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Abstract. We present a new implementation of an algorithm aimed at recovering a 3D shape from its 2D gray-level 
picture. In order to reconstruct the shape of the object, an almost arbitrarily initialized 3D function is propagated 
on a rectangular grid, so that a level set of this function tracks the height contours of the shape. The method 
imports techniques from differential geometry, fluid dynamics, and numerical analysis and provides an accurate 
shape from shading algorithm. The method solves some topological problems and gracefully handles cases of 
non-smooth surfaces that give rise to shocks in the propagating contours. Real and synthetic images of 3D profiles 
were submitted to the algorithm and the reconstructed surfaces are presented, demonstrating the effectiveness of 
the proposed method. 

1 Introduction 

Computer vision researchers have invented several 
methods of reconstructing three dimensional objects 
from their two dimensional images, see e.g. (Brooks 
and Horn 1989; Bruckstein 1988; Frankot and 
Chellappa 1988; Horn 1975, 1990; Horn and Brooks 
1986, 1989; Ikeuchi and Horn 1981; Pentland 1984, 
1990). Other interesting and fruitful research concerns 
the numerical approximation of wave-front propaga- 
tion in fluid dynamics, crystal growth, etc. Some nice 
results in the numerical approximation of front prop- 
agation were recently published by Osher and Sethian 
(1988). In this paper we modify a numerical method 
of front propagation suggested in this context, to build 
a scheme for reconstructing a shape from its shaded 
image. The resulting algorithm combines equal-height 
contour propagation as suggested by Bruckstein (1988) 
with well behaved (i.e. stable and locally accurate) nu- 
merical methods proposed by Osher and Sethian for 
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wave-front evolution. We show that some topolog- 
ical problems are readily solved in this formulation 
of the problem. Furthermore smoothness of the sur- 
face is not a necessary condition, in the sense that 
object corners that would lead to shocks in propagat- 
ing contours are gracefully dealt with by the numerical 
scheme. 

2 Problem Formulation and the Reflectance Map 

Suppose we are given a continuous function of two vari- 
ables, z(x, y) describing the surface of an object. The 
shaded image of that surface is defined as a brightness 
distribution E(x, y), the brightness values depending 
on properties of the surface, its orientation at (x, y) and 
on illumination. The brightness E(x, y) is determined 
via a so-called shading rule or reflectance map, charac- 
terizing the surface properties and providing an explicit 
connection between the image and the surface orienta- 
tion. The shape from shading problem is to recover the 
depth function z(x, y), from the image E(x, y). 

Let us first specify surface orientation using the 
components of the surface gradient p = Oz/Ox and 
q = Oz/Oy. The surface normal at each point is perpen- 
dicular to the plane determined by the vectors (1, 0, p) r 
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and (0, 1, q)r, therefore its direction is their vector 
product 

Jill] N = = ( - p , - q ,  1) r ,  

1 

hence the unit normal can then be written as 

~ / _  N _ 1 

IINII ~/1 + p2 + q2 ( -p '  
--q~ 1) r 

In case of a surface with so-called Lambertian, or dif- 
fuse, reflection properties and uniform illumination, 
E(x, y) is proportional to the cosine of the angle be- 
tween the surface normal 1(/and the direction to the 
light source 1 (see Fig. 2). 

For simplicity let us first assume that the illumina- 
t ion  is uniform and that it illuminates the surface from 
above, i.e., from z = +c~,  or l" = (0, 0, 1) T. In the 
general case we define the light source direction as 

= 1 ( - P z , - q t ,  1) r (1) 

~/1 + p/2 + q~ 

The dependence between brightness and surface ori- 
entation (the reflectance map) can be written in many 
cases as a map of the surface normal direction N to the 
brightness image E (x, y) 

E(x, y) = Function of (~r) 

= R(p(x, y), q(x, y)). (2) 

This is the image irradiance equation. 

E(x, y) = pR(p, q) = p)~ cosot 

1 + PzP + qlq 

41 + p2 + q2]l + + 

where p and )~ are proportionality factors that can be 
neglected (pL = 1) by rescaling the image irradiance. 
(p known as the albedo, is the ratio of the total re- 
flected light flux to the total incident light flux, is here 
assumed to be constant, and L is the strength of  the 
illumination.) In this case the normal direction lies on 
an ambiguity cone whose main axis is directed towards 
the light source (see Fig. lb).^ 

For the simple case where l = (0, O, 1) r we have 

1 
R(p, q) = 

~/1 + p2 + q2 

and the ambiguity of the surface normal direction is an 
upward directed cone (see Fig. la). 

Equation (2) is a nonlinear partial differential equa- 
tion that has to be satisfied by the surface z(x, y). 
Therefore solving the shape from shading problem 
amounts to solving a nonlinear partial differential equa- 
tion. Clearly boundary conditions are necessary. 

Given the image E(x, y) it is, in general, impossi- 
ble to unambiguously recover the height profile z (x, y). 
As an immediate example of the ambiguity simply con- 
sider the function - z (x ,  y), which, under aLambertian 
shading rule, maps into the same image as z(x, y). 
Some further information on the function z(x, y) is 

! 

(a) 

f, 

(b) 

Fig. 1. a. When the light source is from above (1 = Z) the ambiguity cone is directed upwards, b. For other light source directions the 
ambiguity cone is tilted towards the light source creating many possible projections of the surface normal on the (x, y)-plane. 



Shape from Shading: Level Set Propagation and Viscosity Solutions 109 

A 
i , A  N 

"g7 

Fig. 2. On a patch of a surface, the brightness under Lambertian 
shading rule is given by the cosine of the angle between the surface 
normal and the light source direction E = cos et = N • 1. 

therefore needed. This is usually given as a smooth- 
ness constraint on the surface (e.g., C 1 or C k con- 
tinuity), and exact or approximate values of z(x, y) 
together with the corresponding surface orientation, at 
either a discrete set of points {(xi, Yi)}, or on a con- 
tinuous curve on the (x, y)-plane (boundary condi- 
tions). The given boundary conditions and smoothness 
assumptions are not always enough to resolve ambigu- 
ities, and it is in fact difficult to determine, in general 
situations, sufficient conditions for a unique solution 
surface. 

In summary, our task is to reconstruct a function 
z(x, y) by recovering its normal N(x, y) everywhere. 
The surface normal at each point is represented by two 
numbers, and the only constraint we have so far is the 
image irradiance Eq. (2). The two variables represent- 
ing the surface normal direction at each point can only 
be computed by using more than one equation. The 
"art" of recovering a shape from its shaded image re- 
quires introducing local constraints that follow reason- 
able assumptions concerning the relation of each point 
on the surface to its surrounding area. With the addi- 
tional constraints the shape reconstruction should pro- 
ceed with no difficulty. 

3 Historical Review of Shape from Shading 
Schemes 

Shape from shading schemes can be roughly divided 
into two main groups: the iterative (global) methods 
and the non-iterative (local) methods. 

In both cases assumptions are made about the sur- 
face. These assumptions relate points on the surface 
to their surrounding neighborhood, and are used for 
producing a second constraint at each point. 

3.1 Iterative Methods 

We first briefly review the development of the vari- 
ational approaches. In the sequel, the minimization 
problems from which the numerical schemes are 
devised, are presented and the main advantages and 
drawbacks of each scheme are discussed. Iterative nu- 
merical schemes for solving these minimization prob- 
lems are discussed by Horn (1990). These methods 
were developed over the last decade (Ikeuchi and Horn 
1981; Brooks and Horn 1985; Horn and Brooks 1986; 
Horn 1990). The basic idea behind the iterative schemes 
produced by a variational approach is the search for 
surfaces z(x, y) that minimize the brightness error 

B =-- E(x, y) - R(p, q) 

on the picture. Direct minimization of 

f f B dx dy 

is meaningless since it yields infinite choices for 
{p(x, y), q(x, y)}. To come up with a viable numer- 
ical iterative scheme, conditions are needed to select 
one from the infinite number of solutions. One can 
define a "departure from smoothness measure" 

s px + + + 4 

and a local "integrability deficiency" 

I~ - (zx - p)2 + (Zy - q)2 

or 

12 ~ (py --qx) 2 

These definitions can be used to quantify the additional 
assumptions used to produce meaningful minimization 
processes. 

A direct formulation of the shape from shading prob- 
lem, with a smoothness condition on the surface, is 
the following minimization problem (see Courant and 
Hilbert 1953; 1962) 

f f (s + )~B) dy --+ dx min 
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This problem provides the Euler equations 

V2p + XRp = 0 
VZq + )~Rq = 0 

and by eliminating the Lagrange multiplier )~ one has 
to solve 

RqV2p = RpVZq 
E(x, y) = R(p, q) 

but, unfortunately no convergent iterative scheme has 
been found (see Ikeuchi and Horn 1981). Brooks 
(1985) proposed a regularization of the original prob- 
lem by requiring 

f f (B + ;~S) dx dy --+ min 

This optimization problem does yield an iterative 
scheme, but the "true" surfaces solving the original 
shape from shading problem are not necessarily fixed 
points of this scheme. The algorithm may even "walk 
away" from the correct solution because it prefers 
to minimize the smoothness error (the constraint in 
the regularized formulation) while compromising on 
a small error in the brightness error functional. Recov- 
ering the height from the gradient which is obtained by 
the above scheme can readily be done by integration. 
This raises the question of integrability. Minimizing 
the functional 

f f 11 dx dy --~ min 

results in the Poison equation VZz = Px + qy, and 
yields an iterative scheme for updating z on the grid. 

Another way of dealing with integrability is by con- 
sidering 

f f + Lh)dxdy -+ min 

see (Horn and Brooks 1986), which is an ordinary cal- 
culus problem. The resulting scheme avoids the ex- 
cessive smoothing, but was found to be less stable. In 
(Horn 1990), Horn proposes to consider 

f f (B z +  i1) dx dy --+ rain 

and 

f f Is dx dy -~ min 

to get a scheme which does not "walk away" from the 
solution. Improvement of the schemes' performance is 
achieved by using a local linearization of the reflectance 
map (Horn 1990). When (p, q) are "close enough" to 
(Po, qo) the reflectance map linear approximation is 
given by 

R(p, q) = R(po, qo) + (P - po)Rp(po, qo) 

+ (q -- qo)Rq(Po, qo) + " "  

R(po, qo) + (P - po)Rp(po, qo) 

+ (q - qo)Rq(Po, qo) 

Incorporating a departure from a smoothness penalty 
term provides the following minimization problem 

The calculus of variations solution yields Euler equa- 
tions that can be approximated to generate an iterative 
scheme. The resulting scheme contains a "departure 
from smoothness" penalty term which diminished 
when the generated solution seems to be close to the 
real one and therefore stability is achieved while pre- 
venting "walking away" from the true solution. 

Frankot and Chellappa (1988) used projection on a 
set of integrable functions in order to force the integra- 
bility condition at each phase of the iterative process. 
Ascher and Carter (1993) used a multigrid method to 
speed up the iterative reconstruction process. 

In all the above iterative schemes there is no guar- 
antee of convergence to the proper solution and the 
schemes can get stuck in local minima. There is also a 
trade-off between stability (the smoothing condition) 
and "walking away" from the solution when given as 
an initial condition to the scheme. 

3.2 Non-Iterative Methods 

As mentioned earlier the problem of shape from shad- 
ing is equivalent to finding the values of two variables 
representing the surface normal direction N at each 
point of the shading picture. We have only one equa- 
tion at each point, E(x, y) = R(/V). In order to find 
the exact surface normal direction, another equation is 
needed. Pentland, in (1984), adds the assumption that 
each point lies on a sphere z(x, y) = ~/R 2 - x z - ya. 
Motivated by the finding that human eye seems to be 
able to sense brightness variations up to the second 
derivative, he then shows that using the six values 
E, Ex, Ey, Exx, Eyy and Exr the normal direction can 
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be found, together with the local curvature ½, the light 

source direction l" and the brightness factor ()~p) typ- 
ical of Lambertian illumination E = )~p(N • l). The 
assumption that each point lies on a sphere is of course 
usually not true. For example if Exx. Eyy < 0 the point 
may be a saddle point. Pentland therefore consider five 
types of local surfaces: concave sphere, convex sphere, 
plane, cylinder and a saddle. Under these assumptions 
one can even try to estimate the illumination direction 
(l') using the distribution of brightness derivatives as a 
function of the image direction. 

In Pentland (1990) deals with the problem of the 
linear reflectance map R(p, q) = kl + kzp + k3q, 
and shows that using the radial Fourier transform of 
the image, the surface can be reconstructed. Standard 
filters like Weiner filtering are used to remove noise and 
non linear components. Approximating the reflectance 
map linearly is valid only for surfaces with slants of 
small degrees, in the Lambertian case. In other cases, 
the linear assumption does not hold anymore. 

3.3 The Characteristic Strip Expansion Method 

The image irradiance equation describing the image is 
a non-linear equation, to be more specific, it is a first or- 
der nonlinear partial differential equation. The charac- 
teristic strip expansion method is a general procedure of 
solving Cauchy type boundary value problems associ- 
ated to nonlinear partial differential equations. Assume 
that the surface is smooth and that second deriva- 
tives exist everywhere. Suppose we know the height 
z(xo, Y0) and the orientation {p(xo, Yo), q(xo, Yo)} at a 
given point. Then the height profile and the surface ori- 
entation can be determined along a well-defined curve 
in the (x, y)-plane known as a "characteristic strip" 
(see Horn 1975; John 1982). The height and orienta- 
tion at the given point (x0, Y0) being known, we wish 
to extend the solution by stepping a small step 8x in the 
x direction and 8y in the y direction. Then the change 
in height is given by 

8z = pSx ÷ qSy 

While exploring the surface, we need to keep track of 
p and q as well as x, y and z. The changes in p and q 
are given by 

3p = Zxx3X + Zxy~Y 
8q = Zyx3X + Zyy~y 

Note that according to the smoothness assumption 
Zxy = Zyx. It seems that we need to keep track of the 

second partial derivatives of the height function which 
depend on the third partial derivatives, then the third 
derivatives updates depend on the forth derivatives and 
so on. This infinite chain is broken when the image ir- 
radiance equation (E(x, y) = R(p, q)) is added to the 
game. Differentiating the image irradiance equation 
with respect to x and y, leads to 

Ex = Zxx Rp q- Zxy Rq 
Ey Zyx Rp q- Zyy Rq 

We are free to choose any (Sx, By) we want, and 
choosing 

{ 3 x = R f i s  (3) 
~y RqSs 

yields 

{ Sp = ExSs 
8q EySs 

Hence the following set of five ordinary differential 
equations 

dx = Rpds 
dy = Rqds 
dz = (pRp + qRq)ds 
dp = Exds 
dq = Eyds 

(4) 

trace a curve on the surface z(x, y), s being the param- 
eter determining the flow along the curve known as a 
"characteristic strip". This result is the basis of Horn's 
classical shape from shading method (Horn 1975). He 
proposed to look at the brightness map E (x, y) and start 
height recovery around singular points; there the im- 
age E(x, y) attains the maximum value of 1, i.e., where 
p = q = 0 (under the Lambertian shading rule). From 
the neighborhood of these points, one can propagate 
characteristics outward, simultaneously, and use cer- 
tain neighborhood rules in the propagation such as not 
allowing crossovers of adjacent strips and interpolat- 
ing new characteristic strips when neighboring strips 
separate too far. Note that when p = q = 0 we have 
a start-up problem for the algorithm, since (3) will not 
pull the strips away from the singular points. Hence 
we must add further assumptions about the behavior of 
z(x, y) about each starting point ( i.e., to classify sin- 
gular points as a local maxima or minima; of course, 
problems arise at saddle points). Implicitly we have to 
assume the knowledge of the initial slopes (p, q) on a 
small loop around the singularities. 
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Direct numerical implementations of characteristic 
strip expansions are very sensitive to brightness errors. 
These affect the direction of the growing characteris- 
tics and can therefore lead to theoretically impossible 
crossover of characteristics, (the gradient at a cross- 
ing point would have two directions!). Horn suggested 
propagation control algorithms, like preserving the re- 
lation between two neighboring characteristics by en- 
forcing the brightness condition E(x, y) = R(p, q), 
and zt = pxt + qYt along curves defined by fronts of 
developing characteristics. 

Let us try to characterize the accumulation of error in 
a simple discrete numerical model of the characteris- 
tic strip expansion process, under a Lambertian shad- 
ing rule. The numerical scheme which approximates 
an analytic model should be as stable and as accurate 
as possible. We have observed that the characteristic 
strips expansion method is very sensitive and control 
algorithms must be used in order to supervise the whole 
process (preventing crossovers etc.). The accuracy of 
the results can be assessed through the following simple 
scheme, representing the behavior on a characteristic. 

Taking a forward approximation of the "time" 
derivatives, (time is s in this case) we get the following 
discrete numerical approximation scheme of Eq. (4): 

x n+t=x n+R~As 
yn+l = yn + R~As 

=z +(pnR. +q"R )As 
pn+l = pn + E~As 
qn+l = qn + E~,As 

(5) 

Here n stands for the parameter at time s = n A s .  As- 
sume that E~ and Ey are the exact derivatives, and that 
the direction between point P" - (x ", yn) and the next 
point in the generated solution pn+~ =_ (xn+l, yn+l) is 
fixed. (We make these assumptions in order to prevent 
other errors, such as those caused by the interpolation 
of the brightness values between the given pixels and 
those caused by a change in the characteristic direction, 
from affecting the error analysis given here.) 

The line connecting pn and pn+l can be described 
parametrically as 

L n ( t ) = ( p n + t _ p n ) t + p n  where t6 [O,  1] 

Define the height e r r o r  z n ~  +1 ~ ~n+l _ z n + l ,  where 
is the approximation and z is the exact change of the 
height corresponding to the change of the brightness 

between pn and pn+l. 

Zn+l=~n+l { q_ASfL,(t ) } err -- Z n (pRp + qRq) dt 

= z n + (pnRnp +qnRq)AS-  Z n 

- AS __JL"(t)(P(t)Rp(t ) + q(t)Rq(t))dt 

= As{(p"Rp +qnRq) 

- fL.(t)(P(t)Rp(t) + q(t)Rq(t))dt} 

1 the In the simple case where R(p, q) = ~ ,  

height error is 

zn+I = As{(En)3 - En - fL (E3(t) - E(t))dt} err ~(t) 

Summing the errors along the characteristic gives 

n-1 
. ~ i  

Z~otal Err ~ Zer r 
i=o 

n-1 { 
= AS Z (Ei)3 -- Ei 

i=0 

- fLi(t)(E3(t)- E(t)) dt} 

n It seems that as As ~ 0 the total error Z~ot~Er r -+ 0, 
but in the above we have neglected the errors caused 
by the approximation of E, Ex and E r between the 
grid points. Taking this into consideration and letting 
As --+ 0 would cause even bigger errors in the growing 
characteristics. 

A general analysis of accuracy and stability for 
these kind of models is quite difficult to perform. Ex- 
periments show that crossovers of characteristics 
are common, indicating the inherent instability of 
such methods. Control algorithms on the growing 
curves can be found in (Horn 1975), however new 
sources of error are introduced when interpolating new 
characteristics. 

3.4 Shape from Shading via Equal-Height Contours 

Let us first summarize the main results from 
(Bruckstein 1988): an equal-height contour or a level 
curve is a continuous curve in the (x, y)-plane on which 
the function z(x, y) is constant. Defining {x(s), y(s)}, 
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OZ 

~s 

o r  

s 6 [0, S], as the parametric representation of the con- 
tour, we have 

Oz Ox Oz Oy 
- -  + - - - - = 0  

Ox Os Oy Os 

pxs + qy~. = 0 

This reflects that there is no change in height along 
the equal height contour. The unit normal to the equal 
height contour on the (x, y)-plane is given by 

1 
h(s) = {ys(s), -xs(s)} 

~x~(s) + y2s (S) 

Clearly t~ is in the direction of the projection of P) on 
the image plane. Define dz as the height we climb 
while progressing a distance 79 in the normal direction 

in the (x, y)-plane. From basic geometry we have 

79 = dz cot ot 

where a is the surface orientation angle. Under the sim- 
ple Lambertian shading rule where R (p, q) = cos ot = 

we have 

1 E 
D = d z c o t c ~ = d Z ~ + q 2 - d z ~  

If from the first contour we uniformly climb dz, we 
get to the next equal height contour via 

{x(s, dz), y(s, dz)} = {x(s, 0), y(s, 0)} + 79(s) • h 

This yields the propagation of the equal height con- 
tours as a nonlinear initial value P.D.E. problem. Given 
{x(s, 0), y(s, 0)} the evolution equations are 

. . . .  Y~ xt(s, t) = F(x,  y) 
~/ x; + y; 

[ yt(s, t) = F(x,  Y) vJx~+y~x;*y;-X" (6) 

where t ~ z and 

E(x(s, t), y(s, t)) 
F(x(s, t), y(s, t)) = (7) 

x/1 - E2(x(s, t), y(s, t)) 

Define C(0) ------ X(s, O) = {x(s, 0), y(s, 0)} as the 
smooth (and, in some cases, closed) initial curve, and 
C(t) = X(s,  t) as the one-parameter family of curves 
generated by moving C (0) along its normal vector field 
with speed F. Here, F is a given scalar function of 
the brightness E. Using this notation, Eq. (6) can be 
written as a planar curve evolution equation ~t C (t) = 

F(x, y) • ?~. Sethian (1989) called such propagation 
models a"Lagrangian" evolution equations because the 
physical coordinate system moves with the propagating 
front. 

In the sequel we consider the accuracy and stabil- 
ity problems of a simple numerical approximation of 
Eq. (6). Following an analysis of the problem as was 
done by Sethian (1989), a simple difference approxi- 
mation is considered. Divide the parametrization inter- 
val [0, S] into M equal intervals of size As and t into 
equal intervals of length At. Define a marker point 
as pn = {x~,yn} = {x(iAs, nA t ) , y ( iAs ,  nAt)}. 
A numerical algorithm should produce new values 
Pi .n+l from previous positions. Approximate param- 
eter derivatives using a central difference approxima- 
tion and time derivatives using a forward difference 
approximation as follows 

d(P n) 
ds 2As 

d(pn) ~ pn+l _ p? 

dt At 

Substitution of these approximations into Eq. (6) gives 

Pi ~+1 = P~ + At F(x~, YT) 

{YY+l - YT- t , - (xF+l  - x~-l)  } 
x 

~(yin+l n 2 n 2 - Y i - , )  + (x~+l  - xi-1) 
(8) 

The discretization interval As has been eliminated. 
Consequently, as the P's  come together, quotients in 
the right hand side of (8) approach zero over zero, a 
very sensitive calculation. The lack of stability which 
characterizes such numerical algorithms results from a 
feedback cycle, where small errors in the approxima- 
tion of the new P's,  cause local variations in the deriva- 
tives, producing errors in the direction of propagation 
of each P, in turn yielding errors in the approximation 
of the new P's. Therefore after few iterations small 
variations will grow, and the solution can even become 
unbounded. There are some ways to control the sta- 
bility of such algorithms. For example, it is possible 
to reparametrize the wave front at every iteration step, 
and to redistribute the P's  according to arclength. The 
reparametrization adds a smoothing term to the speed 
function, and is difficult to analyze. Control algorithms 
are also needed where topological changes occur. If, 
for example, we start with two separate closed con- 
tours that grow up to a merging point from which they 
continue to grow as a single contour, it is necessary 
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to handle this merging process by an external control 
procedure. 

The reason that Lagrangian formulation suffers from 
these stability and topological problems is due to the 
fact that it follows a local representation of the propa- 
gating front. 

In computer vision problems we are usually work- 
ing on pictures which are samples (pixels) of the real 
information on a given grid. The values between the 
grid points have to be estimated (by interpolation) when 
working with such schemes. 

In order to approximate the height error caused by 
the change in brightness between two marker points on 
successive contours, we first define 

p?+X _ pn + {Axe, Ay n } 

Using this definition and the approximation (8) we have 

{Ys, -Xs} {Ax n, A yn} = At F(x n, yn) 
+ 

Assume that there is no change in direction of propa- 
gation between P" and p,+l. The distance between 
two marker points is given by 

Arn = f f (Ax" )  2 + (Ayn) 2 = AtF(x  n, y") 

Integration of the change in height along the straight 
line L n between P" and pn+l gives the exact change 
in height neglected by the approximation. Define 

drn = ~/(dxn) 2 + (dyn) 2 

= ~/(drAxn) 2 + (drAy")  2 = d r A r n  

then along L"(z) the difference in the height is given 
by 

dr" Ar" 
dt = - - - d r  for every v E [0, 1] 

F(x,  y) F(x,  y) 

Define F" =_ F(xn, y ") and Fn(r) - F(x" + 
Axnz, yn + Aynr). The height error can then be writ- 
ten as 

zn+l ~n+l  zn+l 
en+t f 

At  -- ~ dt 
de n 

~0 
1 Arn 

= A t  --  Fn(r------ ~ d r  

= A t ( l _ F .  fo 1 ~ 1  d r )  

or as a function of the image brightness 

( En f o l x / 1 - ( E n ! v ) ) 2 d v ~  
Z~ +1 = At 1 v/1 -- (~En)2 En(r) ] 

The total error according to the above assumptions is 
given by 

n--1 . y ~ i  
ZTotal Err ~ Zer  r 

i=0 

n-I { E i 
= At  E 1 

i=0 X/1 -- (El) 2 

JL;,(~) 41 - (ei(r))2, ] X 
E ~  a r  / 

As for the characteristic strips expansion, it seems 
that when At --+ 0 the height error Zenrr -+ 0. But 
because of the same arguments, when At ~ 0, the 
errors caused by the estimation of E between the grid 
points badly affect the result. 

4 A New Shape from Shading Algorithm based on 
Level-Sets 

We here propose to recover a shape from its shaded im- 
age via a very ingenious algorithm that was invented in 
fluid dynamics for solving evolution equations of the 
type (6). This algorithm translates the curve evolution 
into a 3D-surface evolution, so that curves changing 
according to (6) are zero (or level) sets of evolving sur- 
face (see Kimmel and Bruckstein 1992; Kimme11992). 
As the 3D surface evolves it inherently handles curve 
shocks by implementing a physically motivated "en- 
tropy condition" together with the Huygens principle 
of the front propagation. The algorithm that produces 
the desired results works on an image defined on a grid 
and is based on a recently discovered efficient numer- 
ical implementation of surface evolution equations. 

4.1 Huygens Principle and the Entropy Condition 

According to the Huygens principle (Sethian 1985), 
the solution of the curve propagation according to 
~X(s, t) = Fh given X(s, 0) at time dt, X(s, dt), 
corresponds to the envelope generated by the set of all 
disks of radii Fdt centered on the initial curve Xo(s). 
Problems occur in the curve evolution when the char- 
acteristics (i.e. the normals of the fronts) of the prop- 
agating curve collide or cross and hence the curvature 
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becomes singular. In order to obtain the solution ac- 
cording to Huygens' principle after a singularity has 
developed, an "entropy condition" should be enforced 
on the propagating curve. One can regard the curve 
as the wavefront of a propagating prairie fire separat- 
ing two areas the shape interior which is not burnt yet 
and the burnt exterior area. The flame propagates in the 
direction of the curve normals (the ignition curves). If 
two ignition curves collide at some time t* neither one 
should have any effect on the propagating curve at t > 
t*. The principle: "What was burnt until t can not burn 
beyond t" (Sethian 1985), is the natural "entropy condi- 
tion" of this and many other curve evolution processes. 

So far we have seen that the direct approach of propa- 
gating the curve according to the "Lagrangian" formu- 
lation is both numerically unstable and suffers from 
topological problems (see Osher and Sethian 1988; 
Sethian 1989). 

To avoid the various problems that occur in this ap- 
proach, like the need for reparametrization in order to 
keep numerical stability and to solve topological prob- 
lems of self intersections by an external control proce- 
dure, the "Eulerian formulation" described below, was 
developed. 

Another algorithm which approximates the La- 
grangian evolution, solves topological problems and 
obeys the entropy condition is a volume of fluid type 
of algorithm presented by Chorin (1980, 1985). In 
this technique the algorithm tracks the motion of the 
interior region instead of the boundary of the propa- 
gating front. The interior is discretized by employing 
a grid on the domain and assigning each cell a "vol- 
ume fraction" colxesponding to the amount of interior 
"fluid" currently located at that cell. Considering the 
gray-level of each picture cell as the amount of its initial 
volume fraction may serve as a shape from shading ver- 
sion of this method. Unfortunately, such representation 
of the boundary causes some difficulties in calculating 
the normal direction which leads to inaccuracy in the 
solution. 

4.2 Solution via the Eulerian Formulation 

The Eulerian scheme is a recursive procedure 
which propagates the height contour while inherently 
implementing the entropy condition. Introduce a func- 
tion q3(x, y, t) initialized so that q3(x, y, 0) = 0 yields 
the curve X(s, 0). Assume that X(s, 0) is a closed curve 
and restrict ¢ to be negative in the interior and positive 
in the exterior of the level set q~ (x, y, 0) = 0. Further- 
more q5 has to be smooth and Lipschitz continuous. 

The idea is to determine an evolution of the surface 
¢(x,  y, t) so that the level sets ¢(x,  y, t) = 0 provide 
the height contours X(s, t) as if propagated by (6) and 
obeying the entropy condition. If~b(x, y, t) = 0 along 
X(s, t) then by the chain rule we have 

-~qb(x, y, t) + q~(x(s, t), y(s, t), t) " X t 

07-(~(x(s, t), y(s, t), t ) .  Yt = + 0 
oy 

o r  

Ct + Vd~. Xt(s, t) = 0 (9) 

The scalar velocity of each curve point in its normal 
direction is 

v = X t ( s ,  t ) .  h(s ,  t)  (10) 

In our case the velocity is given by the scalar function 
F(x, y) defined by Eq. (7) as a function of the local 
image brightness. The gradient V¢ is always normal 
to the curve given by ~b(x, y, t) = 0 so that fi(s, t) = 
- llVOll ' the minus sign indicating the inward direction 
of propagation, hence 

V =Xt  "/~ = X t "  ---V¢ __ F. (11) 
llv¢ll  

Substituting this into (9) yields 

Ct - FIIVqtll = 0 (12) 

Sethian called this approach Eulerian, since the coordi- 
nates here are the natural physical coordinates (x, y). 
Therefore, if we have a surface q~ propagating accord- 
ing to (12) with the level set ¢(x,  y, 0) = 0 coinciding 
with X(s, 0), then ¢(x,  y, t) = 0 will produce X(s, t) 
propagated according to (6) and solving the topologi- 
cal problems due to shocks. In order to drive a numeri- 
cal scheme for the surface propagation equation which 
obeys the "entropy condition" we follow (Osher and 
Sethian 1988), and show the connection to Hamilton 
Jacobi methods, weak solutions and conservation laws. 

Consider the one dimensional equation 

4,, - tlV¢ll = ¢ ( x ,  t) ,  - ~ = 0 (13) 

If we define u --- 4~x, and H[u] = _~/'~7, differentia- 
tion of the above with respect to x will result in a so 
called Hamilton Jacobi equation, in a conservation law 
form 

ut + [H[u]]x = 0 (14) 
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The weak solution of the above equation is defined as 
u(x,  t) that satisfies 

--~ u ( x , t ) d x  = H[u(a , t ) ]  - H[u(b , t ) l  (15) 

n = u ( iAx ,  To devise a numerical scheme define u i 
n a t ) .  A differential scheme of three points is said to 
be in conservation form if there is a "flow" function 
g(ui ,  u2) so that 

u~ +1 - u7 _ g(u n, UT+l) -- g(uin_l, u~) (16) 
At Ax 

where g(u, u) = H(u)  is the consistency condition. A 
. n + l  ~. r (un  1, un, scheme is said to be monotone if u i 

u~+l) is an increasing monotone function in its three 
variables. It is a basic result in numerical analysis that 
a scheme which is monotone and can be represented in 
a conservation form automatically obeys the entropy 
condition (Sod 1985). 

Some schemes based on this idea, like the Lax- 
Friedrichs and Godonov's schemes, are presented 
Osher and Sethian (1988). The simplest flow function 
that can be used for implementation is the so-called HJ 
flow, where for H(u)  = f ( u  2) the numerical flow can 
be given by using in (16) the function 

gns(UT, u,~+,)= f ( (min(uT,  0)) z 

+ ((max(u~+l, 0)12 ) (17) 

and the appropriate (weak) entropy solution of ¢ can 
be written, by integrating Eq. (16) with respect to x, 
as 

, n + l  n n i = q)i -- A t .  g(O_fb~, O + ¢ i )  (18) 

n n n n 

where D_¢ 7 = ¢' -¢'-~ and D+¢~ = ¢,+i-¢, Ax Ax 
This is a so called first order scheme. More so- 

phisticated higher order schemes are presented in Os- 
her and Sethian (1988) and Osher and Shu (1991). 
When adding complicated F velocities (which can be 
place and time dependent) the nice stability and accu- 
racy properties of such schemes still hold (see Sethian 
and Strain 1992). The above scheme is readily ex- 
tended to more than one dimension, for example for the 
case H(u,  v) = f ( u  2, v 2) (in our case u = Cx, v = 

Cy) 

¢~j+' = ¢~j -- A t .  g (DX qSi$, D~ dpi$; D y_dp~, D y+dp nql 

(19) 

Here 

gHS = f( (min(Di¢~. ,  0)) 2 + (max(D~_¢~, 0))2; 

0)) 2 + 0)) 2) 
(20) 

The result is the following algorithm 
• Choose a function ¢(x,  y, 0) such that 

- -  ¢(x,  y, O) = 0 provides the initial curve X(s, 0). 

- -  ¢ (x, y, O) < 0 in the interior of the initial curve. 

- -  ¢ (x, y, O) > 0 in the exterior of the initial curve. 

- -  ¢(x,  y, O) is Lipschitz continuous. 

• Propagate ¢ on an x, y-grid of desired spatial reso- 
lution according to 

¢, - F I I V ¢ I I  = 0 

using a conservation form numerical scheme. 
AH • Draw an equal height contour every ~ time steps, 

by finding the contour (level set) ¢(x,  y, k A H )  = 0 
which is XgAu(S). The result is a weak solution of 
(6), obeying the entropy condition. 

This algorithm automatically enforces the entropy 
condition, and frees one from the need to take care of 
topological changes (see Fig. 3). 

In fact this formulation deals with the topology of all 
up going (or down going) surfaces without any external 
control or outside interference. 

a ( t 2 )  

#(tl) ~ _ ~  

z 1)} 

{x(s,t2),y(s,t2)} 

x 

Fig. 3. When ¢ propagates in time, the function may stay continu- 
ous while the height contours form two separate close curves which 
are not connected anymore. 
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The algorithm also deals with shock formation in the 
propagating contours which indicates sharp corners in 
the reconstructed surfaces, within the numerical flow. 
One of the great advantages of the Eulerian formulation 
is that the coordinate system of the propagated 0 func- 
tion is fixed, thereby avoiding the stability problems of 
the Lagrangian formulation. 

The Eulerian formulation was introduced by Osher 
and Sethian in order to deal with constant or curvature 
dependent velocities• In our problem the velocity F 
is position dependent, a function of the image bright- 
hess. From the velocity definition (7) it is obvious 
that as E ~ 1, at the singular points, the velocity 
F -+ co. In order to avoid numerical problems we 
restrict the brightness function to get the maximum 
values of Emax < 1 as follows 

/ ~ = { E  O <_ E <_ Em~ 
Emax Err~x < E < 1 

which yields Fma~ = Em~x ~ .  This restriction is also 

necessary in order to specify At for which the numer- 
ical flow still obeys the monotonicity demand and the 
CFL (Courant Friedrichs Lewy) condition. 

4.3 Initialization 

Every ¢b function which obeys the demands described 
earlier provides a good initialization. We present sev- 
eral ways to initiate the 0 function, obeying smooth- 
ness, continuity and ~b (x, y, 0) = 0 gives the initial 
contour. Given X0(s), it is possible to produce the 
following initialization 

+d((x,  y), X(s, 0)) 

(x, y) e exterior of X(s, 0) 

~(x,  y, O) = ~ --d((x,  y), X(s, 0)) 

/ 
o 

(x, y) e interior of X(s, 0) 

(x, y) E X(s, 0) 
(21) 

where d(., .) is the (minimal) Euclidean distance of the 
point from the initial contour. Alternatively, by limiting 
the values ofq~ to [ -C ,  +C], we can have 

min[+d((x, y), X(s, 0)), C] 

(x, y) e exterior of X(s, 0) 

~p(x, y, O) = max[-d((x,  y), X(s, 0)), - C ]  

(x, y) e interior of X(s, 0) 
0 (x, y) E X(s, 0) 

(22) 

Here C is an arbitrary constant. If we choose h = 
Ax = Ay = C = 1 then the values of the q~ (x, y, 0) 
function on the grid will vary in the interval [ -1 ,  1]. 
The values of the open interval ( -1 ,  1) will only be 
given to grid points at a distance less then the mesh 
size from the curve. This initialization process is quite 
simple. 

When dealing with rotationaly symmetric re- 
flectance maps it is possible to define the initial height 
contour by first thresholding the gray-levels in the pic- 
ture and separating all the "singular" areas. Then one 
can use the gray-level function to initiate the ~b func- 
tion in a simple way. For example if the gray levels 
of the shape E (0, G] (where G E (0, 1) is the se- 
lected threshold), the singular areas e (G, 1] (possibly 
white), then the first level contour can be approximated 
as the level set of gray level G. In this case we can take 
0 (x, y, O) = E(x,  y ) - G  near the selected singular ar- 
eas, as the required initialization, making direct use of 
the continuity of the gray levels in the picture, without 
any extra calculations. This is the initialization method 
used in our later examples. 

4.4 Height Assignment 

After initialization has been completed the 0 is propa- 
gated according to the above described algorithm. Our 
main goal is finding the height of each grid point, while 
the q~ function is propagated on the grid. A way to 
achieve accurate results using a simple linear interpo- 
lation is as follows: 

Every iteration step, for each grid point, check 

• ~.n-1 0) < 

then heighti.j = At n ~ bn. _ ~bn- 1 1. 
t ,J t,J / 

Using the above procedure each grid point gets its 
height at the "time" when the 0 functions'--zero level 
passes through it. 

4.5 The Contour Finder 

If height contours of the reconstructed shape 
are needed, a simple contour finder for X(s, L) can be 
generated following (Sethian and Strain 1992) in 
the following manner: for each grid point (i, j ) ,  
use a cell definition as follows A/q = {Oi.j, ~i+l,j, 
~gi+l,j+l, ¢i,j+l }. Now, if max[All j] < 0ormin[.Mq] > 
0 then the contour X(s, L) does not pass through 
the cell. Otherwise find the entrance and exit points 
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Fig. 4. Reconstruction of a "volcano" mountain, see text. The gray curve in d. is the initial contour. 

of tp = 0 by linear interpolation; this provides a 
line segment of X(s, L) belonging to the contour. 
The line segments need neither to be ordered nor 
directed in the same direction in order to display 
the desired contour (see Fig. 5), however using ad- 
ditional information like the knowledge of the inte- 
rior, one can produce any desired representation of the 
curve like polygonal, cubic or any other polynomial 
representation. 

4.6 General Light Source Direction 

When the light source direction is l" (as defined in (1)), 
the brightness map under the Lambertian shading rule 
is E = 1.1V. In this case the surface normal is on a 

tilted ambiguity cone as described earlier (see Fig. lb). 
However, it is possible to find the normal direction re- 
calling that the surface normal projection on the (x, y)- 
plane is in the direction of the contour normal h. In 
other words, the surface normal is the intersection of 
the amb~uity cone and the plane defined by h and 
(where Z ~ [0, 0, 1]r). We get the following pair of 
equations 

(23) 
(,~ × 2 ) -  ~ = 0 

The contour normal direction is given by h -- v~ IIv~ll" 
When propagating the function ~b it is important to 
estimate the exact velocity of F near the current 
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Celt {i,j} 

Fig. 5, 

- -  P h i  i,j 

+t$ 

P h i  i,j+l P h i  i+1 ,j+l 

Contour Finder finds a line segment  in N'ij. 

contour. The velocity F is calculated by using the 
estimated projection of ~r on the time changing h. In 
this case, Eq. (23) produces two possible solutions for 
each grid point. The choice between the two is quite 
simple when one of them is negative (the projection 
on the fi or on the Z axis is negative). In this case we 
must choose the positive solution. In the other case, 
when the two possible solutions are positive, the selec- 
tion process is done by using the continuity of surface 
normals, that is, by using the unambiguous normals 
along the the curve to eliminate the wrong solutions. 
The velocity is "time" dependent in the general case 
of light source direction, because of the fact that the 
planar normals directions change as the 3D surface 
propagates, and it can be calculated every few iter- 
ations, (F(x, y, t) is the surface normals' projection 
on Z.) 

4.7 About Topological Problems 

There are several topological problems that can not be 
solved by the algorithm introduced earlier. Bruckstein 
proposed in Bruckstein (1988) to rely on Maxwells' 
(1870) and Cayleys' (1859) results on the possible be- 
havior of equal height contours of smooth surfaces. We 
shall discuss two methods for handling complex topo- 
logical problems, or at least understanding the difficul- 
ties in solving such problems. To use these methods 
we use the possibility of detecting and characterizing 
saddle points while propagating the contours (see also 
Oliensis 1990, 1991). 

For the first method, let us imagine an object in an 
empty container. Filling water into the container will 
generate height contours on the object. If there is a 
hole or a deep crater in the object, it would not be 
filled with water even when the water level exceeds 
the lowest point in the crater. Water will start flowing 
into the crater only after the water line has reached a 
certain saddle-point. After that the water will flow over 
the saddle and fill the crater. The waters' path from the 
saddle to the lowest point of the crater is a characteristic 
strip starting at the saddle point and ending at a local 
minimum. After the water level in the crater reaches the 
saddle point, adding more water will raise the general 
water level in the container. The type of saddle point 
described above is reached by the height contour only 
from one side (a simple saddle point is characterized 
by four sides). 

An algorithmic interpretation of the processes we 
have just described is the following. When developing 
the shape from shading algorithm via height contours, 
if we detect that the current height contour approaches 
a singular point from one side only we can conclude 
that this point is a saddle point, stop the propagat- 
ing curves and attempt to produce characteristic strips 
starting from the "opposite" side of the saddle point. 
One scharacteristic will reach the local minimum of 
the crater, and we can start propagating height con- 
tours inside the crater. When this propagating contour 
reaches the saddle point from which the characteristic 
strip began, it will merge with the outside contour (wa- 
ter level) and produce a complete equal height curve 
from which the process can continue. This process 
goes on till the whole object is reconstructed (covered 
with water). Note that if a saddle point is reached from 
two (opposite) sides the algorithm automatically takes 
care of the topology. 

The second method has some similarities with 
the first one. It also uses saddle points as merging 
points. According to this second method, we start 
propagating height contours from all the assumed lo- 
cal minima/maxima as separate processes. A prop- 
agating contour will stop when it reaches a singular 
(saddle) point from only one direction, and "wait" for 
another curve from a different process to reach the 
same saddle point from the opposite direction. It could 
be possible to find the source from which the second 
propagating contour begins by some heuristic, such as 
considering the distance of the source (singular point) 
from the saddle point or by propagating a character- 
istic strip to the other side of the saddle as a probe 
searching for the minimum, (which is actually the first 
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method), two contours will merge into one. The first 
contour assigns its height to the second one, and the 
local processes will merge and continue propagating 
together. This procedure should go on, until all sin- 
gular points have been covered by the merging and 
pr0pagating contours, thereby reconstructing the en- 
tire object. Note that the height assignment between 
the merging local processes is somewhat similar to a 
chain reaction. 

The Eulerian algorithm handles all "going up" or 
"going down" surfaces, when the initial conditions are 
known. Given an initial contour, the surface may be 
reconstructed automatically if the propagating contour 
does not have to change its propagation course. This 
is the case in the volcano example described in the 
next section, assuming starting from the top. However, 
if the propagating contour has to start decreasing in- 
stead of increasing its height, the change of direction 
will cause the topological problems discussed in this 
section. In some further research we explored the 
topological problems. We showed that by adding 
smoothness assumptions and excluding pathological 
singularities, the topological ambiguities may be re- 
solved in a simple deterministic way (Kimmel and 
Bruckstein 1993b). Still, the + / -  ambiguity of the 
shape from shading problem can not be solved, and 
is obviously an inherent characteristic of the problem. 
In the next section we demonstrate the Eulerian al- 
gorithm running on real and synthetic images with- 
out considering the topological problems that might 
arise. 

Figure 4 shows an example of reconstruction for a 
"volcano" surface, starting from a small curve around 
the singular area at the top of the mountain. In the 
equal height contours picture of the reconstructed sur- 
face (Fig. 4d) one can observe the way topological 
problems like the saddle on the lowest left corner are 
inherently solved through this "down-going" process. 
Note however, that starting at the base of the volcano 
would require special treatment to proceed beyond the 
saddle point. 

Figures 6a, b and c present the errors of the orig- 
inal object compared to its reconstruction. The dif- 
ference between the original synthetic object and its 
reconstruction is displayed as a density map, as an 
elevation array and as a graph of a slice along the main 
diagonal running from (1, 1) to (64, 64). The heights 
along the slice as well as the errors are shown in two 
graphs. The error analysis is performed for three differ- 
ent parameters: (At = 0.01, Emax = 0.999), (At = 
0.07, Emax = 0.99), and (At = 0.21, Emax = 0.977), 
in Figs. 6a, b and c, respectively. The gray curve on 
the lower left slice graph is the reconstruction while 
the black curve is the original height along the slice. 
As we increase Emax while truncating the gray levels, 
At should be decreased (the CFL condition must be 
satisfied). 

Another simple example is the reconstruction of an 
"up-going" surface. Three mountains are the origi- 
nal surface (Fig. 7a) producing image of Fig. 7b. The 

5 Examples and Results 

We demonstrate the performance of the proposed algo- 
rithm by applying it to several synthetic and real shaded 
images. The synthetic images were generated for sur- 
faces assumed to be Lambertian, and the size of these 
images being quite small (64 x 64 pixels). The initial- 
ization is achieved by using gray-level thresholding to 
specify initial "singular areas". In all of the examples 
the light source direction is known to coincide with the 
viewer direction for simplicity. In any case the light 
source direction is assumed to be known. However, 
a more general formulation of the shape from shad- 
ing via curve evolution is possible. The new formu- 
lation overcomes the need for special treatment along 
the contour in cases of oblique light sources (Kimmel 
and Bruckstein 1993c). 

15 

i0 

i 

Fig. 6a. Errors  in recons t ruc t ing  the vo lcano  model ,  see text. 

A t  = 0.001,  Emax = 0 .999.  
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Fig. 6b. Errors in reconstructing the volcano model,  see text. 

A t  = 0.07, Emax = 0.99. 
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Fig. 6c. Errors in reconstructing the volcano model, see text. 

2xt = 0.21, Emax = 0,977. 

reconstruction of the surface from the image and the 
reconstructed equal height contours, using the con- 
tour finder described earlier, are shown in Figs. 7c 
and 7d. In this example the initial curve is the bor- 
der of the large singular area surrounding the three 
mountains. 

The surfaces shown so-far are smooth, and no shocks 
where formed in the propagating contours. A sim- 
ple example demonstrating shock formation in the 

propagating contours, and the way shocks are dealt 
with by the numerical scheme, is provided in Fig. 8d. 
This example is an "up-going" surface from the given 
initial curve at the basis of two adjoining pyramids. 
The shapes of the pyramids are determined by the ini- 
tial contour surrounding the base of the two pyramids. 
Starting from a circular contour surrounding a constant 
gray level area and propagating inwards would have re- 
suited in a cone shape. The apex as well as the edges 
of the pyramids exist somewhere between the image 
pixels and are therefore not shown in the synthetic im- 
age. The initial contour is determined by the white 
(singular) area surrounding the two squares, where the 
gray level of the squares determines the slope of the 
pyramids. 

Figures 9, 10 show the behavior when the image is 
corrupted by Gaussian noise. The reconstructed sur- 
face is affected by the noise but it can still be recognized 
even when the noise variance is quite large. 

In Figs. 11 and 12 "Salt and Pepper" noise is added 
to the original picture. The algorithm overcomes such 
local disturbances by not allowing the grid samples of 
the 4, function to get isolated negative valued points (see 
Figs. 1 lb, 12b), or by simply reconstructing the isolated 
black grid points as small pyramids (the "shocks" in 
Figs. l lc ,  12c.) 

Applying the algorithm to real images is demon- 
strated in the two following examples. The CCD cam- 
era pixel is rectangular, with aspect ratio 0.7, and this 
can be accounted for by the algorithm by simply defin- 
ing Ax = 0.7 and Ay = 1. In Fig. 13, areconstruction 
from the Socrates image, the picture of a small plas- 
tic statue (Fig. 13a) is demonstrated on a 128 x 128 
pixel grid. Two views from different angles of the 
reconstructed surface are shown in Fig. 13c and 13d. 
Figure 14 is the result of the algorithm performing on 
a standard photo digitized on a 128 x 128 grid. 

We have chosen to compare our algorithm to the 
viscosity solution approach that is a representative of 
a new generation of the shape from shading iterative 
algorithms. There is a close geometric relation be- 
tween the two approaches: The viscosity solution uses 
an iterative numerical scheme to deform a surface un- 
til tan ~ (the surface orientation angle) coincides with 
. , /1 - E 2 / E ,  while our algorithm uses a numerical al- 
gorithm to propagate an equal height contour with local 
velocity of cot ce = E / . , / 1  - E 2. This relation and the 
connection to weighted distance transforms is further 
explored in (Kimmel and Bruckstein 1993a, c; Kimmel 
et al. 1994). 
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Fig. 7. Reconstruction of a synthetic image given on 64 × 64 grid, see text. The gray curve in d. is the initial contour. 

6 A Comparison to the Viscosity Solutions 
Approach 

Rouy and Tourin recover a Lambertian surface from 
it's shaded image by finding a viscosity solution to a 
Hamilton-Jacobi equation (Rouy and Tourin 1992). In 
this section we illustrate their approach with numerical 
simulations on three synthetic surfaces and compare it 
to the method of  propagating level sets. 

6.1 Hamilton-Jacobi Formulation 

Recall that in the case of  a Lambertian surface il- 
luminated by a single distant overhead light source 

(with p~, = 1) the image irradiance equation reduces 
to 

1 
E(x, y) = ~/1 + p2 + q2 

Withy = (x, y )and  Vz(Y) = (p, q) thisis afirst order 
Hamilton-Jacobi equation of  the form 

n ( ~ ,  Vz(£)) = E(£)~/1 + Ivz(~)l  2 - 1 = 0 (24) 

Rouy and Tourin show that with f2' C f2 defined 
by 

f2' = {.~ ~ f2/E(£) # 1} 
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Fig. 8. Reconstruction of a synthetic image given on 64 x 64 grid, see text. 
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Fig. 9. Reconstruction after adding Ganssian noise to a 64 × 64 synthetic picture, a. Variance of 58, b, Variance of 318. 

the equation and substitute 24 into 24 we get 

H(.~, Vz(£))  = 0 in f2' IV z(~)[ = n(~)  in f2' 

z(.7) = 4~ onSf21 
z(Y) = 4~ on 3f2' (25) 

has at most one viscosity solution. This is a valuable 
result; if  the value of the solution is known on 3f2 I, the 
shape is totally determined. I f  we set 

n(Y) = / .  1 
V E( .~)  2 

- -  - 1 o n e 2  

(26) 

6.2 Algorithm 

Rouy and Tourin show that a numerical approximation 
Z of equation 25 satisfies 1 

Zij = (b(xi, yj) ¥(i,  j )  ~ 8Q'; 

go(D~Zij,  + DyZij ,  + D x Z i j  , Oy  Z i j )  : 0 

V(i, j )  ~ Q'.  (27) 
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Fig. 10. Reconstruction after adding Gaussian noise to a64  x 64 synthetic picture, a. Variance of 58. b. Vafiance of  318. 

They employ a fast algorithm proposed by Osher and 
Rudin (1993) to compute a solution of Eq. (27). In our 
experiments, we choose a simpler (but slower) scheme 
suggested by them (Rouy and Tourin 1992). We do 
so for ease of implementation; we are not particularly 
concerned with its speed. Let G be the operator defined 
on the space of all Z = ( Z i j ) ( i , j ) E O  " by 

D~ Ziy, G ( Z ) i j = g i j ( D x Z i  j ,  + D y Z i j ,  D r+zij)," 

V(i, j )  e a '  

and let At < min(Ax, Ay). 

• Step n 0: Choose Z ° o such that : = (Zij)(i,j)EO. 
Z ° = ¢(xi ,  y j)  V(i, j )  e ~Q' and G ( Z  °) < 0. 

• Step n -t- 1: Let Z~j +1 = Z~  - AtG(Z) i j ;  
V(i, j )  6 Q'; Vn E At. 

6.3 Results and Discussion 

Figures 15, 16 and 17 show results of the viscosity- 
solutions approach for the pyramids, three-mountains 
and volcano surfaces. Recall that for each shaded im- 
age, the viscosity solution applies in the region Q~ 
where the normalized image intensity is not equal to 
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Fig. 11. Reconstruction after adding 7% "Salt and Pepper" noise to a 64 x 64 synthetic picture. 
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Fig. 12. Reconstruction aider adding 7% "Salt and Pepper" noise to a 64 x 64 synthetic picture. 
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Fig. 13. Reconstruction from a real image of Socrates plastic statue given on 128 × 128 grid. 

1, and that the height of the solution surface must be 
specified on the boundary of this region 3 QI as an initial 
condition (Eq. 24). These figures depict the region of 
interest Q' and its boundary 3 Q' in the following way: 
Q~ is the white area and 3 QJ is the boundary between 
the white area and the black background. We exam- 
ine the performance of the viscosity-solutions approach 
under two circumstances: (1) when elevation informa- 
tion is fully specified as required by the algorithm i.e. 
at all the singular areas; (2) when only partial elevation 
information is available. 

First, while the reconstruction of the pyramids sur- 
face is very good ~ig.  15), the reconstructed three- 
mountains surface is not smooth in the hyperbolic 
areas between the mountain peaks (Fig. 16 row 2). 
Similarly, the reconstructed volcano surface is not 
smooth around the rim of the indentation and in ad- 
dition has a 'jump' at the top (Fig. 17, row 2). In 

contrast the level-sets approach yields smooth results 
without artificial jumps or discontinuities, as shown in 
Fig. 4. 

Second, the elevation of the surface at its singular 
areas may be known only partially. For example, when 
elevation information is specified at all local minima 
of height, the reconstruction of the three-mountains 
surface does not get worse, and the reconstruction of 
the volcano surface (Fig. 17, row 3) actually improves 
slightly; the 'jump' at its top has disappeared. As 
another example, when elevation information is spec- 
ified at all local maxima of height and the solution 
surfaces are turned upside down, the reconstructed 
three-mountains surface is smooth in the hyperbolic 
areas, although accuracy is lost in the region around 
its base; similarly, the reconstructed volcano surface 
is smooth along the rim of its indentation, although 
accuracy is again lost in the region around its base. 



a. Photograph Picture b. Equal Height Contours 

Fig. 14. Reconstruction from a photograph picture of  the first author given on 128 x 128 grid. 

Fig. 15. Results for the pyramids. Top left: the shaded image; top middle: equal height contours of  the true surface; top right: 3D mesh plot 
of  the true surface; bottom left: region (white is interior); bottom middle: equal height contours of the solution surface; bottom right: 3D mesh 
plot of the solution surface. 
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Fig. 16. Results for the three-mountains. Row one left: the shaded image; row one middle: equal height contours of the true surface; row one 
right: 3D mesh plot of the true surface; row two left: region one (white is interior); row two middle: equal height contours of solution surface 
one; row two right: 3D mesh plot of solution surface one; row three left: region two (white is interior); row three middle: equal height contours 
of  solution surface two; row three right: 3D mesh plot of solution surface two. Row four left: region three (white is interior); row four middle: 
equal height contours of solution surface three; row four right: 3D mesh plot of solution surface three inverted. 
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Fig. 17. Results for the volcano. Row one left: the shaded image; row one middle: equal height contours of the true surface; row one right: 
3D mesh plot of the true surface; row two left: region one (white is interior); row two middle: equal height contours of solution surface one; 
row two right: 3D mesh plot of solution surface one; row three left: region two (white is interior); row three middle: equal height contours of 
solution surface two; row three right: 3D mesh plot of solution surface two. Row four left: region three (white is interior); row four middle: 
equal height contours of solution surface three; row four right: 3D mesh plot of solution surface three inverted. 
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In conclusion, Rouy and Tourin prove a valuable 
uniqueness theorem and design an algorithm for re- 
covering a Lambertian surface from its shaded im- 
age. In many cases their approach yields results that 
are comparable to those of the level-sets approach, in 
particular when only local minima or local maxima 
of height determine the initial condition. However, 
the use of  elevation information at all singular areas 

can lead to artificial ' jumps '  and discontinuities in the 
reconstructions. In contrast the level-sets approach re- 

quires fewer initial conditions, a single equal height 
contour, and in addition the reconstructions are free of  
artificial ' jumps '  and discontinuities. 

7 Concluding Remarks 

We have described a method for recovering the shape 

of  an object  from its shaded image by an equal height 
contour propagation method. Topological problems 
in the propagated height contours are often inherently 

avoided in this method. An efficient and numeri- 
cally stable implementation was presented. In this 
method shocks, cusps and other singularities formed 
in the contours are also readily dealt  with in an effi- 
cient numerical  scheme. The algorithm works on the 
pixel grid. It is easy to implement  the algorithm in 
parallel using each mesh point as a small calculating 

device which communicates with its four close neigh- 
bors. In each iteration we need to calculate the values 
of ~b(x, y,  t) in those grid points close to the current 

contour and the rest of  the grid points serve as sign 
holders. This can be exploited to reduce calculation 

effort. 
In summary we propose to import to the com- 

puter vision field some recent advances in numeri- 
cal methods for fluid dynamics. We have shown that 
wavefront propagation methods in fluid dynamics also 
provide a nice approach to the problem of shape from 
shading. 
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Notes 

1. ~2 is the rectangular domain of T¢ 2 under consideration. Zij 
is the value of the numerical approximation of the solution at 
(xi, y j )  = ( lAx ,  jay) ,  with mesh sizes Ax, Ay > 0. The 
index sets Q', ~Qr and Q are defined by 

Q' = {(i, j)  E J~2/(xi, yj) ~ f2'} 

~a'  = {(i, j)  E Af2 /(xi, Yj) E 8f2'} 

0 = {(i, j )  c .Af2/(xi, yj) ~ (2} 

N/j is the value of n at (xi, yj). For all approximations Z, for 
all (i, j)  E Q' 

O+x Zi j  .~. Z i+l j  - Z i j  
Ax 

+ Zi j+l  -- Z i j  
Dy Zij - Ay 

Zi j  - Z i _ l j  
D x Ziy -- Ax 

Zij -- Zij-1 
Dy Zij : Ay 

g is a vector of functions from 7~ 4 to 7-¢ defined by 

gij(a, b, c, d) = ~/max(a +, b-) 2 + max(c +, d-)  ~ 

- N i j ; ¥ ( i , j )  E Q';V(a,b,c,d) ~ 7~ 4 
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