVES 

We will be considering families of closed embedded curves C:Slx  [0, t l ) ~  R 2 
evolving according to functions of the curvature. (Since this discussion is informal, we 
will be rather loose with the hypotheses we will be putting on the families we consider 
here. See [An] and [KTZ1] for the formal mathematical treatments.) The general 
deformation of a curve in the plane of interest in vision problems may be given by 

0C 
- ~(s, t )T  + ~(s, t)N, (3.1) 

Ot 

where N is the (outward) normal, T is tangent, and ~, fl are smooth functions. Notice 
that since we are only interested in the images of curves, we may take ~ = 0. (Changing 
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c~ leads to a curve reparametr iza t ion ,  wi thout  affecting its shape.) Fur thermore ,  we 
shall constra in  the deformat ions  to be determined by the local geomet ry  of the curve, 

i.e., fl(s, t) = G(~c) where to(s, t) denotes the (Gaussian) curvature  of the curve s -~ C(s, t). 
Thus  we are led to the following equation: 

aC 
- ~ ( ~ ) N .  (3.2) & 

In the ma themat ic s  literature, a number  of cases for the function G have been 
explored. For  example,  there has been a great  deal of  work  in connect ion with the 

geometr ic  heat  equat ion in which G(K) = -- ~. In this case, the isoperimetric  ratio L2/A 
of the curve approaches  47r as the enclosed area approaches  0, and thus the curve 
shrinks and becomes a circle while disappearing;  see [ G H ] ,  [Gr] .  The function of 
interest to us is 

G(tc) = 1 - a~c, (3.3) 

where a >/0. The case a = 0, i.e., G - 1 is very impor tan t ,  and here Equat ion  (3.2) 

becomes an equat ion  that  has been studied in relation to problems in geometr ic  optics 
[Ar l ] ,  JAr2], f lame p ropaga t ion  [Sel ] ,  and shape m o r p h o l o g y  [HB] ,  as well as shape 
decomposi t ion.  Indeed, this is the differential equat ion for the prairie fire model  

described above. The  ~c par t  gives a diffusive effect, while the constant  par t  gives a 
wave (hyperbolic) effect which tends to create singularities and break  a shape into its 
const i tuent  parts.  

Let us first discuss some general propert ies  of Equa t ion  (3.2). We first introduce 
some s tandard  notat ion.  Let 

p(s, t ) :=  = [x 2 + y211/2, (3.4a) 

denote  the distance measure  a long the curve. The  arc-length pa ramete r  s is then 

;o s(s, t) = p(~, t)d~. (3.4b) 

Let the posit ive or ientat ion of a curve be defined so that  the interior is to the left when 
traversing the curve. The tangent, curvature, normal, orientation and length are defined 

in the s tandard  way. We will take the normal  to be point ing outward,  where the 
inward or ou tward  is determined by the interior, or equivalently by the or ientat ion of 
the curve. We then have that  

aC 1 C 
- a ~- s, (3.5a) T : -  as p 

1 0 T ,  
~ : = p  as (3.5b) 

--1 a T  
x . -  (3.5c) 

~cp a s '  
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f0 L(t) := p(s, t) ds. (3.5d) 

Finally, we let 

~(t) := [~c(s, t)lp(s, t)ds (3.6) 

denote  the total  absolute  Gauss ian  curvature.  

The behav ior  of the classical of solutions Equa t ion  (3.2) can be rather  thoroughly  

analyzed, and one can prove  useful results (from the applied point  of  view) of the 
following type [An],  [ K T Z 1 ] ,  [KTZ2] :  

1. Let C(s, t) be a classical solution of (1) for r e [ 0 ,  t') and toG(K) ~< M for all K e R  
(regarding G as a function of ~c). Then,  

L(t) <~ min(L(0) + 2~zt, L(0)eMt). (3.7a) 

In part icular ,  for G(tc) = e~c - 1, 

L(t) <<. min(L(0) + 2~t, L(0)et/4a). (3.7b) 

2. Let C(s, t) be a classical solution of (1) for t ~ [-0, t'). Suppose that  ~cG(~c) 4 M, and 
G~ ~< 0. Then 

~(t) ~< ~(0). (3.8) 

Moreover ,  if [0, t') is an interval on which a classical solution exists, then one may  also 
show that  

du(C,  Co) <~ (x/~, (3.9) 

where dH denotes the Hausdor f f  metr ic  on compac t  subsets of R 2. The above facts 
imply that  

lim Ct = C* (3.10) 
t - -*t '  

in the Hausdor f f  metric, and the curve C* regarded as a mapp ing  C* -~ R 2 is Holder  
cont inuous  with exponent  1/2. In the shape-analysis  appl icat ion a major  concern are 
the weak solutions of equat ions  of the type (3.2) which we will now describe. 

3.2. CONSERVATION LAWS, SHOCKS, AND ENTROPY CONDITIONS 
FOR SHAPE ANALYSIS 

For  the purposes  of this survey, let us concent ra te  on the interesting special case of 
G -= 1, i.e. the prairie fire model.  Here  in the classical manne r  we will derive the 
equat ion  describing a hyperbolic conservation law. With G - 1, we can write Equat ion  
(3.2) explicitly as 

Ys 
xt (x~ + y~)1/2, (3.11a) 
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Xs (3.11b) Y ' -  + y )1/2. 

Note that we are writing Ct(s ) := C(s, t) = Ix(s, t), y(s, t)] in terms of the position 
coordinates, the initial curve being Co(s ) := C(s, 0) for 0 -G< s ~< S. 

Now let us see how from Equations (3.11) we can derive a hyperbolic conservation 
law. As long as Ct stays smooth and non-self-intersecting, by virtue of the implicit 
function theorem, we can express the propagating front in the form 

y = O(t, x). (3.12) 

(C t is the graph of (3.12).) Then one can verify that U satisfies the following 
(Hamilton-Jacobi) equation 

8U 
- (1 + U2) ~/2 = 0 .  ( 3 . 1 3 )  

Set 

0U 
u:= (3.14) 

0x 

Then differentiating (3.13) with respect to x we see that 

U t - -  ((1 -~- /x2) l /2)x  = 0.  ( 3 . 1 5 )  

Equation (3.15) is in the standard form of a 'hyperbolic conservation law' which has 

a huge classical and modern literature devoted to it; see [Sm] and the references 
therein. We shall not go into these laws in depth here, but would like to give the reader 

some of the physical motivation behind such PDEs. 
Explicitly, a hyperbolic conservation law is given by the hyperbolic PDE (i.e., a 

wave-type equation) 

ut + F(u)x = 0. (3.16) 

The conservation law that (3.16) is expressing mathematically may be formulated as 
follows: Material is distributed along a line with coordinate x and assume the 
distribution satisfies the physical conservation law that the temporal rate of change of 
the amount of material in a fixed interval equals the flux of the material through the 
boundaries. If u then denotes the density, and F(u) the flux, then mathematically this 
conservation law may be expressed as 

dfx~x 
dt  u dx  = f (u(x))  - f ( u ( x  + Ax)). (3.17) 

Letting Ax--* 0 gives (3.16), the required conservation law. 
Using this interpretation for the moving front given by (3.11), we see that it is the 

slope that is conserved! We should also note that such hyperbolic conservation laws 
appear in gas dynamics related to the Riemann problem [Sm]. 

A very important property of such hyperbolic conservation laws (from the point of 
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view of the shape anslysis problem we are studying, and other applications l-Sm]) is 
the fact that one may get discontinuous solutions for (3.11) and (3.6), even in the 
presence of smooth initial data. Once such discontinuities or shocks develop, one must 
be careful in defining precisely what is meant by a 'solution' to (3.16). There is a notion 
of weak solution for (3.16) by which the discontinuous solution satisfies the PDE (3.6) 
in a certain distributional sense; see [Sm] for the precise definition. It is easy to see 
how discontinuities develop for the system (3.11). Indeed, assuming that C~ remains 
smooth it is easy to recognize that the Gaussian curvature satisfies the following 

evolution equation: 

K t ~-- - - K  "2. (3.18) 

We can explicitly solve (3.18) to find that 

~(s, O) 
~(s, 0 -  

1 + t~c(s, 0)" 

Notice then that if Co, the initial curve, is anywhere concave, i.e. has Gaussian 
curvature negative at any point, to(s, t) will blow up in finite time, and the resulting 

curve will develop corners, i.e., we get a shock. 
There is another fundamental problem with the development of shocks, namely 

that the solution will not, in general, be unique. In order to account for this, one needs 
a way of picking out the 'physically relevant solution. For  example, in the prairie fire 
case, shocks appear when the wavefront reaches points of quenching. From those 
points it is quite clear how the wavefronts will propagate, according to the Huygens 
principle. However mathematically it is not obvious what conditions must be 
imposed, in order to have the 'correct' weak solutions. The condition ensuring that, at 
a shock, the weak solution propagated will be the physically meaningful one is the so- 
called entropy condition, imposing that entropy increases across the shock. The idea 
is that 'entropy' is the inverse of 'information', and we require that information be lost 
across the shock. Thus we get a condition of "irreversibility' with the formation of 
shocks. 

In his PhD thesis [Se2], Sethian shows that the condition: once a particle burns, it 

remains burnt (in the prairie fire model), is indeed equivalent to a classical entropy 
condition (see also [Lax1], [Lax2], [Sin]). This condition prevents a nonself- 
intersecting curve from evolving into a self-intersecting one. It is a very important fact 
that such entropy (weak) solutions may also be obtained as limits of (classical) 
solutions of the hyperbolic Equation (3.16) perturbed by certain viscosity terms. A 
similar effect ('artificial viscosity') occurs in the discretization of the system. This 
means that essentially (when everything converges) we pick up such an entropy 
condition in a correct digital implementation of the hyperbolic conservation law. 

It is precisely the formation singularities that allow us to decompose a given 
figure into its parts. The various possibilities are very nicely analyzed in terms of a 
classification of the shocks; see [BK]. Suppose we are given a planar shape, and 
consider it to be the starting point for evolution equations of the type (3.2) the local 
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control function being (3.3), parametrized by a. We obtain a two-dimensional 
expansion of the given shape into a class of shapes Ct, that result from the evolution of 
the initial shape according to (3.2) with a given for some time t (see Figure 3). The 
space of evolved shapes together with the singularities encountered and their 
classification, could conceptually be regarded as a multifaceted, hierarchical de- 
scription of the original shape, capturing its salient features, and separating the shape 
into physically meaningful components. One can even imagine ways of defining shape 
metrics based on the class of evolved shapes, metrics that would be physically and 
visually natural and meaningful. This research, reported in [BK], [KTZl], [KTZ2], is 
still going on. Problems remain to be addressed, such as achieving invariance under 
affine/viewing transformations, dealing with partially occluded shapes, dealing with 
projections of genuine three-dimensional shapes and many others. So far, this research 
produced some very interesting mathematical results and shows much promise for 

t=co 

t=0  

& o 

v 

a = 0  

Fig. 3. The shape class co r re spond ing  to ~C/c~t = (1 - ak)N. 

G - O O  
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planar shape analysis. For some results on affine invariant evolutions and some 
applications of this theory to Computer Aided Design and Mathematical Mor- 
phology see [ST], [BSS], [SKSB] and [KB1]. 

4. Shape from Shading and the Solution of Nonlinear PDEs 

We have seen some of the properties and uses of a planar curve propagation equation 
of the form 

0C 
-/3(s, t)N & 

which we shall call the normal deformation equation for planar shape analysis. Here we 
shall see that an entirely different problem in computer vision leads to the same type of 
equation. However, instead of having a/3 that depends on the local curvature, we have 
that it is controlled by a given 'external' function. In this case, from the usual data 
which arise in vision problems, there will be no shocks, by definition! The problem to 
which we are referring is the so-called shape-from-shadin 9 problem. It requires a 
method for the recovery of a bivariate function H(x, y) that describes a 'nice', almost 
everywhere differentiable height profile, from a well-defined shading information. The 
given shading data is assumed to be a result of diffuse, Lambertian reflection of light 
from the surface. This implies that, if the scene is uniformly illuminated from above, 
the shading yields information on the cosine of the angle between the vertical and the 
surface normal at each point. Given the shading information in the plane, the problem 
is to determine all height profiles consistent with the data, and some boundary 
conditions, such as points of known height and surface orientation, or height profiles 
along continuous curves in the image plane. The shape-from-shading method that we 
discuss is based on a recursive way of determining equal-height or level contours of 
the surface starting at a given level curve, first presented in [B]. 

Shape-from-shading problems have a long and interesting history. The first 
researchers to address the problem of determining shape from shading information 
were apparently those concerned with the photometric analysis of the lunar 
topography (see [H1] and the references therein). It is clear that the shading 
information plays, along with stereo vision and motion clues, an important role in the 
depth perception process. The theoretical question of how much depth information 
can be obtained from a single view of a scene from shading alone, thus arises quite 
naturally. Algorithms, based on the classical characteristic strip method, for determin- 
ing the depth-profile from a single image produced by various shading rules were 
considered by B. K. P. Horn and his coworkers in the 1970's [H1-33. More recent 
work on shape determination from a single image concentrated on the importance of 
singular points, surface models and occluding boundaries, in providing initialization 
and ensuring unique depth recovery. Iterative, relaxation-type techniques were 
also invented, relying on surface smoothness constraints [Bro], [BKPHB], [IH3. 

In this section we briefly discuss the basic shape-from-shading problem, and present 
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a method for solving the nonlinear eiconal differential equation involved via evolution 
equations for equal-height-contours. When one such contour is available we can devise 
a simple algorithm that reconstructs all the equal-height-curves of the surface of 
interest in a well defined region and also clearly displays the inherent ambiguities of 
the given problem. This algorithm is easily derived and, in contrast to the classical 
characteristic-strip expansion method, does not use the derivatives of the shading 
data. This is a result of a natural way of exploiting lateral constraints in the parallel 
the propagation of the recovery algorithm. We discuss the ambiguities and possible 
ways to exploit topological constraints on the behavior of nice surfaces to help the 
shape recovery process in ambiguous situations. 

4.1. THE BASIC SHAPE-FROM-SHADING PROBLEM 

Suppose we are given a continuous bivariate function H(x, y), describing a surface in 
three dimensions, as follows 

z = H(x, y). (4.1) 

The shaded image of the surface is l(x, y), the value I(x,y) depending on surface 
reflectivity, its orientation at (x, y) and illumination conditions. The shape from 
shading problem that we address is to recover the function H(x, y) over a region D, 
from the image I(x, y) over that region and possible some further information, e.g., the 
values of H(x, y) over some continuous curve in D, 

The function I(x, y) is defined via a shading rule. It is customary to define the 
shading rule via a so-called reflectivity function, that characterizes the surface 
properties and provides an explicit connection between I(x,y) and the surface 
orientation. In the case of a surface with so-called Lambertian diffuse reflection 
properties and uniform illumination, l(x, y) is simply the cosine of the angle ~(x, y), 
between the surface normal at (x, y) and the direction from which the light falls on the 
scene. For  simplicity we shall always assume that the illumination is uniform and falls 

on the surface vertically from above. 
Define the directional derivatives of the height profile H(x, y) along the x and y 

directions as 

0 0 
p(x, y) = ~xx H(x, y), q(z, y) = ~y H(x, y). (4.2) 

The surface normal at (x, y) is clearly perpendicular to the plane determined by the 
vectors [1, 0, p] and [0, 1, q]; therefore it points along the direction of their vector 
product [ - p ,  - q ,  1]. The normal vector at (x, y) is thus 

1 
N(x, y) = E--P, --q, 1] (4.3) 

x/1 + p2 d- q2 

and the cosine of the angle between N(x, y) and the vertical direction [0 0 1] is 
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1 
COS c~(x, y) -- x /~  + p2 + q2 (4.4) 

In the Lambertian case with light falling straight from above, we therefore have the 
shading rule 

1 
I(x, y) x~ 1 + p; + q2 = RL(P' q)" (4.5) 

Note that the reflectivity function R is defined on the (p, q) p lane -  called the 'gradient 
space'. A general (not necessarily Lambertian) shading rule is defined via 

I(x, y) = R(p(x, y), q(x, y)), (4.6) 

where R(-, .) is a given function. Equation (4.6) is a nonlinear partial differential 
equations that has to be satisfied by the surface H(x, y). Therefore solving the shape- 
from-shading problem amounts to solving a nonlinear partial differential equation, 
and some boundary conditions are necessary. 

Given the image l(x, y), it is in general impossible to unambiguously recover the 
height profile H(x, y). As an immediate example of ambiguity simply consider the 
function - H(x, y), which under a Lambertian shading rule, maps into the same image 
as H(x, y). Some further information on the function H(x, y) is therefore needed. This is 
usually given as some smoothness constraint on the surface defined by z = H(x, y) 
(such as C k continuity) and exact or approximate values of H(x, y) at either a discrete 
set of points {(xi, Yi)}, together with the corresponding surface orientations {(pl, q~)}, 
or on a continuous curve on the (x,y)-plane (boundary conditions). The given 
boundary conditions and smoothness assumptions are not always enough to remove 
ambiguities, and it is in fact very difficult to determine, in general situations, sufficient 
conditions for a unique solution surface. 

4.2. SHAPE-FROM-SHADING VIA EQUAL-HEIGHT CONTOURS 

In this section, we will use as data and then try to determine the equal height contours 
of the profile z = H(x, y). An equal height contour or a level-curve is a continuous 
curve in the (x, y)-plane on which the function H(x, y) is constant. If {x(0), y(0)} 0 c | is 
the parametric representation of the curve we have 

d 
d--O H(x(O), y(O)) = 0. (4.7) 

One might argue that such a contour contains a lot of information and is scarcely 
available. In fact, in a number of practical situations one is quite naturally able to 
determine equal height contours, or portions of them. As an example, the shores of a 
lake in a landscape readily provide a closed equal height contour; so is the case when 
an island raises from the sea (any shoreline is an equal height curve). Furthermore, in 
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robot vision systems one might be able to provide illumination which actively 
delineates one or more equal height contours. 

In the sequel the assumption will be that we are given an equal height contour 
which is almost everywhere differentiable. By definition, along such a curve we have 
zero height gradient, which yields 

dH = pdx  + qdy = 0. (4.8) 

Therefore along the given contour {x(0), y(0)} we have determined a relation between 

the two directional derivatives of the surface p and q. For almost all 0's we have, 
rewriting (4.8), 

p(x(O), y(O)) d x(O) = -q(x(O), y(O)) d y(O). 
clo f l u  

Together with the shading information at that 

determines p and q, up to an inherent sign ambiguity. Indeed the Lambert ian shading 

rule 

(4.9) 

point l(x(O), y(O)), this relation 

yt 
P =" ~ (X '2 -t-" y,2)1/2 

X ~ 
q = -+ (X,2 + y,2)1/2 

(1 - 1 2 )  1 /2  

We get two pairs of solutions, corresponding to a certain (p, q) vector and its negative 

counterpart.  This is expected since, at each point on the equal height curve, the same 
grey level would be produced by the shading rule if the tangent plane had the direction 
of maximum ascent given either by ~b or by q5 + 7z. Note also that we could determine 
the (p, q) pairs up to a similar ambiguity along any continuous path on which the 

height profile is known a priori. In case of equal height curves, the direction of the data 

contour determines the direction of the maximal surface ascent/descent. Suppose we 
know that the height profile is a mountain rising from the sea. This immediately settles 
the direction of the steepest ascent as the vector pointing toward the inner region 
defined by the equal height contour of the shorelines. Using this information we may 
determine an equal height contour situated a bit above the sea level, and so on we can 
recursively climb and reconstruct the height p rof i le -provided  no 'problems'  occur. 
Problems arise, as we shall see, if the mountain is not a nice and unimodal profile, and 
we further discuss these issues after a description of the basic profile reconstruction 

algorithm. 
Assume that l-x,(0), y(0)], 0 ~ [0, 1] is a closed curve and that, as 0 goes from 0 to 1 

we trace the curve in the counterclockwise direction. A tangent vector at 0 is simply 

at [x(O), y(O)]. 

(4.10) 

(4.11) 

1 
I ( x ,  y)  = RL(p,  q) = 

x/1 + p2 + q2 

yields p2 + q2 = (1 - I2)/I a, which together with px' + qy' = 0 provide 

( 1  - -  12) 1/2 

I ' 
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given by [x'(O), y'(O)]; the unit normal to it pointing inside the curve will be 

1 
n o = ix,(0) 2 + y,(0)211/2 [ -y ' (0 ) ,  x'(0)]. (4.12) 

From (4.9) it is clear that in the direction no, we have to go a certain distance d o, in 
order to climb a given amount AH. If AH is small, this distance is quite accurately 
determined by the shading data alone, since, in the Lambertian example, l(x(O), y(O)) 
yields the cosine of the angle between the surface normal at (x(O), y(O)) and the vertical 
direction. As the direction of the maximal ascent is known to be (4.12), we have from 
geometrical considerations 

I 
do = AH (4.13) 

Therefore, given a closed equal-height contour assumed to be at a reference level Ho, a 
closed contour situated at the level Ho + AH is determined via (see Figure 4a) 

D(o, AH), y(O, AH)]  

= Ix(0), y(0)] + dono 

1 AH" Io 
= Ix(0), y(0)] + , ~ , ~  + Y'(O) 2 _ _ x ~  [ -y ' (0) ,  x'(0)]. (4.14) 

This derivation leads to a system of first order nonlinear partial differential equations 
for the functions x(O, h) and y(O, h) representing 'doubly parametrized' equal height 
curves in the (x, y) plane. Indeed, if Ix(O, h), y(O, h)] is defined as a contour correspond- 
ing to H = h, (4.14) is equivalent to the following set of partial differential equations 

2 Ix(0, h) 1 
Oh [_y(O, h) 

I(x(O, h), y(O, h)) 
= [1  - 12(x(O, h), y(O, h)) ]  1/2 (no) 

v 7 

l(x(O, h), y(O, h)) 1 I -  ~ y(O, h) ]  

[1 I2(x(O, h), y(O, h))] x(O, h) + ~0 y(O, ~ x(O, h) 

(4.15) 

with initial conditions [x(O, 0), y(O, 0)] = Ix(0), y(0)]. 
Note that (4.15) is a nonlinear initial value problem of the general form discussed in 

the previous section. It has to be integrated to obtain the equal height curves of the 
profile that yielded the shading I(x, y). It is implicit in our derivations that the surface 
is smooth enough to provide almost everywhere differentiable equal-height contours 
at all heights h. It is also assumed that those contours are 'well-behaved' as for 
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Fig. 4(a). Shape from shading as curve evolution. 

example in the case of a unimodal  H(x, y) over the region of  interest (say the interior of 

the first equal height contour),  when they are nicely nested 'generalized' rings. 

It is clear that  the recursions (4.14) and their differential counterpar ts  (4.15) are valid 

generally, provided we are given information on which side of the original equal 

height curve the surface increases. The data  [x(0),y(0)] can be any curve that is 

differentiable and if it is not  a closed contour  we will get, using (4.14), the 

reconstruct ion of a well-defined slice of  the surface z = H(x, y). If we do start with a 

closed contour  and at some level we obtain a self-intersecting (i.e., not  'well behaved')  

equal height curve, this means that  we encountered a saddle area which separates 
peaks, or peaks and dips in H(x, y). In this case the con tour  should be separated into 
nonintersecting parts and the algori thm may  be cont inued with the separated closed 
parts as initial equal height curves. An equal height curve may  also approach  a saddle 
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Fig. 4(b). Various types of equal height curve profiles. 

point from one side only, and there it will become necessary to continue a partial 
reconstruction (see Figure 4b). 

A thorough discussion of what can happen to the equal-height contour profile of a 

smooth surface, based on topological constraints can be found in a classical paper by 
James Clerk Maxwell on 'hills and dales', [Max]. In a modern interpretation, 

Maxwell proves the so-called 'mountaineers '  index theorem, stating that if a surface 
has isolated simple singularities, i.e., 'summits '  (local maxima), ' immits'  (local minima) 
or saddle points, then within an equal-height contour we must have that 

# of Summits + # of l m m i t s -  # of Saddle points = 1 

The practical implementation of the algorithm will, of course, be based on (4.14), the 

Ix,(0), y(0)] curve being given (perhaps in a suitably chain-coded way) on a finite grid 
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of 0 values. Then we can use several methods to estimate the derivatives x'(O) and y'(O) 
that appear in the recursion formula. Also we can leave open the choice of the steps in 

height (AH) taken so as to enable the use of various adaptive schemes (that are 
particularly useful if the approach to a saddle area is detected). We also note that in 
practice, A(x, y) is known only on a discrete grid of picture elements or pixels, thus we 

have to somehow interpolate for the values needed in (4.14) which are points situated 

on equal height curves. More importantly however, it turns out that the numerical 
approaches for planar curve evolutions developed by Sethian and Osher, [Sel],  [Se2], 

[OS], are also applicable to the equal height contour evolution based shape 
from shading, yielding stable and efficient algorithms, see [KB 2]. 

It becomes clear by looking at the system of Equations (4.15) that trouble arises 
when we approach singular point where l(x, y) = 1, indicating p = q = 0. A singular 

point can be either a local extremum or a saddle point of some sort. At an isolated 
singular point we can define an 'unsafe' neighborhood and when an equal height curve 
enters such a neighborhood, we disregard that portion of it but continue to propagate 
the algorithm from the remaining contour. Some portions of the (x, y)-plane will, of 
course, remain uncovered using this method. The 'singular' areas/curves in the plane 

for which I(x, y) = 1 provide boundaries of possible flips in the directions of maximal 

ascent and a practical shape from shading process should keep track of these and, 
based on natural constraints on the behavior of equal-height contours, choose the 
direction assignments which yield consistent final reconstructions. If a priori we know 

that the surface is unimodal, then no such problems arise, the solution being unique 
up to height reversal. Note also that we can live with nondifferentiability at a finite set 

of points along each equal height contour and reconstruct the profile by matching the 
slices corresponding to differentiable portions. For discussions on uniqueness and 
existence in shape-from-shading via a dynamical systems approach, see [HBB], [-Sax], 

[0]. 

5. Two-Image Photometric Stereo and Surface Integrability 

Next we shall briefly discuss the problem of recovering the shape of an object with 

Lambertian surface reflectivity from two images obtained in different illumination 
conditions, the so-called photometric stereo problem. It is easy to see that when two 
images are available, the local surface normals are ambiguous up to two possible 
orientations. Following [OB], we shall see that for arbitrary smooth surfaces, the 
local integrability constraints generically resolve the problem of deciding between the 
two possibilities. Furthermore,  one has a complete characterization of the surfaces 
that remain ambiguous under the given illumination conditions. As the character- 
ization is dependent on the illumination directions, the two images generically resolve 
the surface normal ambiguity problem. We shall discuss an algorithm from lOB],  for 
recovering Lambert ian surfaces from a pair of images obtained with illumination from 
two distance sources with known directions. See also [K]  and [LB] for some later 
developments and an interesting application. The reconstruction process has two 
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stages: first the surface normals are recovered, and then the object surface consistent 
with these normals is reconstructed using a standard depth from normals procedure. 

5.1. RECOVERING SURFACE NORMALS FROM PHOTOMETRIC STEREO INFORMATION 

The inverse problem of shape-from-shading discussed in the previous section is not 
well posed, and there might exist a large number of surfaces that could have given rise 
to a particular image, even under the same conditions of lighting and the same surface 
reflectance properties. This ambiguity inherent in a single image has been circumven- 
ted, by using more or less stringent constraints on the imaged object, or by assuming 
various types of prior information about it. The classical photometric stereo 
procedure, see [BKPH],  [RW], [M], [I], uses three or more images of an object, 
taken under different illumination conditions, to locally remove the ambiguities in 
recovering surface normals. However, as was shown in lOB], for Lambertian surface 
reflectivity, if only two different shaded images of a smooth object are given, its shape 
can almost always be uniquely determined at all points where no self-shadows occur. 

The two-image (or two-source) photometric stereo problem is the following. We 
have two images of the same surface, produced without changing the same camera 
position relative to the surface under different illumination directions. It is required to 
reconstruct from these images the height profile of the surface. 

The model for the generation of image intensities was already mentioned in the 
previous section. If the height profile is represented by the equation z = H(x, y) and if 
the function H(x,y) is differentiable, then at each point the normal vector to the 
surface N(x, y) is given by 

1 
N(x, y) = (1 + pZ(x, y) + qZ(x, y))1/2 [--p(x, y), -q (x ,  y), 1], (5.1) 

where p and q are the partial derivatives of H(x, y), as in (4.2). The intensity at a point 
(x, y) in an image of a Lambertian surface, depends, by assumption, only on the angle 
between the illumination vector and the normal vector at the point. Let A denote the 
illumination vector, i.e., the unit vector pointing in the direction of the light source. 
The components of A are ax, a~., as. Let (A, B) denote the scalar product of vectors A 
and B, and rBj denote the length of a vector B. Then the image intensity 1A at point 
(x, y) is given by: 

1 
IA(X, y) = (N(x, y), A) = (1 + p2 + q2)1/2 [ ( -p (x ,  y)ax q(x, y)ay + a~]. (5.2) 

The second image will be IB(x , y), described an by expression similar to (5.2), with 
the components bx, by, bz of the second illumination vector B, substituted for ax, ay, az. 
In order to find the surface orientations these two images will be used. Note that, 
locally, the partial derivatives must obey the following set of equations: 

IA = (--pax -- qay + az)(1 + p2 + q2)-1/2 (5.3a) 
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IB = ( - p b x  - qby + bz)(1 + p2 + q2) 1/2 

Letting 

T : =  (1 + pZ + q2)1/2 

and rearranging (5.3) yields 

pax + qay = az - I A T, 

pbx + qby = b~ - I~T. 
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(5.3b) 

(5.4) 

(5.5a) 

(5.5b) 

Regarded as two linear equations in two unknowns, these equations can be solved for 
p and q in terms of T, providing solutions of the form 

p = cp T + dp, q = Cq r + dq. (5.6) 

Recalling the definition of T in (5.4), i.e. T 2 - p2 _ q2 = 1 the solutions for p and q 

may be inserted providing a quadratic equation for T of the form: 

K2 T 2 + K 1 T  + Ko = 0, (5.7) 

where K~ are functions of IA, I s ,  ax, a~,, az, bx, by and bz. Solving (5.7) produces two 

solutions for T, say T 1 and T 2. If the two solutions for T are inserted in (5.6) we obtain 

two pairs of partial derivatives (P l, q 1) and (P2, q2), corresponding to two normals: N 1 
and N 2. This is all that can be obtained using the local constraints provided by two 
images at the point (x0, Y0). So far, the only assumption made on the height profile was 
that it has first derivatives. 

The geometric interpretation of the above algebraic manipulations is as follows. 

The light intensity at each point in an image of a Lambertian surface gives the angle 
between the normal at that point and the illumination direction. Thus, the locus of all 

normals that could have produced the intensity I A at point (Xo, Yo) is a (Monge) cone, 
with apex at (x0, Y0) and axis in the illumination direction and having an opening 
angle determined by arccos(IA) (Figure 5a). If the brightness at the same point when 
illuminated from two different directions (photometric stereo) is known, the normal at 

(Xo, Yo) must belong to two such cones. Therefore it belongs to their intersection. Two 
cones with the same apex either intersect along two or one half-lines or do not 

intersect at all (except for the common apex). The case of no intersection cannot occur 
for genuine photometric stereo images and will not be considered here. The case of 
one intersection produces an unambiguous solution, which corresponds to one 
solution for T in Equation (5.7), and is of some significance as will soon become 
apparent. The general case is that of two solutions out of which only one is the 'true' 
normal and this can be seen to agree with the algebra above. 

Note  that, given two images of photometric stereo, the above described method can 
only be used on the parts of the surface that are illuminated in both images. Therefore 
the image plane must be defined as all points that are out of the self shadow in both 
images. 

In order to correctly recover the height profile the 'true' normals have to be chosen. 
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Fig. 5(a). Photometric stereo geometry. 
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Fig. 5(b). Photometric stereo with symmetric illumination. 
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A trivial way to determine the true normals would be by taking yet another image 
under a different lighting condition, and this was indeed proposed by Woodham 

I-W1]. However we can also exploit the lateral constraints on the normals due to the 
assumed continuity and smoothness of the surface. 

5.2. USING THE CONTINUITY CONSTRAINT 

Assuming that the normals to the height profile are continuous, consider the function 
T(x, y), where T was defined above, i.e., T = (1 + p2 + q2)- 1/2. T is clearly cont- 

inuous, being the continuous function of the variables p and q. Denote the two 

solutions of the quadratic equation (5.7), T1 and T 2 and let the T 1 solution be defined 
as corresponding to the normal with a positive projection on the direction of the 
vector A x B, T z being the other solution. By the discussion at the end of the previous 

section it is obvious that the two possible solutions will be symmetric with respect to 
the plane defined by the two illumination vectors A and B, unless they both collapse to 
a single solution situated in this plane. 

Let us further define the following three sets of points in the image plane: 

V o := {points where T = T 1 = T2} , 

V 1 := {points where T = T 1 va T2}, 

V2 := {points where T = T 2 va Ta}. 

Obviously every point on the image plane belongs to one and only one of the three 

sets. By continuity, the V 0 regions and the self-shadow regions divide the image plane 
into connected regions in each of which the normals continuously vary on the same 

side of the illumination-vectors-defined plane. This result follows from the following 
elementary 

LEMMA. Let (Xl, Yx) be a point on the image belongin 9 to V1, (X2, Y2) a point belongin9 
to V2, and P any path from (xl, Yl) to (x2, Y2) where P is wholely contained in the above- 
defined image plane. Then P must contain a point belon(lin9 to V o. 

Therefore the image plane is divided into distinct connected regions each wholely 

contained in one of the three sets V0, VI, V2, and if we could label each region we would 
know the true normals everywhere on the image plane. Moreover any two regions 

contained in 1/1 and V2 respectively, must be separated by a region (possibly a curve) 
contained in V o. The points belonging to V0 coincide with the points where the 
quadratic equation (5.7) will have only one solution and its discriminant will be zero. 
Furthermore the assumption that the function H(x,y) is smooth can be used to 
identify to which of the sets the points of each region belong. 

5.3. USING THE INTEGRABILITY CONSTRAINT 

The two functions p(x, y) and q(x, y) are not independent. They are connected by the 
fact that for a function H(x, y), for which the second derivatives exist, they obey the 
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following equation 

~2H ~2H 

~?x c?y @ 0x '  

which means for p and q that 

@ Oq 

Oy ~?x' 

(5.8) 

(5.9) 

In general, only one of the two pairs of functions (Pl, ql) and (P2, q2) provided by 
solving (5.7) will satisfy (5.9). 'In general', here has the following meaning: (5.9) does 
not hold for both (Pl, ql) and (P2, q2) unless the height profile satisfies some very 
specific constraints. These constraints are discussed below. 

Suppose that a surface generates the partials p and q. Given the illumination 
directions A and B, and the photometric stereo data, we shall be able to determine (at 
each point on the surface illuminated from both directions) a pair of normals, Nt, the 
true normal [ - p ,  - q ,  1] and a reflected normal N~. Let us consider for simplicity that 
the two directions A and B are both in the plane x - z being symmetric with respect to 
the z axis, i.e., A = [--s in 0, 0, --cos 0] and B = [sin 0, 0, - c o s  0] for some 0. In this 
case the true and reflected normals will be (see Figure 5b) 

N, = [ - p ,  - q ,  1] and Nr = [ - p ,  q, 1]. (5.10) 

This means that we must have 

0 0 
~yyp=~x q= --~q,  (5.!1) 

implying that 

0 2 
H(x, y) = O. (5.12) 

~?x c~y 

Therefore, both choices for the surface normal, provided by the photometric stereo 
information, will obey the integrability condition only if the surface obeys, within 
some region, Equation (5.12). The general solution of this equation is easily seen to be 
a function of the form 

/4(x, y) = F(x) + O(y) (5.13) 

with arbitrary smooth functions F(-) and G('). This discussion might seem to be 
restricted to the case of illumination directions A and B as specified above, however, 
we can always choose a coordinate transformation that brings us to this case, and the 
illuminated surface, in these new coordinates would have to satisfy (5.12), in order to 
have an ambiguous solutions, even when integrability is tested on both choices of 
normals. The coordinate transformation does not affect the shading data, which, in 
the Lambertian case, is independent of the position of the viewer. Therefore, we shall 
not be able to choose between the two normals by checking integrability, in the cases 
when locally, the surface can be expressed as (5.13), in the suitably defined coordinate 
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system. An obvious example of a surface that has the form (5.13), is the case of planar 
surfaces. Such surfaces will remain ambiguous for all illumination directions. In 
general, the condition that the surface has to satisfy to remain ambiguous is seen to be 
very stringent, and dependent on the illumination directions. A surface of the form 
(5.13) will not remain such, if a coordinate transformation is performed. 

Since arbitrary curved surfaces will usually not satisfy (5.13), with respect to the 
given directions of illumination, it can be expected that for all of the connected regions 
R, separated by V o points and/or self-shadows, only one of the following expressions 
will be zero 

\ @ Ox ) dxdy, (5.14a) 

x.,)~R \ @ ~?x ) dx dy (5.14b) 

Testing which of the two expressions is null, yields a labeling of the regions. If 
(5.14a) is zero, the pairs (Pl, ql) are the true surface normals over region R, and the 
points of R belong to 1/1, If (5.14b) is zero, the pairs (P2, q2) describe the correct surface 
over region R, and the points of R belong to V 2. As all the points belonging to Vo have 
already been found, the pair (p, q) is determined for each point in the image plane, and 
we may proceed to the second part of the reconstruction. In the unfortunate but 
nongeneric, and hopefully rare case when some region remains ambiguous, i.e., both 
expressions (5.14) are zero, we shall have to check both solutions and decide which 
one best fits the boundary conditions provided by the neighboring regions. Height 
reconstruction from normals is a standard integration problem, and we shall not dwell 
on it here. 

6. Concluding Remarks 

We have presented several cases where mathematical results have found interesting 
applications in the new and rapidly developing field of computer vision. Some other 
interesting topics in vision where mathematical results have found applications are: 
analyzing three-dimensional object motion from their projected images, motion 
recovery and camera calibration from point correspondences, structured light and 
active vision systems and recovery of depth from line-drawing images [Kan],  [Sug], 
[BB], [Koe] problems arising due to image digitizations over pixel-grids, [Pay], 
IRK],  [Ser], [VG], and issues concerning qualitative rather than quantitative 
inference from images. Our choice of topics was, of course, heavily biased toward 
subjects we were actively involved in recent years, however we hope that we succeeded 
to convince the reader that the field of computer vision can be a rich source of 
problems for applications-oriented and even theoretically inclined mathematicians. 
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