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Abstract--We propose a new approach to skew-symmetry detection, based on the theory of invariant signatures 
for planar objects. Invariant signatures associated to object boundaries are generalizations of the curvature versus 
arclength description of curves, invariant under geometric transformations more complex than the Euclidean 
ones. We show that symmetries of objects, and hence of closed boundaries, translate into simple structures in the 
invariant signature functions and are therefore, in principle, readily detectable. © 1997 Pattern Recognition 
Society. Published by Elsevier Science Ltd. 

Symmetry Skew-symmetry Invariant signatures Shape analysis 

1. INTRODUCTION 

Patterns and symmetries are a source of endless en- 
joyment for all of us: We seek to detect symmetry and 
pattern whenever we are presented with visual or audi- 
tory stimuli and we try to design and produce things with 
interesting symmetries and structures. H. Weyl in his 
remarkable book Symmetry, (1) shows that "symmetry in 
its several forms, bilateral, translatory, rotational, orna- 
mental", etc. is a geometric concept closely related to the 
notion of "invariance of a configuration of elements 
under a group of automorphic transformations". 

Computer Vision and Computational Geometry re- 
searchers interested in shape analysis have devoted much 
work to developing symmetry detection methods, see 
references (2-5). The algorithms that were developed for 
symmetry detection exploit in clever ways the invariance 
of shapes or configurations of geometric elements 
implied by various types of symmetries. 

If we have a bounded configuration of geometric 
elements (points, lines, basic simple shapes) in 2D, the 
groups of transformation whose invariances generate 
symmetries are rotations about the centroid and reflec- 
tions about lines passing through it. If, furthermore, the 
number of feature points in the bounded geometric 
configuration is finite then the size of the group of 
transformations that could induce symmetry invariances 
is finite. Hence it is usually not very complicated to 
detect symmetries in such cases: We must perform a 
finite number of tests for reflection or for rotation 
symmetries. 

Atallah (4) and Eades (5) have shown that symmetries of 
planar point configurations consisting of points and 
segments can be detected with efficient algorithms. 
For example, detecting reflection symmetry for polygons 
can be done in the following way: encode the closed 
polygonal line defined by the (cyclic) sequence of points 
{P1P2PN} via an associated cyclic sequence of triplets, 
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each associated to a break point Pi, 

( d N ~  dl ) (dl ~2d2 ) ( d2~3d3 ) . . ' ( dN-~ ~NdN ), 

where di is the length of the segment eiPi+l and ai is the 
angle in the range [-Tr, 7r] at the ith vertex. This (ob- 
viously redundant) representation clearly enables us to 
reconstruct the polyline up to a Euclidean transformation, 
and the various symmetries of the object, if they exist, 
will become apparent in it. In particular, the reflection 
symmetry appears as a palindromic structure of the cyclic 
sequence {. . .diai+ldi+l. .-} about some center point. 
This property is easily detected with a linear algorithm in 
N, see references (4,5). 

A related problem of much interest to the Computer 
Vision community is the detection of "skewed" symme- 
tries. To give an illustrative example, assume that a 
symmetric planar shape is projected into an image by 
a pin-hole camera. The image clearly loses its symmetry 
in the process, whenever the image plane is not parallel to 
the object plane. However we, humans, are exhibiting 
remarkable capabilities of detecting symmetries in spite 
of such viewing distortions. It is considered important to 
have the capability of analyzing and recognizing shapes 
and their symmetries, even when those underwent quite 
severe distortions due to the, generally nonlinear, projec- 
tion involved in the image acquisition process. Hence, the 
problem of detecting skew symmetries received a lot of 
attention in the machine vision literature, see for example 
the survey of the "state-of-the-art" in a recent paper by 
Gross and Boult Gross and the references therein. Most 
of the work in this context, including ~6) (and also refer- 
ences (7-9)), dealt with skew symmetries as defined by T. 
Kanade, (l°A~) assuming distortions due to orthographic 
projections and devising various, most often global and 
sometimes local and feature-based, ad hoc procedures to 
determine the slanted symmetry axis of distorted planar 
objects, with reflexive symmetry. Some of the work in 
this area was quite clever and elegant. However, it seems 
to us that a general approach never emerged. 
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In this paper we propose a general framework for 
symmetry analysis of planar shapes based on the use 
of invariance theory. Indeed, differential, semi-differen- 
tial and various types of local invariants were recently 
proposed for the descriptions of planar shapes that would 
enable their recognition even in distorted and partially 
occluded instances. The idea is to use an invariant 
"signature"-based boundary curve description, general- 
izing the commonly used curvature versus arclength 
representation that is invariant only under Euclidean 
distortions. Through the recent work of several teams 
of researchers in computer vision, work based on the 
classical theory of differential and geometric invariants 
for the affine and projective groups of transforma- 
tions, O2'13) a wealth of invariant signatures, of "general- 
ized curvatures" versus "invariant arclength" 
representations are now available. See the papers 
(14-22). 

Invariant arclength was first introduced to model 
symmetries and other similarities by Van Gool et al. (23) 
The ideas presented in this paper first appeared in 
reference (24). In a very recent pape r~25) Van Gool et al. 
present special invariants for the smallest possible 
subgroup of transformations characterizing skew 
symmetries. Those invariants for the affine skew sym- 
metry are simpler than the common affine or equiaffine 
invariants, however in order to compute them a pair of 
symmetrically corresponding points has to be given. 

The main thesis of this paper is that, symmetries, if 
present, will always manifest themselves as special 
structures in the projection-invariant signature functions, 
thereby reducing the problem of symmetry detection and 
analysis to that of analyzing a (periodic) 1D function. 
The computation and analysis of the signatures does not 
require any initial knowledge or assumption of skew 
symmetric point matches. 

Detection of symmetries of planar shapes affected by 
the viewing projection that generated their images can be 
accomplished by encoding the boundaries of the objects 
in the image in ways that are invariant under those 
distorting transformations. This invariance implies that 
the original, undistorted and hence symmetric object (in 
the real "Euclidean" sense) will have the same descrip- 
tion as the entire class of its possible (distorted) images. 

Therefore, 

If symmetry in the Euclidean plane implies invariance 
under some R 2 ~ ~2 transformations, like reflections 
about some axis passing through the centroid of the 
shape or rotations by some angles, symmetry of shapes 
viewed through some distorting, say projective or 
affine transformation implies invariance under the 
"conceptual" concatenation of the projection and 
symmetry transformation maps. 

The next section will discuss the problem of detecting 
reflexive (mirror) symmetry for planar shapes distorted 
by affine and projective viewing transformations. The 
reader should realize that the approach is quite general 
and can be readily carried over to other types of 
symmetries and different ~2__+ Rz distorting maps. In 

Section 3, we discuss the easier case of planar polygons 
and develop methods for reflexive symmetry detection 
under affine and projective transformations. In Section 4, 
we dwell upon some practical considerations arising in 
the application of the proposed method to polygonal 
shapes. Those considerations are readily carried over 
to the case of general shapes. Next we present simulation 
results in Section 5, and conclude in Section 6. 

2. GENERAL APPROACH TO SKEW SYMMETRY 
DETECTION 

A planar object with reflexive or mirror symmetry has 
a boundary curve OK(s) with a (periodic) curvature versus 
arclength description K(s) that clearly displays the sym- 
metry: There are two points cg(pl), C~(p2) on the curve 
such that 

K ( p i + s ) = K ( p i - s )  fo r iE{1 ,2} .  

Hence mirror symmetry induces a palindromic structure 
on the K(s) representation. Conversely, if K(s) has this 
structure the curve we can reconstruct from it (uniquely, 
up to a Euclidean transformation) will necessarily be 
mirror symmetric. Thus the K(s) representation elegantly 
solves the problem of mirror symmetry detection for 
shapes whose instances are "distorted" by Euclidean and 
even similarity transformations in the plane. 

Suppose however that we pose the following general 
question: Given a shape S and a continuous group of 
plane transformations ~-0 : R 2 --+ R 2 (parameterized by 
0) that distort the shape, how could we detect whether the 
"original" undistorted shape is mirror-symmetric given a 
distorted instance of S, i.e. 3-0o [S]. 

The answer to this question is the following: Suppose 
that we can find a ,Y--invariant metric on the planar curve 
(like the Euclidean-invariant arclength metric) and 
furthermore assume we can find a signature function 
(like the Euclidean curvature) that is also 3--invariant. 
Such invariant metrics and signatures will be based on 
some local, differential or geometric properties of the 
curve. Denote the signature versus the oY'-invariant ar- 
clength function by p(~-). All °J0-transformed versions of 
S will then have the same p(~-) modulo some initializa- 
tion for the (clockwise) traversal of the boundary curve. 
(The initialization clearly induces a shift in ~-; 

~- ~ ~- - ~-0). 
Since the identity transformation always belongs to the 

group ~--0, the original, truly symmetric, instance of S 
will have the same p(~-). But p(7-) is computed based on 
some local, geometric properties of the boundary [see 
references (18-22)], therefore the p(~-) description of a 
mirror symmetric S will exhibit the same type of palin- 
dromic symmetry like K(s) for the Euclidean-invariant 
case. 

Therefore, the problem of symmetry detection under 
the distorting ,Y--transformation is quite elegantly solved 
if a ~'--invariant signature versus ?7-invariant arclength is 
found. This signature should have the property that from 
it the boundary is uniquely determined up to a transfor- 
mation J-, [i.e. the equivalence class of all shapes that are 
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~--distortions of each other is uniquely characterized 
by p(r)]. 

As we shall see in the sequel, for planar polygons, such 
signatures are readily found for the groups of affine and 
projective transformations. 

In case we deal with continuous curves, the classical 
theory of differential invariants yields signatures with the 
desired property, however, those are unfortunately based 
on using high derivatives of the parameterized curve 
representations. °2'13"1s'17) Several approaches have been 
developed to circumvent the need for high derivatives, 
through the use of global point matches, (ls'19'22) via local 
frames, (2j) or by the local use of global invariants in 
conjunction with finite differences w.r.t the ,Y--invariant 
arclength. (2°) 

need to find two independent invariant descriptions for 
the curve. 

In the following subsections we suggest appropriate 
invariants for the affine and projective groups of 
transformations. For each transformation we suggest 
two symmetrically defined invariants pL, and pR. We 
further present a polygon reconstruction procedure for 
each pair of invariants, and show how to reconstruct 
a truly symmetric instance from a given palindromic 
sequence. We separate two generic cases of palindromic 
sequences: 

• Vertex symmetr ic  sequences palindromic about, say 
the ith element obey 

pR(i -- k) = pL(i + k), pL(i -- k) = pR(i + k). 

3. SKEW SYMMETRY DETECTION FOR PLANAR 
POLYGONS 

In this section we discuss the case of polygonal curves. 
This easier case has some unique properties as for 
example the need for two independent signature func- 
tions associated to a readily available discrete arclength 
parameterization: A sequential numbering of the polygon 
vertices. In the following two subsections we present 
detailed solutions for the detection of affine and projec- 
tive skew symmetric polygons. 

Suppose we are given a planar polygon defined via its 
sequence of vertices Q={QI,  Q2QN} and we wish to 
determine whether it can be the image of a mirror- 
symmetric polygon. If a closed polygonal curve 
P = { P 1 P 2 P N }  undergoes a transformation the vertices 
P~ will be mapped into the vertices Qi of the resulting ~-- 
transformed image Q. Clearly the ordered sequencing of 
the vertices readily acts as an invariant "arclength" 
parameterization. We now ask ourselves what type 
of invariant signatures we could associate to each 
vertex of the polygonal curve. Recall that we need to 
produce a signature sequence associated with Q (that by 
invariance will be the same as the one computed for P) 
enabling the unique reconstruct ion of the equivalence 
class of all planar polygonal curves that are J--equivalent 
toP. 

Suppose we have a single invariant quantity, p, asso- 
ciated with every vertex of the polygon. It is easy to see 
that the scalar invariant series {p(i)}, in conjunction with 
any initialization involving a finite number of vertices is 
not sufficient to reconstruct the entire polygon up to an 
arbitrary transformation. (Just like the sequence of edge- 
length is a valid Euclidean-invariant signature but is 
clearly insufficient for reconstruction of the shape--  
although it might be good enough for model- 
based recognition.) A single invariant descriptor restricts 
the vertex to a one-dimensional locus in the plane 
because it constitutes only one constraint on the vertex 
which would otherwise have two degrees of freedom in 
the plane. We conclude that we need two independent 
invariant quantities associated to each vertex. In a sense 
we see that the invariant arc length description provided 
by the order of the vertices did not help us to get by the 

• Edge symmetr ic  sequences palindromic about the 
space between elements i and i - 1 obey 

pR(i -- k - 1) = pL(i + k ) ,pL( i  -- k -  l) = pR(i + k). 

3.1. Af f ine skew symmetry  

The affine group of transformations ~-a : ~2 __+ ~ is 
given by 

[x ~, j ]  = Ix, y]a + [tx, ty], 

where A is an invertible matrix. The affine group of 
transformations has six degrees of freedom: Two in the 
translation vector and four in the matrix A. Any 2 x 2 
invertible matrix A can be multiplicatively decomposed 
as follows: 

[ c o s O  s i n ¢ ] [ o X  0 ] [ ~  ~] 
A = R . D . S = - s i n 0  cosCJ ay ' 

(1) 

where R is a unitary (rotation) matrix, D a diagonal 
matrix, and S an upper triangular (skew) matrix. In this 
decomposition ~b is the rotation parameter, ax and ay the 
scale parameters in the x and y directions respectively, 
and s the skew parameter. 

It is well known that ~--a preserves area-ratios, since 
under ~'-a areas of shapes are uniformly scaled by 
IdetAI = a,  . ay. The  signature sequence {p(1), 
p(2) . . . .  ,p(N)} associated to Q = {Q~,Q2,. . . ,QN} 
should therefore be (functions of) area ratios of various 
shapes "anchored" at successive vertices of Q. 

For example, we could define 

IIA(ai-1, ai ,  ai+~) II (2) 
pl(i) _- ][A(ai-2, ai ,  ai+2)ll 

or  

II A(ai-2, Qi- l ,  Qi)II (3) 
p2(i) = ~ Q ~ + l ~ O i + ~  " 

In the above HA(A,B,C)[[  denotes the area of the 
triangle A ( A , B , C )  [see Fig. l(a)]. Alternatively, we 
can use the (invariantly defined) segment intersections 
q/L, q/n [see Fig. l(b)] to define a symmetric pair of 
invariants: 
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Q i  

Qi_2 ~ Qi+2 

a 
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Qi 

Qi.2 ~ Qi+2 

b 
Fig. 1. Two affine invariants for polygons. 

/ Q n+2 

Q .  

QB-I 
f 

f a 

Q • , Qk-2 

b 
Fig. 2. A single aft'me invariant pL is not sufficient for reconstruction. 

II/x (q, L, Qi-1, Qi)l[ II A (Q, , Qi+,, q~i)I[ 
pL(i)= l] A(Qi-1, Qi, Qi+l)ll' pR(i)= II A(Q,-~, Qi, Q~+I)I[ ' 

(4) 

Here we have 

L, i , H(qL, Qi-1)ll R,-, II(Qi+l, qR)ll (5) 
P ~ ) : 1 1 ~ 1 1  ' p  W:ll(Qi-l,Qi÷l)[l' 

where II(A, B)II denotes the length of the line segment 
from A to B. Similar types of invariants were proposed for 
affine invariant recognition of polygons under occlu- 
sion. (26) 

Assume the position of a finite number of consecutive 
vertices Qn,. . . ,  Qk is given. It is easy to see that from a 
given invariant series {pL(i)} we can constrain vertex 
Qn-1 to a line trough (the given) Qn+l, whose azimuth is 
determined by pL(n + 1) [see Fig. 2(a)]. Similarly the 
location of Qk+l can be constrained to a line parallel to 
the segment through (the given vertices) Qk-2 and Q~, 
whose distance from the former is determined by pL(k) 
[see Fig. 2(b)]. To fix the locations of Qn-I and Qk+l we 
have to use the invariant series {~(i)}. Clearly, the 
constraints imposed by {pR(i)} on the vertices are sym- 
metric to the constraints of {pL(i)}. It is easy to see that 
the constraints are not independent only if three con- 
secutive vertices (e.g. Qn, Q~+I, and Q~+2) are located on 
a straight line. 

Since the affine transformation group has six degrees 
of freedom, at least six values must be set by the initial 
conditions to enable reconstruction of the polyline. In- 
deed, it is possible to reconstruct the polygon from 
{pL(i)}, {pR(i)} and three consecutive vertex locations 
given as an initial condition. Different positions of the 
initial conditions result in various affine transformations 
of the reconstructed polygon. 

Next we shall show, in a constructive manner, that a 
joint palindromic structure of {pL(i)} and {pR(i)} is 
sufficient to determine aft'me skew symmetry. We do that 
by reconstructing a mirror-symmetric affine transforma- 
tion of the given polygon. Note that an affine transforma- 
tion of a symmetric shape whose symmetry axis is 
aligned with either the x axis or the y axis, loses its 
symmetry property only if the skew parameter is non- 
zero. Hence, specifying an initial condition for a sym- 
metric shape will "cost" us only one degree of freedom 
(i.e will set the skew to zero). 

If the sequence of invariants is vertex symmetric about 
its ith element, then an isosceles triangle initial condition 
I[(Qi- 1Qi)][= [[(QiQi+l)[[ will cause the reconstructed 
polygon to be mirror symmetric, see Fig. 3(a). Changing 
the position of the initial triangle will translate the 
reconstructed polygon. Rotating the initial condition 
around Qi will rotate it. Changing the height of the 
isosceles triangle or its width, will scale the polygon 
in directions parallel or perpendicular to the symmetry 
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Q~ Q i-I d Q~....x ..... 

.* ._ • . 

a b 
Fig. 3. Initial conditions causing a symmetric reconstruction from affine invariants. 

axis. Altogether these variations account for the five 
degrees of freedom remaining after the skew was set 
to zero. 

If the sequence of invariants is edge symmetric about 
the space between elements i and i - 1, and an initial 
condition is given by Qi-l, Qi, Qi+I: Changing the 
position of the initial triangle and rotating it, will trans- 
late the reconstructed polygon and rotate it accordingly. 
Scaling the initial condition parallel (perpendicular) to 
the direction Qi-lQi, will scale the polygon perpendi- 
cular (parallel) to the symmetry axis. The only degree of 
freedom left is the position of Qi+l on a line parallel to 
Qi-lQi [see Fig. 3(b)]. Since pR(i--1)=pL(i)  ZXA it 
may be shown that Qi-2 is on the same line parallel to 
Qi-lai as ai+l, and its horizontal distance from Qi+l is 
[ d ( 1 -  A ) / A ] - x ,  where d is the length of the edge 
Oi-lQi and x is the horizontal distance between ai 
and Qi+l, see Fig. 3. Clearly, selecting the last degree 
of freedom so that [d (1-A) /A]  = d + 2 x ,  i.e. 
x = [ d ( 1 -  2A)/2A] causes Qi-2 to be symmetric to 
Qi+l, and the rest of the reconstruction is naturally 
symmetric as well. Selecting another x, would cause 
the reconstruction to be skewed. 

3.2. Projective skew symmetry 

The projective group of transformations 3-  e : R ~ ~ R 2 
is given by 

I 
[x', Y'I - 1 + wxx + Wyy Ix, y]A + [tx, ty], 

with A an invertible matrix. The projective group of 
transformations has eight degrees of freedom: Two in 
the translation vector, four in the matrix A, and two tilt 
parameters Wx = OH/Ox, and Wy = OH/Oy, indicating 
the tilt of the object plane H in the camera coordinate 
system. As in the affine case the four degrees of freedom 
in the invertible matrix A can be assigned to ~b the 
rotation, ax and ay the scales in the x and y directions, 
and s the skew parameter. It is well known that 9--p 
preserves cross-ratios. The cross-ratio is defined for four 
collinear points P1, P2, P3, P4 ordered on a line. 

II(el,e3)ll' II(P2, P4)[I 
CR(P1,P2,P3,P4)-  [I(PI,P4)[I I[(Pa,P3)II' 

J p  also preserves line intersections. The signature se- 
quence {~o(1), qo(2),.. . ,  ~o(N)} associated to 
Q={Q1,Q2,... ,Qlv} should therefore be based on 
cross-ratios of collinear points anchored at either the 
vertices of Q or intersections of lines through the 
vertices. 

For example we could define ~(i) to be the cross- 
ratio of ai-1, Ci L, C R, and Qi+l, where C L and C R are 
the intersections of the line through Qi-1, Qi+l, with the 
lines through Qi, ai+2 and Qi, Qi-2 respectively, see 
Fig. 4(a). 

Q i  

Qi.2 Qi÷2 

A?,*,:. Qi .~), 

Oi-2 I" ' "  - . , , , k = O  Oi+, 

a b 
Fig. 4. Possible projective invariants for polygons. 
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n+3 

An+#-~ ..-"" 
Q. f-'f 

Qn-i 

a 

Fig. 5. A single projective invariant 

In order to maintain left-right symmetry in the invar- 
iant pair, we use the projective invariants ~L and qo R. ~O L 

is the cross-ratio of A7 z , Ai, A +, and Qi+2. A~ is the 
intersections of the line through Qi-2, Qi-1 with the line 
th rough Qi+l, Qi, and Ai, A + are the intersections of the 
line through A~-, Qi+2, with the lines through Qi-1, Qi and 
Qi-1, Qi+l respectively. The definition for ~9 R is similar. 
In Fig. 4(b) ~L(i) is the cross-ratio of points denoted by 
square bullets, and ~R (i) the cross-ratio of points denoted 
by circular bullets. 

Assume the position of a finite number of consecutive 
vertices Qn, . . . ,  Qk is given. Considering ~L (n + 1) we 
note that since the location of Qn-1 is not yet determined, 
the location of A~-+I also cannot be defined. Remember 
now that the cross-ratio is identical for all point quad- 
ruples created by the intersection of a pencil of four lines 
with another line. Note that ~L(n + 1) is the cross-ratio 
of the intersection points of the line through An+ l, Qn+3 
with the pencil from Qn to Qn+3, Q,,+2, Qn+l, and An+ 1. 
Since the cross-ratio is invariant to the line crossing the 
pencil, the location ofA~+ 1 and hence also Qn-1 can be 
confined to a line through Q~, whose azimuth is deter- 
mined by qoL(n + 1), see the dotted line in Fig. 5(a). 
Similar arguments are valid for the reconstruction from 
the other side of the initial condition, the dotted line 
through Qk-2 being the constraint induced by qo L on the 
location of Qk+l, see Fig. 5(b). Clearly, the constraints 
imposed by {qoR(i)} on the vertices are symmetric to the 
constraints of {~L(i)}. ~L and ~R are not independent 
only in cases where they get extreme values, e.g. if Q~-I 
is located on the line through Q~ and Q,+2. In these cases, 
the values of the invariants are extremely sensitive to the 
location of the vertices, and hence offer little information 
in any practical application. In Section 4, we describe a 
way to recognize such situations and ignore them in the 
detection process. 

Since the projective transformation group has eight 
degrees of freedom, at least eight numbers are necessary 

Q~-3 "...... Qk.~ A~-, 
. . . .  ~ k-1 

Q k  

Qk÷l 

b 

V L is not sufficient for reconstruction. 

as initial conditions for the reconstruction. Indeed it is 
possible to reconstruct the polygon from {~( i )} ,  
{~ ( i ) }  and four consecutive point locations provided 
as initial conditions. Different positions of the initial 
conditions result in different projective transformations 
of the reconstructed polygon. 

Next we show, in a constructive manner, that a joint 
palindromic structure of {~L(i)} and {~R(i)} is suffi- 
cient to determine projective skew symmetry. We will do 
that by reconstructing a mirror-symmetric projective 
transform of the given polygon. Note that a projective 
transformation of a symmetric shape whose symmetry 
axis is aligned with the y axis, loses its symmetry 
property only if either the skew or the x-flit parameter 
Wx are non-zero. Specifying an initial condition for 
a symmetric shape will "cost" here two degrees of 
freedom. 

If the sequence of invariants is edge symmetric about 
the space between elements i and i - 1, then a symmetric 
trapezoid initial condition as in Fig. 6(a) will cause the 
reconstructed polygon to be symmetric. Changing the 
position of the initial configuration will translate the 
reconstructed polygon. Rotating the initial condition will 
rotate it. Scaling the configuration in the symmetry axis 
direction or perpendicular to it, will scale the recon- 
structed polygon accordingly. Changing the relative size 
of the trapezoid bases accounts for tilting the object plane 
in the symmetry axis direction. Altogether these varia- 
tions account for the six remaining degrees of freedom. 

Suppose the sequence of invariants is vertex sym- 
metric about the ith element, and an initial condition 
is given by ai-1, Qi, Qi+l, Qi+2, with A(Qi_I~ Qi, Qi+I) 
an isosceles triangle as in Fig. 6(b). We want to show that 
we can find the symmetry inducing initial condition by 
sliding Qi+2 on a line parallel to the line through Qi-1, 
Qi+l, see Fig. 6(b). Denote the position of Qi+2 on the 
parallel line by x. It is possible to show that for a 
symmetric position of ai-2, ~L(x)=~/R(X) is a one-to- 
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Qi-1 Qi 

Qi, Qi+, 

a b : x  

Fig. 6. Initial conditions causing a symmetric reconstruction from projective invariants. 

one function. Thus, for every given qoL=qo R there is a 
unique x which causes Qi-2 to be symmetric to Qi+2, 
which provides a symmetric initialization for a fully 
symmetric polygon. Here also we can account for the 
six degrees of freedom in the translation, rotation, in-axis 
scaling, and off-axis scaling of the initial condition. The 
last degree of freedom is the ratio between the height of 
the isosceles triangle and the distance between Qi+2 and 
the line through Qi-l, Qi+l. 

4. PRACTICAL CONSIDERATIONS 

In this section we discuss a few practical issues. We 
naturally consider issues relevant to polygonal curves, 
however the problems we present as well as the solutions 
we propose are valid also for general curve descriptions. 

How is the symmetry reflected in the invariants? If a 
shape is symmetric, there are two points (~(Pl), c-~(P2) 
where the symmetry axis crosses the boundary, and 
around which the invariant signature is symmetric 
P(Pi + P) ~ P(Pi - P). The symmetry axis of polygonal 
shapes can cross their boundary either at a vertex or at the 
middle of an edge. We distinguish the two cases as vertex 
symmetry and edge symmetry. As already mentioned, to 
establish symmetry of polygonal shapes we need two 
independent signature functions. We use a symmetrically 
defined pair of signatures: the symmetry of the signatures 
is a reflexive symmetry of their geometrical interpreta- 
tions, e.g. PL and pR (4) in Fig. l(b), o r  ~o L and ~ in 
Fig. 4(b). Thus vertex symmetric signatures palindromic 
about the ith vertex obey 

p R ( i - - k ) = p L ( i + k ) ,  p L ( i - - k ) = p R ( i + k )  (6) 

and edge symmetric signatures palindromic about the 
edge between vertices i and i - 1 obey 

pR( i - - k - -  l) = p L ( i + k ) ,  p L ( i - - k - -  1) = p R ( i + k ) .  

(7) 

If for polygonal curves we do not chose a symmetri- 
caUy defined pair of invariant signatures the symmetry 
conditions are a little different. A reflexive symmetric 
invariant [e.g. pl in equation (2) of a vertex symmetric 

polygon, obeys pl (i - k) =pl  (i + k). Non-symmetric in- 
variants [e.g. p2 in equation (3)], do not always facilitate 
symmetry detection. In some cases it is possible to find 
some function F that f'mds the reflexive symmetric 
invariant given a sequence of invariants. Then the 
signature of a vertex symmetric polygon obeys 

p 2 ( i -  k) = F(p(i + k -  N ) , . . . , p2 ( i  + k) , . . .  , 

p(i + k + N)). (8) 

For example for p2 in equation (3), F ( . . . )  = 1/p(i + k), 
and for pL in equation (4) F ( . . . )  = 1 - p(i + k + 2). 

The above discussion is valid for general curves as 
well. The curvature, for example, is a symmetric feature, 
and its first derivative is a non-symmetric feature (the 
reflexive symmetric feature of the first derivative is 
trivially its negative). 

How are skew symmetric shapes detected? A shape is 
skew symmetric if we find a good candidate for sym- 
metry axis. A symmetry axis obeys one of equations (6) 
and (7) or, for some general invariants [equation (8)]. 
Practically however because of noise and finite accuracy, 
none of the equations is fully obeyed, and we have to 
define a measure E(i) for the deviation from symmetry 
for each vertex i. In our simulations, we chose E(i) to be 
the maximal absolute difference over all possible 
values of k. For example, the vertex symmetry indicator 
equation (6) is 

E(i) = mkax{lpR(i -- k) - pL(i + k)[, 

]pL(i-- k) - pR(i + k)[}. 

This indicator is simultaneously the l °° norm and an order 
statistics. One can choose any other metric or order 
statistics, though one has to consider the consequences. 
For example, an 12 norm of a large shape may accom- 
modate small deviations from symmetry, and the median 
statistics may allow drastic local deviations. 

The actual decision of whether a specific indicator is 
sufficiently small to indicate a skew symmetry axis is 
very difficult to resolve and is, at least partly, connected 
to the theory of hypothesis testing. In order to compen- 
sate for noise in the image, indicators are compared to the 
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manifestation of the same noise in other indicators 
obtained for the same shape. The indicators of true 
symmetry axes are thus expected to have significantly 
lower values than all the other indicators. Note the we 
implicitly assumed that shapes are not circle like shapes 
(in which case it may have been better to chose an 
absolute threshold on the indicators). 

Setting the value of the critical parameter in our 
implementation, namely, how low should the lowest 
indicator be to be considered significant (as well as many 
other possible parameters, e.g. multiple symmetry axes), 
is purely a hypothesis testing problem. One has to 
consider the trade of between false alarm (detection of 
a false symmetry axis) and miss detection (an actual 
axis not detected). The results presented in the next 
section indicate that this trade off may be satisfactorily 
resolved. 

What is the sensitivity to noise in the boundary de- 
scription? Line intersections, characterizing the affine 
and projective signatures, may sometimes be extremely 
sensitive features, see, e.g., references (27,28). Places 
must therefore be located for which the geometry of the 
(transformed) polygon indicates that small changes in 
vertex locations may cause large changes in signature 
values. The weight of errors induced by sensitive signa- 
ture values is then diminished. 

We locate sensitive invariants according to a linear 
estimation of the (vertex to signature) error gain factor. 
An error in a signature pair is then weighted so as to 

indicate the implied error in vertex locations. 

IpR(i -- k) - pL(i + k)l ~ IpR(i - k) - pL(i + k)l 
Gd~ (i) + Gp~ (i) ' 

where Gpa(i) is the gain factor from errors in vertex 
locations to (the maximal) error in pR(i). 

In the simulations we found that such a weighting is 
necessary in order to obtain robust symmetry indicators. 
A similar weighting would have to be considered for 
signatures of general shapes as well. 

We have to stress a distinction between two similar 
but different issues. A shape that is almost symmetric 
may be modeled by a strong boundary noise, however its 
detection may be more difficult than the detection 
of a truly skew symmetric shape. Since the invariants 
have strong non-linearities it would be necessary to 
devise more sophisticated weighting techniques to cope 
with the strong boundary noise. Above that, as already 
mentioned, a different error metric would have to be 
considered. 

Can invariant signatures be used to detect partly 
occluded skew symmetric shapes? Signatures of partly 
occluded skew symmetric shapes clearly have segments 
of symmetric signature sequences. The converse is how- 
ever not true. Segments of symmetric signature se- 
quences may also occur if for example two symmetric 
boundary parts undergo different affine or projective 
transformations, see Fig. 7(a). For fully symmetric 

J 

Fig. 7. Symmetric signature subsequences may result from differently skewed boundary segments (a), or 
from occlusions of a truly symmetric shape (b). 
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Fig. 8. Original symmetric polygons: (a) tree, (b) flower. 
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shapes we have shown that the converse is true. To detect 
skew symmetry under occlusion one has to 

1. Locate segments of symmetric signature sequences. 
2. Delete all vertices not in those sequences. 
3. Connect the corresponding ends of the remaining 

sequences by straight line segments (dotted lines in 
Fig. 7). 

4. The occluded shape is skew symmetric if and only if 
the resulting shape is skew symmetric, see Fig. 7. 
Note that in order to determine that, the invariant 
signatures of the resulting shapes must be re-calcu- 
lated. 

What are the drawbacks of the specific application for 
polygonal shapes? The most significant drawback of 
this application is that truly symmetric polygonal shapes 
do usually not exist. Polygonal versions of skew sym- 
metric shapes will not do, because the location (and even 
the number) of the vertices cannot be made symmetric. 

The polygonal case is mainly interesting because it 
provides a good and simple example of skew symmetry 
detection by invariant signatures. Furthermore, all the 
practical considerations presented in this section remain 
valid for general shape descriptions. 

5. RESULTS 

We have checked the proposed symmetry detection 
scheme for two symmetric polygons, shown in Fig. 8. 
The polygons were distorted by applying several affine 
and projective transformations (see Figs 9 and 10, re- 
spectively). For each of the 12 polygons presented in 
these figures, we calculated two affine invariant signature 
sequences {pL(i),pR(i)} and two projective invariant 
signature sequences {~oL(i), ~oR(i)}. 

All the 12 polygons in Figs 9 and 10 are projective 
skew symmetric. The range of projective symmetry 
indicator values for the true symmetry axis (over all 

% 
\ 

\ 

Fig. 9. Affine skew transformations of the tree (a)-(c), and of the flower (d)-(f). 
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Fig. 9. (Continued). 

the 12 images) was 2 × 10-17-8 × 10 -6. The range of 
projective symmetry indicator values over all the other 
(false) vertex symmetry assumptions, and all the 12 
polygons was 2 x 10-4-0.2 We note that for each poly- 
gon considered individually, the results were always 
sharper than may appear from the above cumulative 

results. The ratio of the indicator value of the true axis 
to the smallest false indicator value was always less than 
10 -3 , while the range of false symmetry indicator values 
was never more than l:100. 

The range of affine symmetry indicator values for the 
true symmetry axis (over all the six affinely distorted 

Fig. 10. Projective skew transformations of the tree (a)-(c), and of the flower (d)--(f). 
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Fig. 10. (Continued). 
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Table 1. Range of symmetry indicators 

Transformation Afflne Projective 

True symmetry 6 X 10-16-4 × 10 14 2 × 10-17-8 × 10 -6 

axes 

False assumptions 0.2-6 2 × 10-4~).2 

polygons) was 6 × 10-16-4 x 10 14, while the range of 

the indicator values of all the other (false) vertex sym- 
metry assumptions was 0.2-6. These results are summar- 
ized in Table 1. 

6. CONCLUDING REMARKS 

We have presented a general framework for skew- 
symmetry detection, based on invariant planar curve 
descriptions. The message of the general theory is that 
detection of skew symmetry is a process of detecting 
invariance under a concatenation of two transformations: 
One characterizing the symmetry sought after and the 
second, a viewing distortion. We have applied this theory 
to mirror symmetric polygons distorted by affine and 
projective viewing transformations. Other types of sym- 
metries can be similarly dealt with, as well as other types 
of R ~ -~ ~2 distortions. The theory readily carries over 
to objects with curved boundaries. This topic is currently 
under further investigation. 
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