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Abstract 
A methodology is described for associating local invariant signature functions to smooth planar curves in order 
to enable their translation, rotation, and scale-invariant recognition from arbitrarily clipped portions. The suggested 
framework incorporates previous approaches, based on locating inflections, curvature extrema, breakpoints, and 
other singular points on planar object boundaries, and provides a systematic way of deriving novel invariant signature 
functions based on curvature or cumulative turn angle of curves. These new signatures allow the specification 
of arbitrarily dense feature points on smooth curves, whose locations are invariant under similarity transforma- 
tions. The results are useful for detecting and recognizing partially occluded planar objects, a key task in low-level 
robot vision. 

1 Introduction 

Suppose we are given a binary image, the profile of 
a cluster of several planar shapes (see figure 1). Fur- 
ther assume that the shapes in the cluster are translated, 
rotated, and scaled versions of objects from a given 
"library" of D basic shapes {Si}, for i = 1, 2, . . . ,  D. 
The boundary of the shape cluster in the binary image 
therefore comprises portions from the boundaries of 
the basic shape components. The question we address 
in here is: can the given shape cluster be resolved into 
its basic shape components, that is, can the various 
translated, rotated, and scaled components be detected 
and recognized in the given image? This is clearly a 
basic question in low-level robot vision, and as such, 
has been the subject of many investigations in the past. 
It seems however that the problem was not addressed 
in full generality. To answer this question, we need a 
good procedure for recognizing a planar curve from 
arbitrarily clipped portions of it. Most of the papers 
in the literature dealt with invariant recognition under 
translation and rotation only--see, for example, [BaUard 
1981; Gottschalk et al. 1989; Turney et al. 1985; Ray 
& Majumder 1989; Huttenlocher & Ullman 1987; Kalvin 
et al. 1986; Hong & Wolfson 1988]. When invariance 

under scaling was also required, the previously pro- 
posed solutions were mostly based on using special 
points along boundaries, like inflection points, break- 
points and/or curvature extrema. These critical, points, 
or landmarks, or feature points on a curve are indeed 
invariant under similarities, and may be used to create 
characteristic primitives by considering their behavior 
in "scale-space," [Asada & Brady 1986], or their spatial 
configurations may be used to generate simple geo- 
metric invariants--see, for example, [Hu 1962; Lamdan 
& Wolfson 1988]. Another approach would be the use 
of critical points to delimit curve segments, whose 
length-normalized versions may be characterized via 
Fourier descriptors or other methods [Fischler & Bolles 
1986]. A common problem with all the above-mentioned 
approaches is that the number, location, and density 
of the readily identifiable feature points is predeter- 
mined by the objects in the library. Given that we can 
recognize a few types of points on curves, we might 
be faced with objects having few critical points and, 
with some of these occluded, recognition will be impos- 
sible. What we need is a way to make all, or almost 
all points on smooth curves special. Locating curvature 
extrema, and sampling the curves in their neighborhood 
at a rate proportional to the radius of curvature there, 
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Fig. L An example of cluster resolution. 

will create some additional feature points--see [Gott- 
schalk & Mudge 1988]. However, this nice idea requires 
determining curvature with very high precision, a very 
difficult task in practical situations when noise corrupts 
the data. Another recent approach uses a special type 
of curve transformation to specify, parametrically, a 
number of invariant points along the curve. The loca- 
tions of these points depend on a continuous parameter, 
hence an arbitrarily large number of feature points can 
be generated (see [Katzir et al. 1990]). As we shall see, 
this approach also fits into the general framework pro- 
posed in this article. 

We present here a systematic framework for recogniz- 
ing planar objects, under similarity distortions and 
partial occlusions. The idea is to use local invariant 
signature functions associated to curves, signature func- 
tions that make all points on a curve special (unless 
the curve is highly regular, like a circle!). Within this 
framework, two new similarity invariant signature func- 
tions are introduced, and the method proposed by Katzir 
et al. [1990] is further analyzed. 

To set the stage, let us first consider a particular case 
of interest, when the "library" objects are simple poly- 
gonal shapes {SIC}, i = 1, . . . ,  D. Each shape is then 
completely described by an initial position and a cyclic 
sequence of edge length and vertex angles, that is, 

Si ~ - {ei ,  [lik, Oik], k = 1 , 2 ,  . . . ,  Ni}  

where Pi is the position of a vertex and the Ni pairs 
[lik, Oik ] are the length and turn angles when following 
the object boundary, say, clockwise. It is clear that, 
under translations, rotations, and scaling transforma- 
tions the cyclic angle sequences that correspond to 
library objects are invariant. Therefore, subsequences 
of the angle sequence may be used to identify the 
presence of a library object in the cluster. The length 
sequence is obviously not invariant under scaling and 
may not be directly called upon for identification. How- 
ever, the ratios between subsequent edge length are 
scale invariant and, if available, may be employed for 
invariant recognition. 

The binary profile image of a cluster of polygons is 
polygonal too, but may not be simple any more. We 
can represent its boundaries by sequences of angles and 
sequences of ratios between consecutive edge-lengths. 
Then the problem of recognizing the presence of a 
"library" shape reduces to one of "multiple" substring 
matching. The cluster resolution algorithm must look 
for angle and/or edge-length ratio subsequences in the 
cluster representation that match subsequences in the 
given library of D cycle angle and/or consecutive edge- 
length ratio sequences. 

For nonself-intersecting, piecewise linear, planar 
curves we have just identified a way to obtain a transla- 
tion, rotation, and scale invariant "signature function": 
the sequence of vertex angles and the corresponding 
ratio of edge length. Given a clipped portion of the 
polygonal curve we will be able to recognize it by 
matching its signature to portions of the a priori known 
signature sequence. (Note that the edge-length ratios 
must be taken in two directions since a curve follow- 
ing direction was not yet defined!) 
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The foregoing discussion shows how to solve the 
problem of invariant recognition from planar curve por- 
tions for the case of piecewise linear curves. The situa- 
tion changes considerably when we consider smooth 
or pieeewise smooth planar curves. In this case we need 
to devise different invariant "signature" functions. The 
case considered above, however, provides some hints 
as to what should be done. In the polygonal contours 
the breakpoints provided a natural segmentation of the 
curve, and these breakpoints could be readily identified 
in the scaled, translated and rotated, and clipped por- 
tions of the curve. Furthermore, to each breakpoint a 
definite turn angle was associated and the ratio of length 
of the two linear portions forming the vertex (break- 
point) was an invariant. All these invariants are gone 
if we consider smooth planar curves described by non- 
degenerate curvature functions ki(s), ki(s) being defined 
for s ~ [0, L~], where L~ is the length of the ith library 
curve. Curvature function descriptions of planar curves 
are intrinsic, that is, rotation and translation invariant, 
however scaling does change the k(s)-function, and this 
makes the problem we consider more difficult. Other- 
wise, we could solve the occluded-object recognition 
problem by simple matching of function portions to the 
library functions, much like in the polygonal case. 

Consider a point P on an arbitrarily translated, 
rotated, and scaled version of a library curve, described 
by ki (s). How should we locate the point correspond- 
ing to it on the original library curve? We must produce 
a scalar value associated to the point P under considera- 
tion that will be invariant under the similarity transfor- 
mation. Suppose we choose a turn angle A~b and ask 
how much do we have to move from the point P in both 
directions in order to first turn by this amount. We get 
two arc-lengths l+ and l_. These lengths are clearly 
scaled by the scaling transformation, however their ratio 
is not! Therefore we have a method for associating 
scaling invariant values to points on the planar curves. 
This paradigm, of creating invariants as ratios of quan- 
tities that are similarly affected by distortions, is a 
classical approach, and was used to generate moment 
invariants [Hu 1962], and 3D shape indexes [Koenderink 
1990], to name a few examples. A systematic develop- 
ment of this idea is undertaken in the next section. 

We note that a wealth of papers in the computer vision 
literature address variations of the problem of resolving 
clusters of objects in two and three dimensions. The 
2D problem we address is treated extensively for trans- 
lation and rotation invariant recognition only. Surpris- 
ingly, the scale-invariant case was discussed only rarely. 

Here, we propose a solution to the planar, similarity 
invariant cluster resolution problem, via so-called invar- 
iant signature functions that depend on local properties 
of the object boundaries. This article is organized as 
follows: the next section introduces similarity invariant 
signature functions in general and discusses their desir- 
able properties. Section 3 compiles a list of several 
types of such signature functions, which can be designed 
for various applications, and discusses their expected 
properties. Section 4 discusses some further invariant 
signature functions, in connection to a recent method 
for curve segmentation proposed by Katzir et al. [1990]. 
Section 5 presents some experiments, done on real im- 
ages of planar shapes, showing promising results of in- 
variant boundary segmentation for scaled and rotated 
versions of a planar object and for a partially occluded 
instance of the same object. 

2 Invariant Signature Functions for Curve 
Recognition 

As is usual, we consider planar curves described via 
curvature vs. arc-length functions [Guggenheimer 
1963]. We assume that the curves under consideration 
are smooth enough to admit such representations. Given 
the k(s)-representation of a planar curve for s ~ [0, L], 
scaling the curve by a maps the curvature function into 

The mathematical problem we address here is the fol- 
lowing: find a transformation that associates to each 
point P on the curve described by k(s), a number that 
is based on the local behavior of the curve and is in- 
variant under the similarity transformation. 

If the point P corresponds to sp in k(s), the corre- 
sponding point P after scaling will be at ge = we. 
Thus we need to find a transform T{'} associated to 
the curvature function k~(~) so that the function 

~,~(~) --- T{k~(~)} (2) 

will have the property 

~z~(Y) ~- ~a I ~  1 forallc~ (3) 

The function/~c~(~) will be called an invariant signa- 
ture function associated to ks(g). Suppose such a trans- 
form T{-} has been found, and from the curve k(s) we 
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only have a small fragment, say the portion between 
some s = sa to s = SB. Then, for the clipped portion 
of the curve, we clearly have a new k(s) representation, 
as follows 

K(s) = k(s + sA) s = [0, s8 - sA] (4) 

but we must assume that we do not know SA and SB a 
priori. The question is: what is the relation between 
g(s) = T{k(s)} and the corresponding function,/zC(s), 
defined for the curve K(s)  and given by 

/~C(s) = T{K(s)} (5) 

We would like to have, ideally, that 

tiC(s) = g(s + sA) s E 10, s~ - SA] (6) 

f f  this is the case, then the basic property that enables 
the localization of corresponding points on scaled ver- 
sions of curves, will be satisfied through i~C(s). This 
leads us to consider the spatial "memory span" of the 
transform T{-} defined as the arc-length interval neces- 
sary to compute T{'}.  Suppose that g(s) = T{k(s)} 
depends on k(s) for s E [s - SL, S + Sn] and that, cor- 
respondingly, g~(~) = T{k~(;)} depends on k~(~) for 
s E [; - oa L, g + ash].  Then clearly/,~(s) will not 
match iz(s + SA) over the entire span of s E [0, sB - 
Sn] but only over the span of s E [SL, S~ -- Sn -- sH]. 
If a transform T{.} has been found, and it has some 
finite and predictable memory span, we have that the 
corresponding signature fimction g(s) will often enable 
the segmentation of k(s) into "segments" that are readily 
identified even in scaled portions of the original curve. 
The idea is the following. 

Consider the signature function 

, ( s )  = T{k(s)} for s ~ [0, L] (7) 

where #(s) might, due to the memory of T{'} not be 
well defined for s E [0, SL] and s E [L - sn,  L]. (Note 
however that if the curve k(s) is a single closed contour 
defining a 2D object with smooth boundaries, this edge- 
effect disappears!) If/z(s) takes values between btmin to 

/ZMA x for s E [0, L], we may define several levels 
{h~ }i~l,. ,R so that 

/Zmm < hl < h2 < h3 ' ' "  < hR < /£MAX (8) 

The places where/~(s) crosses the levels {h, } forms 
a sequence of pairs {(sj, hi(j)) I J = 1 . . . . .  M and 
l ( j )  E {1, 2, . . . ,  R } }, ordered according to increas- 
ing sj. 

If the entire scaled version of the curve k(s) is given, 
that is, we have 

k~(~) for ; E [0, a l l  (9) 

then/~(~)  = T{k~(£)} = ~ /c~)  for £ E [c~sL, c~(L - 
s}/)] and therefore the points 

{(£, hlCr)) [ r = 1, . . . ,  M a n d / ( r )  E {1, 2, . . . ,  R}} 
(10) 

corresponding to the crossings of the chosen levels 
{h~ } will be given by {(aSr, hlCr))}r=l . . . .  $ and corre- 
spond to the sequence {(sg, hl~j))}j=l,. ,M. Therefore, 
up to some end-effects, we get a segmentation of the 
scaled curve into corresponding segments at points ;~, 
that obey 

s,. _ s~ = constant for any o~ (11) a 

If now we are given only a portion of a scaled version 
of the curve k(s), described, say, by K,(s') correspond- 
ing to K(s) as defined above, the associated invariant 

c g  signature function g~( ) will also cross some (or all) 
the levels {hi} chosen. We have 

K~,(~) = k~(~ + asa)  for g E [0, a(SB -- Sa)] (12) 

and therefore 

Izc(i) = t~,(~ + CeSn) for 

E [o~s L, o~(s B - SA -- Sn)] (13) 

In the above defined interval of ~, we shall be able to 
determine a scale invariant segmentation, the segmen- 
tation points being set by level-crossings of g~ that lie 
entirely in correspondent spans, where there are no 
edge effects any more. The above discussion shows that 
we should seek transforms T {'} with as short memory 
span as possible, to minimize edge-effects when we are 
given portions of the curves to be recognized. 

If  we have already chosen a transform T{'},  yielding 
a signature function tz('), and crossing levels {hi}, 
how should we use the segmentation induced to rec- 
ognize the curve k(s) from a family of given curves 
{k~(s)}i= 1 . . . .  o ? The segmented portions of the curve 
k(s) may all be normalized to have arc-length equal to 1 
and their corresponding "normalized" curvature func- 
tions will form a set of "feature" functions. If in a por- 
tion of a planar curve we apply the above described 
segmentation to a curve described by K~(~) and nor- 
malize the resulting segments to length 1, their k(s) 
functions will match to the corresponding segments 
stored as the library of feature functions, enabling the 
recognition of the curve. 
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3 Some Practical Invariant Signatures 

In the previous section we discussed the way in which 
invariant signature functions, if found, could be used 
for recognizing planar (shapes) under partial occlusion. 
What remains to be done is to design some transforms 
TI.) that yield invariant signatures. 

3.2 An Invariant Signature from the Curvature 
Derivative 

The next invariant function is based on noting that the 
k(s) function is invariant to rotation and translation and 
that under scaling by a we have that k(s) maps into 

3.1 A Classical Invariant Signature Function 
This implies that 

The first transform that we consider is the only one that 
has implicitly been used by researchers to do scale- 
invariant recognition of shapes. The function CL(')(S) 
should point out the inflection points, and the points 
of local maxima or minima of the curvature, being 1, 
M, and m, respectively, and zero everywhere else. Thus 

1 if k(s) = 0 

M if k'  (s) = 0 and kU(s)k(s) < 0 

rn if k' (s) = 0 and k "(s)k(s) > 0 

0 elsewhere (14) 

We assume, for the time being, that the curvature func- 
tion is not zero for a whole portion of the given curves 
k,(s). The FL(')(s) function will help us segment the 
library curves into portions that are defined by inflec- 
tion points, curvature maxima (sharpest turns), and cur- 
vature minima. These portions are clearly invariant 
under similarity transformations and indeed could en- 
able the identification of a curve from a clipped portion 
of it, provided an entire segment is available in the 
clipped portion. This however, is by no means guaran- 
teed in a practical planar cluster resolution problem and 
therefore the applicability of this method is severely 
limited. We would like to produce signature functions 
for which we can control the density of segmentation 
points si, and not depend solely on the given curve's 
inflection, and other very special points, for segmenta- 
tion. Determining the signature function CL(')(S) 
depends on evaluating the curvature and its derivatives. 
The next function considered shows that using the k(s) 
function of the curve and its first derivative we can ob- 
tain a theoretically very appealing invariant function 
that enables the placement of "dense" segmentation 
points. 

i E [0, aL] (15) 

Observe now that we have 

This leads us to the definition of the function 

where R(s) = Ilk@) represents the local radius of cur- 
vature at the point s. Equation (16) shows that 

that is, the function FL(~)(-) satisfies the basic invariance 
property we required. Hence, F&~)(S") may be used for 
segmenting the curve k,(s") in a way that is identical, 
up to scaling, to a segmentation of the original curve 
described by k(s). Furthermore, the segmentation points 
can be placed as densely as desired by choosing the 
levels {Xi} between pE!n and pgix as densely as 
desired. All this is, of course, applicable if the planar 
curves are smooth and noiseless enough to permit a 
good measurement of the curvature and its derivative. 

Theoretically, the above defined invariant signature 
function has several very pleasing properties. In addi- 
tion to enabling the segmentation into many curve seg- 
ments that can be used for invariant recognition, this 
function has an infinitesimally small "memory span": 
the curve portion required to estimate the local rate of 
change in the radius of curvature! 
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Suppose we have a cluster of planar objects chosen 
from a set of shapes whose boundaries are described 
by the curvature functions {ki(s) }. The cluster reso- 
lution procedure based on /z(2)(s) would be the 
following: 

For each of the ki(s) compute ~z}2)(s) and take the 
joint span of the/~}a)(s)'s, that is, the interval #min 
to /-~max and choose a set of levels {Xi } within this 
interval. Segment each boundary in the library ac- 
cording to the level-crossing points of the invariant 
signature functions, and produce length-normalized 
feature functions. 

Determine the /z(2)(g) function of the cluster 
boundary (profile) and segment the boundary using 
the ordered set of points si in {(~,, Xt(i)) ]/,(2)(~i) = 
Xt(,)} for increasing si's. If the levels X~ are suffi- 
ciently dense we shall get several boundary segments 
that correspond to each object that appears in the 
cluster. Therefore we shall be able to identify those, 
suitably normalized, portions by comparison to the 
library of normalized segments prestored in the com- 
puter memory. 

The above described solution, however, has the major 
disadvantage of using the derivative of the curvature 
function (or of the local radius of curvature) and thus 
we expect that it will not be practical in the presence 
of noise. Therefore it is natural to search for invariant 
functions that rely only on the curvature function, or 
perhaps even on integrals of the curvature. Integrating 
the curvature function we get the curve's turn angle 
~b(s), as a function of arc-length. In the next section 
we shall show how to use this representation to yield 
invariant functions, as required. 

3.3 Invariant Functions Based on Turn Angles 

When discussing ways to generalize the recognition 
methods for piecewise linear curves to smooth curves 
we have already mentioned that the ratio of the arc- 
lengths l+ and l_, providing a predetermined turn of 
A~b when moving forwards and backwards from a point 
P, is scale-invariant. Here we shall exploit fully this 
idea. First, note that we have 

(19) 

Therefore the functions ~b~(~) and ~(s) obey 

,o 0, r - = k(~) d~ = ~ - ¢ (0)  
J 0  

(20) 

where 

~(~)  --- ~b~(0) + .f~ k~(() d(  and 

(21) 

fs ¢(s) = ~(o) + k(~) d~ 
0 

We might conclude from the above that ~(~)  is a good 
choice for our next invariant function/x(3)(~), however 
this is not the case, due to the dependence on initial 
conditions, and the assumption that we know the entire 
curve from s = 0 to s, and this is obviously not the case. 
We shall exploit the above properties in a different way. 
Starting at any point P on the curve k(s), corresponding 
to se. Let us define the following two functions: 

s) = f ,,+s 
Sp 

AfB(sp,  s) = f se k(~) d~ (22) 
d Sp--S 

The interpretation of these functions is obvious: they 
measure the "turn angles" vs. arc-length, when moving 
from the point P forward and backward. Now we may 
choose two values O F and 0 B for the forward and back- 
ward turns and define the arc-length oF(st, OF) and 
aB(sp, On) via 

t 
r f  ,p+aF(sp,OF) k(~) d~ = A~/F(sp, uF(sp, OF)) = O F 
• ~ sp 

(23) 

I (s~, k(~) d~ = a~B(Se, oS(Sp, OB)) = OB 
~_J se- oB(sp, O~) 

From equations (20) and (15) we readily obtain that for 
the curve k~(~) we have that the correspondingly de- 
fined functions obey 

" < ( g ,  Or) -= ol(lr(x/ot, OF) 
(24) 

. o~(;, 08) = cwB(~/~, 0B) 

Therefore, the arc-lengths a r and a B scale with a in 
an obvious way. Their ratio however will be invariant 
under scaling, that is, defining the function 

t*~)(Oy, 08; ~) = o ~ ( i ,  0r)  (25) 
B % (s, OB) 
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we have 

#(3)(OF, On; ~) =-- ~O)(OF, OB; J/a) (26) 

That is,/z (3) is a scale invariant function and can there- 
fore be readily used for segmentation. Note that we 
could also use a set of values for OF and 0n--that is, 
{0e } and {Oni }--and compute the sets of arc-length 
{a~(~, 0V,.)} and {aft(g, 0B,)}. Then due to the scaling 
property, all possible ratios of the form 

ffF/B(ff, Or,/Bt ) 

F/B, ~ % ~s, OFdn J) 
of arc-length corresponding to different forward/back- 
ward angles of turn, are invariant functions suitable for 
segmentation purposes. 

The question that remains to be settled with regard 
to the invariant function/~(3)(s) is its memory span. 
Clearly, the memory span of the transform, providing 
from k(s) the invariant function/z(3)(s), depends cru- 
cially on the angles OF and On. The maximal memory 
span for a given 0 F and 0 B will be the longest arc- 
length necessary to make the forward turn of OF added 
to the longest arc-length necessary to travel backward 
to have the curve turn by On. Therefore, the turns OF 
and On should be chosen so as to have rather short 
memory spans. This can be done by analyzing the func- 
tions A~/v and A~b n for all starting positions se, then 
choosing Oe and On as turn angles that are reached by 
A~b e/n for all se's within as short an arc-length as 
possible. 

In designing the invariant signatures for a particular 
problem, we may also want to take into consideration 
the fact that we are aiming to get robust scale-invariant 
segmentations of the planar curves via the invariant 
signature functions. Therefore we should also choose 
OF and OB that yield good differentiation between the 
points of the curve, in terms of the span of #(3)(s) as 
s changes from 0 to L. Such considerations will have 
to be the main concern when designing the solution for 
any given cluster-resolution problem. 

4 Some Further Invariant Signature Functions 

So far, we have seen that the key of success in designing 
scale-invariant functions was in the fact that we could 
get rid of the scaling factor in the function 

k.(~) a 

Clearly if k(so) = 0 we also have that k~(~so) = 0 and 
the l/~ scaling factor does not bother us much (the 
zeros of any function are invariant under scaling). The 
same was true for the zeros of k~(£). These properties 
were of course the ones exploited in defining #(1)(s). 

In designing #(2)(s) however, we exploited the fact 
that we could cancel out the 1/a gain factor by dividing 
the derivative of k~(~) with respect to ~ by k~(£). 

The last invariant function design, #(3)(s), was based 
on the fact 

f e=b=a k,~(~)d~= fab k I ~  ~ d___~=o~ afs=b/=s=a/ot k ( s )  ds 

(28) 

In each of the cases we discussed above we aimed to 
produce a function that would map (1/u)k(£/a) into 
some G(~/u) (clearly mapping k(s) into G(s)). 

Suppose we want to design a function F['] so that 

f~=b f s=b/= F[k~(~)] d~ = F[k(s)] ds (29) 
s a s=a/ot 

To have this property it would be sufficient for F[.] to 
obey 

The immediate solution of the functional equation F[cx] 
= cF[x] is the linear function 

F[x] = "Ix (31) 

We conclude that we could have designed other invari- 
ant signature functions similar to/~(3)(s) using not k(s) 
but 3`k(s) for any constant 3  ̀~ 0. If we want the neces- 
sary and sufficient conditions on F[.], for the property 
(29) to hold for all intervals [a, b], we may write that 

- = F[k(s)] ds (32) 
Ot alot 

for all x, an differentiating w.r.t, x we obtain 

Therefore, we may conclude that in order to have (29) 
hold for all intervals it is both necessary and sufficient 
that F[cx] = cF(x), that is, that F(x) = 3`x for some 
constant 3'. 

In a recent paper dealing with curve segmentation 
under partial occlusion (see Katzir et al. [1990]), the 
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following method was put forward. To a simple closed 
curve described by k(s), representing the boundary of 
a planar object, associate a transformed curvature func- 
tion ~k(s). The function "yk(s) represents a new planar 
curve with possibly many self-intersection points. To 
each self-intersection point of'yk(s) there corresponds 
by definition a pair of arc-lengths, si, Si+l, such that 
from s i to si+ i the curve 3,k(s) returns to the same posi- 
tion in the plane. The induced self-intersection points 
are easily seen to be scale-invariant and therefore, the 
induced arc-length intervals define curve portions that 
segment the original curve in a scale invariant way. 

Formally, the above described process is described 
as follows: The absolute position representation [x(s), 
y(s)] of a curve is related to the intrinsic representa- 
tion via 

Ix(s), y(s)] = Ix(0), y(0)l 

foSin~+o+ fotk(,)dOd ~ (34) 

Introducing the complex-plane representation p(s) = 
x(s) = x(s) + iy(s) we can write (34) as 

P(s)=p(O) + fo'eXp[i(lkO+ fotk(')d~l} d, 
(35) 

From this we readily obtain that 

p(s2) = p(sO + 

f,i" exp [i ~s + f~i k(~) d~ ] dt (36a) 

therefore 

P ( S 2 )  - -  p ( s 1 )  = 

Now, we may define a two-parameter function repre- 
senting a rotated position difference, as follows 

U(a, b) = [p(b) - p(a)]e -~¢'. 

(37) 

This complex function will be zero only at self- 
intersection points, that is, U(Sl, s2) = 0 implies that 
the curve self-intersects at p(sl) - p(s2). Furthermore, 

it is obvious from the curve definition that only the cur- 
vature of the boundary in the interval (S1, S2) plays a 
role in providing the self-intersection condition. 

What happens to such functions under scaling? Clearly 
if we scale k(s) we obtain (1/oOk(g/ot). The function 
U(a, b) maps into 

UC~(m,#1) = fmnexp [iSm'kk I~]  d~] dt 

= exp i k(() d( dt 
m/e~ 

:"° [r "° ] 07 = a e x p  i k(~)d~ d 
3 m/ot J m/a 

Therefore the zeros of US(m, n) will occur at the 
mapped zeros of U(a, b). If U(Sl, s2) = 0 then 
Ua(~sl, o~s2) = 0. This is the desired scale mapping 
property. Notice, however, that the U-functions trans- 
form under scaling in the same way as the k-functions, 
that is, we have here the construction of invariant sig- 
natures of the type #0)(% based in this case on singu- 
larities of a two-parameter function. 

I fa  curve is the boundary of a planar object, it does 
not have self-intersections, therefore it was proposed 
by [Katzir et al. 1990] to consider a related curve corre- 
sponding to Mv[k(s)] = "yk(s). Clearly, we can define 

:: [ :: ] Uv(a, b) = exp i "yk(() d~ dt (39) 

and consider the self-intersections of this "new" curve 
via the zeros of U~(a, b). 

We could, however, ask the interesting question: what 
other functions M[k] would be suitable to produce such 
invariant functions? It is clear from examining (39) and 
(32) that M~[k] = ~/k is sufficient to induce invariance 
however we may question the necessity of having M['] 
of the form M.~('). 

We require to have 
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with some constant E, for all n. Differentiating w.r.t. 
the upper boundary (n) we have 

exp(i fmnMIlk(~l ld~ ) 

= - ( i f  nm ~) E exp M[k(~)] d (41) 
ot mlot 

Denoting E/o~ by exp iFc~ (note that it must have rood- 
ulus one!), we obtain 

e x p i I (  m f n M I _ ~ k I ~ l l d ~ t l  

- ("/~ M[h:ff)] d( + f~ d m/~ 
J 

that is, 

= 1 (42) 

finn M I ! k  I ~ l  1 = f n/°~ M[k(~)] d~ ~'- 
(43) 

Differentiating again w.r.t, n we get the same condition 
as before for M[']. Therefore a linear M-function is both 
necessary and sufficient to have the property (29), 
leading to invariance, hold. This shows that the transfor- 
mation introduced heuristically by Katzir et al. [1990] 
was in fact the only function that could have led to in- 
variant segmentations within the framework of the pro- 
posed procedure. 

5 Exper imenta l  Results  

The idea of using signature functions of the type dis- 
cussed in this paper was tested under realistic conditions 
of shape digitization influenced by camera nonlineari- 
ties and quantization noise. We first tested the variations 
in signature functions, when they were estimated from 
digitized contours of scaled, translated and rotated ver- 
sions of given planar shapes. The invariant signature 
function #(2)(s), introduced in Section 3.2, that has 
some theoretical importance, is too sensitive for the 
image resolutions that we tested, since it requires the 
approximation of the third order derivative of the curve. 
Therefore we concentrated on the invariant signature 
tz(3)(s), that is based on integrated turns of the curve 
in the forward and backward direction from any given 

point. The results with this method were compared to 
the idea of invariant curve segmentation based on self- 
intersections of the curve described by yk(s), proposed 
in Katzir et al. [1990]. Both methods were first applied 
to a given shape that was digitized in two instances, 
one being a scaled and rotated version of the other. Then 
the same shape appeared in a digitized cluster of three 
shapes and the possibility of identifying it from occluded 
portions of its boundary was explored. 

5.1 Testing lnvariance Under Similarity Transformations 

Two instances of the shape in figure 2 were digitized. 
The two instances were rotated and scaled versions of 
each other, where the rotation was 45 ° and the effective 
scale was 0.5. The digitized shape boundaries were de- 
scribed by chain codes and were then transformed into 
a dense polygonal approximation based on sampling 
the contour (approximately) uniformly in arc-length. 
The tangent vector, ¢,(s), was computed using a least- 
squares local line-fitting algorithm--finding for each 

Fig. 2. Binary image of the shape used for the experiments. 
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sample point the best fit tangent over a small boundary 
neighborhood. We stress again that the shape digitiza- 
tion process was influenced by camera nonlinearities 
and by the noises due to quantization of rotated and 
scaled versions of the object. 

We tested two approaches for invariant curve segmen- 
tation. One based on the "length-ratio approach" via 
the invariant function #(3), and the second based on the 
"self-intersection approach;' that is, based on locating 
zeros of of U(a, b) on the curve that corresponds to 
q,. k(s). 

The invariant function #(3)(0e, 0~, s) was calculated 
using equation (25) for 0F = 0B = 0.25 radian. The 
set of crossing-levels, {Xi}, chosen empirically for ex- 
tracting invariant segmentation points along the curve 
were {e 0"75, e-°75}. The result of this procedure per- 
formed on the two instances is given in figure 3. Figures 
3(a) and 3(c) describe the functions In/~(3) versus the 
arc-length s. Figure 3(b) and 3(d) are the correspond- 
ing boundary curves, reconstructed from the estimated 
~b(s), displaying the locations of the extracted invariant 
points (with o's for the upper crossing-level and ~r's 
for the lower one). Figure 3(e) shows the two invariant 
functions after stretching and shifting, in order to get 
maximum correlation. Note that the In/~(3) functions 
for the two instances are quite similar, in spite of the 
fact that considerable distortion and noise factors af- 
fected the curve-approximation process. Note however, 
that due to the noise some of the segmentation points 
are missed from one of the instances. 

In the second invariant-segmentation approach imple- 
mented, the invariant points are derived using self- 
intersections of a transformed version of the given 
curve. In this method points are obtained in pairs that 
are used to bound curve portions defined in a scale- 
invariant way. These segments may overlap, even when 
we use only one transformation parameter 3'. The joint 
results, obtained using two transformation parameters, 
3'l = 2.9, "~2 = 4.7, are given in figure 4 (with o's cor- 
responding to 3'1 and -k's to Y2). Note that some end- 
points are detected only in the larger instance of the 
shape due to the way the curvature is evaluated in prac- 
tice, however most of the extracted points do exist for 
both instances of the shape under consideration. 

5.2 Testing the Invariant Segmentation Under Occlusion 

Another instance of the shape of figure 2 was digitized, 
this time occluded partially by two other shapes in a 

cluster. The shapes participating in the scene, and the 
cluster that was digitized are in figures 5a and 5b. 

Figure 6 shows the results of calculating In/~(3) for 
the length-ratio approach, with the relevant unoccluded 
segments marked both on the curve (figure 6(b)) and 
on the invariant function in In #(3) (figure 6(a)). The 
corresponding points that will be effective for recogni- 
tion are marked on the enlarged unoccluded segments 
in figure 6(e). The points' indexes should be compared 
to those in figure 3. 

Figure 7 is the analogous result for the self- 
intersections approach. The points' indexes in this case 
should be compared to those in figure 4. 

We conclude that both methods extract points on the 
boundary that are not features like curvature extrema 
or inflection points. The signature functions employed 
elect arbitrary points on the boundary as special feature 
points that remain invariant under similarity transfor- 
mations. The density of these landmark points can be 
effectively controlled by choosing appropriate param- 
eters. The best parameters for any particular problem 
clearly depend on the library of shapes (models), the 
range of transformations, the span of the invariant func- 
tions, and the expected amount of noise. Choosing an 
arbitrary set of values gave good results in our exam- 
ples, without fine tuning. Further experimental investi- 
gation on the numerical behavior of such recognition 
schemes remains to be carried out. Note that the length- 
ratio method identifies special points on the curve based 
on some portion of the curve around them. The self- 
intersection approach, on the other hand, identifies 
pairs of points, delimiting a curve segment that should 
be nonoccluded for identification. Some erroneous 
points on the curve are selected as landmarks, especially 
near the interesections between boundaries of different 
objects, intersections often characterized by sharp con- 
cavities or turns. Such points can easily be filtered out 
at the recognition stage of the process. 

6 Concluding Remarks 

We have presented a new theoretical framework for 
dealing with model-based cluster-resolution problems, 
under similarity invariant transformations applied to the 
basic shapes in the assumed world model. Some of the 
invariant signature functions proposed and analyzed 
here theoretically, were investigated on practical cluster 
resolution problems involving noisy data, and the 
results are very promising. 
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Fig. 3. Experimental results with the length-ratio invariant signature under similarity transformation. The signature function (a) for the first 
shape instance (b), and the signature function (c) for the scaled and rotated instance (d). Comparison of the signature functions (a) and (c) 
after proper stretching of the s-axis. 

The previous works on recognition of partially oc- 
cluded curves and shapes with translation rotation and 
scale invariance in mind, that do not involve segmenta- 
tion based on inflection points and singular points on 
the boundaries, are the paper of Gottschalk and Mudge 
[1988], and the recent work of Katzir, Lindenbaum, and 
Porat [1990] discussed in Section 4. We believe our con- 

ceptual framework provides the first general design 
methodology for similarity-invariant cluster resolution 
problems. The next step should be an analysis of such 
problems under more general object deformations, like 
general affine and projective transformations. Theoreti- 
cal results in this direction were recently reported by 
Bruekstein and Netravali [1990]; Bruckstein et al. 
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Fig. 4. Experimental results with the self-intersection approach under similarity transformation. The first instance (a) and the rotated and 
sealed instance of the shape 0o). The curves corresponding to 7, "k(s) for two values of 7(3'1 = 2.9, "/2 = 4.7) are drawn for both instances 
in (c) and (d) respectively. The detected invaraint points are marked. 

(Note that some points were not detected in the second instance due to the fact that the treatment needed for solving the starting point invar- 
lance (see Katzir et al. [1990]) was not implemented.) 

[1991]; Barrett  et al. [1991]; Cyganski  et al. [1987]; Vaz 

and Cyganski  [1990]; VanGool,  Kempenaers ,  and 

Ooster l inck [1991]; VanGool  et al. [1991]; and Weiss 

[1988, 19911. These papers rely on  some beautiful 

mathematical  results on  the theory of differential invar- 

iants to obtain invariant signature functions generalizing 

#(2), and also the local invariant  signatures,  under  af- 
f ine and projective mappings.  
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F/g. 6. Experimental results with the length-ration invariant signature under occlusion. Invariant function In #(3) in (a) and the corresponding 
curve with the detected invariant points in (b). Enlarged unoccluded segments in (c). 
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Fig. Z Experimental results with the self-intersection approach under occlusion. (a) The curVe with the extracted invariant points for parameter 
values of 21, = 2.9 (o) mid 3'2 = 4.7 (*). Enlarged unoccluded segments in (b). 


