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Abstract 

The problem of recovering the shape of planar objects arises in robotics. This work deals 
with this problem under the assumption that composite double probings are made. Two kinds 
of double probes are considered and their use for reconstructing convex planar polygons is 
investigated. For both kinds of probes, lower bounds on the number of probings required for 
reconstruction under any strategy are obtained and specific strategies which are proven to be 
almost optimal are provided. 

1. Introduction 

The advantage of robotics and the need for intelligent systems which sense 
their environment and interact with it are the main reason for the increasing 
attention that tactile measurements have drawn in the last years. This method of 
sensing, which requires a direct contact between the object and the sensing 
device, is natural to robotics which usually involves manipulating objects. Sensing 
devices that reveal partial information about the object's boundary such as a 
point on the edge, a normal to the edge at this point, a line tangent to the edge 
etc. are generally called geometric probes. 

The use of geometric probes for reconstruction of an unknown object has been 
the subject of much study over the last several years [1-11]. The main effort has 
been at finding probing strategies which ensure the precise reconstruction of an 
object after a minimal number of probings. These strategies must be adaptive, i.e. 
the choice of the parameters of each probe should depend on all previous probing 
outcomes. The geometric probes most studied are finger probes and line probes. 
A finger probe is equivalent to a point moving on a straight line in a certain 
direction until it touches the object, where its position is recorded. Thus, the 
position of one boundary point is provided by each measurement. A strategy for 

�9 J.C. Baltzer A.G. Scientific Publishing Company 



346 M. Lindenbaum, A. Bruckstein / Reconstruction of polygonal sets 

reconstructing a convex planar polygon with V vertices which requires no more 
than 3V finger probings is given by Cole and Yap [1]. They also show that no 
probing strategy can succeed in reconstructing the polygon in less than 3 V - 1  
such measurements. A line probe is equivalent to an infinite line moving in the 
direction of its normal until it touches the object, where its position is recorded. 
Thus, one tangent line with predetermined slope is provided by each measure- 
ment. A probing strategy which reconstructs a convex polygon with V vertices 
using no more than 3V + 1 such probings is presented in [6] where this number is 
also shown to be a lower bound to the performance of any strategy. 

In this paper we consider composite probings consisting of two finger (or line) 
probings performed simultaneously. Using such a probe or, equivalently, "prob-  
ing in rounds" has the potential to reduce the number of probings required for 
reconstruction [7]. Li [6] has considered the problem of reconstructing a polygo- 
nal object from its binary parallel projections, which is equivalent to using a 
composite probe made of two parallel line probes (jaws) moving in opposite 
directions. He proposed a probing strategy which reconstructs a polygon using no 
more than 3 V -  2 such probings and has shown that this is the optimal strategy. 
A better performance was achieved by Skiena [7]. He considered the use of a 
composite probe made of two finger probes and gave a strategy capable of 
reconstructing the polygon using no more than 8V/3 double probings. 

We start by redefining the line probe such that it becomes an exact geometric 
dual of the finger probe. This variation of line probe, mentioned also in Skiena's 
thesis [7] as "supporting line probe", allows us to consider the reconstruction 
problem only for line probing and then to transform the results to finger probing. 
Then we turn to the main issue of the paper and define two different models of 
composite probes. We set bounds on the performance which may be expected 
from such probes and present specific strategies which either achieve the bound 
or get very close. 

2. Duality and the generalized line probe 

A line l =  {(x, y)} is considered to be the dual of a point p = ( a ,  b) 
(l = D(p)) if all its points satisfy the relation ax + by = 1. The point p is then 
considered to be the dual point of the line l, p = D(I). It is not difficult to show 
that if three points Pl, P2,  P3 are collinear, then the lines D(pl), D(p2) and 
D(P3) intersect in the same point. This duality relation observed in [3,4] implies 
that any strategy which reconstructs a convex polygon using line probes may be  
transformed into a strategy with the same performance, which reconstructs a dual 
polygon using finger probes. Each of the "dual" finger probes points towards the 
origin. Thus, the dual finger probes constitute only a subset of the general finger 
probes. It follows that reconstruction strategies which use general finger probes 
are not necessarily transformable into strategies that use line probes and that the 
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small gap (one probing) between the performance of the finger probe strategy and 
the line probe strategy cannot be closed in this way. 

The following line probe, defined by Skiena [7], is the exact dual of the line 
probe and enables a bi-directional transformation of strategies between finger 
probing and line probing. Choose an axis point j/outside the object S and a 
direction d, which may be CCW of CW (counterclockwise or clockwise)_ The 
probe is a rotating ray initially placed on the line of with its end point at f and 
not including the origin 3. The ray rotates about f ,  in direction d until it touches 
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Fig. 1. (a, b) A generalized line probe and its dual: a general finger probe. (c, d) A constrained 
double probe (perspective probe) and its dual: the constrained double finger probe. (e, f) An 

unconstrained (general) double line probe and its dual: the general double finger probe. 
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the object S, then its position_is recorded, thus revealing a tangent line L ( f ,  d, S). 
Note that the slope of L ( f ,  d, S), is not prespecified (see fig. _la). It is not 
difficult to show that for an axis point chosen on the x-axis, i.e. f = (fx, 0) and 
d = CCW, the rotating ray lies on the line 

Lo= (Y[(sin 0, - c o s  0 ) . Y - f  x sin 0 = 0 }  (1) 

and its dual is the point 

1 1 (1, - c o t  0), (2) Po = (sin 0, - cos 0) .  I L sin 0[ - f~ 

which moves along the line x = 1/fx. Thus the dual to the above presented line 
probe is a general finger probe (see fig. lb). 

If f is chosen at infinity then, in the vicinity of the object, the normal to the 
line probe is perpendicular to ) / and  is prespecified. Thus, the "traditional" line 
probe, with prespecified slope is obtained as a special case of the modified one. 
This probe was denoted "support line probe" by Skiena [7]. We prefer the name 
"generalized line probe" which makes the distinction from the traditional line 
probe clearer. However, as only generalized line probes are considered throughout 
the paper, we refer to them simply as "line probes". 

3. Two types of double probes 

In this paper we consider composite probes, each comprising two generalized 
line probes, the constrained double probes and the general double probes. 
(a) The constrained double probe consists of two line probes with a common axis 

point )7 and opposed directions d 1 = CCW, d 2 = CW (see fig lc). It is called 
"a perspective probe" as the information obtained is the same as obtainedby 
an imaging system which provides a binary image of the polygon. If f is 
placed in infinity, this becomes the "projection probe" proposed by Li [6]. 
For this model, only the axis point fj has to be specified before the j t h  
probing. 

(b) The general (unconstrained) double probe consists of two line probes with no 
limitations on either fk or d k (k = 1, 2) (see fig. le). For this model the two 
pairs ()~k, djk) are defined before the j t h  probing. 

Define Pj to be the set of parameter pairs specified in the j t h  probing 

d j) k=1,2) (3t 
(for constrained double probing dlj = CCW, d2j = CW and fl j  =f2j =fj)- 

Let A~ S) denote the set of tangent lines obtained by the two line probings 
specified by Pj; 

Z~ S ) =  { L ( / ,  d, s ) I ( / ,  d)  ~P~}. (4) 
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After j probings, 2 j  tangent lines are obtained. Each of them limits the 
unknown object to a half plane. Hence, the object S must lie in the intersection 
of all half planes denoted Rj. If three different tangent lines pass through a 
vertex of R j, then it follows that this vertex is also a vertex of S and is denoted 
"verified".  

4. The task 

Assume that the unknown set S is a closed convex and bounded polygonal 
planar region 

~ S, (rough position) (5) 

v2 s IIoxll < R -  (rough size) 

The task is to find an adaptive probing strategy which reconstructs the set S by a 
minimal number  of double-probings. 

S is always included in Rj and the sets R j, j = 1, 2 , . . . ,  satisfy R j+ 1 c Rj. By 
a clever choice of the probings the set Rj gets smaller with increasing j until 
some Rj provably coincides with the unknown set S and the reconstruction is 
completed. 

An adaptive probing strategy may be described as a rule for choosing the next 
probing as a function of all results obtained in the past. For a given set of m 
previous probing results {L(f~j, d~j, S) k = l ,  2; j = l ,  2 , . . . , m } ,  either a 
decision is made that the set S is uniquely determined (reconstructed) or a new 
double-probing is chosen. Clearly the condition which ensures a unique recon- 
struction and stops the probing is that all vertices of R m are verified to be vertices 
of S. 

4.1. RECONSTRUCTION CONDITION 

For a given set of tangent lines {L( fk j ,  dkj , S) k =  1, 2; j =  1, 2 , . . . , m }  
there is only one convex set S which satisfies the data iff at least three different 
tangent lines pass through each vertex of the set R m. In this case each vertex of 
R m is verified to be a vertex of S and S = R m. 

5. Lower bounds 

Before discussing specific strategies for the reconstruction of convex polygonal 
objects using double-probes, lower bounds on the performance of any strategy 
are derived in this section. The number of double-probings needed to reconstruct 
a polygon with V vertices using any strategy cannot be less than the correspond- 
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ing lower bound B(V) in the worst case, i.e. for any strategy, there is at least one 
object with V vertices that is reconstructed by B(V) probings or more. 

For every possible sequence of probings, we specify a polygon with V vertices 
which cannot be reconstructed until at least B(V) double-probings are done. This 
polygon, called an "adversary object" is different for different sequences (strate- 
gies) and is adaptively defined in terms of the probing result at each step of the 
sequence. A state diagram is used to represent the probing process, with nodes 
corresponding to different basic states, the probing results which induce the 
adversary object, corresponding to the transition between them. The lower bound 
is then inferred from the state diagram. 

The following notation is useful. Each of the vertices of the polygonal set Rj 
may be verified as a vertex of the unknown set S. Define a boundary segment of 
length n to be a series of n + 2 consecutive vertices of R:, v 0, v a . . . . .  v,, v,+ a, s.t. 
v 0 and v,+ 1 are verified vertices and the other n vertices are not. 

B 

A ~ C /  
A D 
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state "1" state "2" 

I 
IV ~ // 
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state "3" state "11" 

�9 - a verified vertex 
Fig. 2. The four basic states. 
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The following Rj sets, referred to by their segment description, are the basic 
states: 
state "1" Rj 
state "2" Rj 
state "3" Rj 
state "11" Rj 

consists of only one segment and its length is 1. 
consists of only one segment and its length is 2. 
consists of only one segment and its length is 3. 
consists of only two segments, each of length 1. 

Denote by VVj the set of the verified vertices of Rj. (In fig. 2, which illustrates 
the basic states, the segments are adjacent, but this is not necessarily so.) 

A bound on theper formance  of any reconstruction strategy that uses con- 
strained double probings (perspective probings) is established by the following 
theorem. 

THEOREM 1 
At least 3 V - 3  constrained double-probings are required by any strategy to 

reconstruct a convex polygon with V vertices. 

Proof 
Starting from R j_l being in one of the basic states, we show that it is possible 

to find an object which either forces Rj to remain in this state or to change into 
one of the other basic states. This "adversary object" is specified in terms of the 
probings' results. 

Suppose Rj_ 1 is in state "1" (see fig. 2). If fj ~ AC let 2 be a point inside the 
triangle ABC and specify the result of the perspective probings to be the lines 

L k : L ( L j : f j ,  dkj, VVj_,U{2}) k = l , 2 ,  (6) 

leading to Rj being in state "2". If, however, fj ~ AC then specify the result to be 
the lines 

L k = L ( ~ j = ] ~ ,  dkj , VVj_,) k = l , 2 ,  (7) 

Rj remaining in state "1". 
Suppose Rj is in state "2". If ~ lies on one of the lines AC or BD or inside 

one of the regions I or I! (see fig. 2), then let 2 be a point inside the segment BC 
and specify the probing result by (6) leading to Rj being in state "3". If s is in 
region III or IV, then specify the result to be the lines in (7), R/ remaining in 
state "2". 

Suppose Rj is in state "3" (see fig. 2). If fj is included in region II or region IV 
then specify the probing result to be the lines 

L k = L ( i k j : ~ , d k j ,  VVj_,U{C}) k = l , 2 ,  (8) 

and specify A C to be a side of the polygon S. Note that, with respect to finding 
and verifying the next vertices, Rj has only one unverified vertex and may be 
considered to be in state "1". One additional vertex is verified by this probing. If 
fj is included in region I or region III or in one of the lines A C or CE, then 
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o o o 

o o 

1 

Fig. 3. A state diagram describing the three basic states of the adversary object used in the proof of 
theorem 1 and the transitions between them. 

specify the probing result to be the lines in (7). Rj  is either changed into state "1" 
with one additional vertex verified or remains in state "3". 

The probing of the adversary object may be described by a state diagram given 
in fig. 3, where each node represents a state and each arc stands for one probing. 
It is not difficult to see from the diagram that, starting from state "1" and using 
the adversary object, at least three probings are needed to verify each additional 
vertex. 

Assume that after the first k probings R k is finite and has two verified vertices 
and one unverified. Denote  this specific set by R*.  Since R* is in state "1", then 
using the adversary object described below, at least 3 ( V - 2 ) +  1 additional 
probings are needed to verify the rest of the vertices and to delete the last single 
unverified vertex. After the first two probings four support  lines are found, and 
R 2 has at most four vertices. It is not difficult to see all nondegenerate cases of 
R 2 may be changed into R* by additional support  lines. Let n* and n be the 
minimal number  of additional probings required by any strategy to reconstruct 
the object when R* and R 2 a re  given respectively. Assuming n* > n leads to a 
contradiction since the set may be reconstructed from R* by n probings using 
the reconstruction scheme from R 2 (and ignoring the support  lines which change 
R 2 to  R * ) .  Hence n >~ n* >~ 3 V -  5 which implies that 3 V -  3 is a lower bound  to 
the total number of perspective probings needed by  any strategy to reconstruct a 
convex polygon with V vertices. [] 

A bound on the performance of any reconstruction strategy that uses general 
(unconstrained) double probings is given below. 

THEOREM 2 
At least 2 V - 1  general double probings are required by any strategy to 

reconstruct a convex polygon with V vertices. 
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Proof 
An "adversary object" which forces Rj to remain in the basic states is used in 

this proof too. 
Suppose R j_ 1 is in state "1" (see fig. 2). Let 2 be a point inside the triangle 

ABC satisfying 2 ~s VVj_I)" Specify the result of the j t h  probing to be the 
lines 

L k = L ( L j ,  dkj ,  V b - 1  {--) { 2 }) k = 1, 2. (9) 

Each of the probings may stop either in one of the verified vertices or in the point 
Y. It is not difficult to to see that any result leads Rj to be in one of the states 
"1", "2"  or "3" with no additional vertices verified. 

Suppose R j_ 1 is in state "2"  (see fig. 2). Let Y be a point on the segment BC 
satisfying 2 ~5~  VVj_I) and specify the result of the j t h  probing as before 
(by (9)). The  probing result leads Rj to be in the state "11" with one additional 
vertex verified (2), or to one of the states "2"  or "3"  with no additional vertices 
verified. 

Suppose Rj_~ is in state "3" (see fig. 2). If one of the lines in &o(pj, { VV}j_I ) 
coincides with AC and the other with CE, then let 2 be a point inside AABC. If 
this condition is not met, then let the point 2 coincide with C. In both cases 
specify the result of the j t h  probing as before, leading to Rj being in one of the 
states ' T ' ,  "2"  or "11" with one vertex (C) verified or staying in state "3" with 
no additional verified vertex. 

Suppose R j_ 1 is in state "11" (see fig. 2). The probing results are specified to 
be the same as in the case of R j_ 1 in state "3", then Rj either stays in state "11" 
or is changed to state "1" or state "2",  no vertex being verified in the process. 

The probing of the adversary object may be described by the state diagram 
given in fig. 4a, where each arc marked by 1 stands for a probing that verifies a 
vertex. Probings that may terminate the reconstruction are marked as well. 

As before, assume that after the first k probings R k is finite and has two 
adjacent verified vertices and two unverified (state "2"). Denote  this specific set 
by R*. In each circuit in the state diagram, the number  of arcs is at least twice 
the number of marked arcs. Thus, starting from R* and using the adversary 
object described below, at least 2 ( V -  2) additional probings are needed to verify 
the rest of the vertices. 

Let the result of the first probing be two lines creating R 1 which contains the 
origin 3. Let the next probing define R 2 which still contains ~ but not on its 
d i a g o n a l s .  R 2 may be either an open or a closed polygon (see fig. 4b in which 
both cases are illustrated). In both cases, let 2 be a point on the side of R 2 

adjacent to A as in fig. 4b and satisfying 

2~LP(P3,{A, B ,C , (D)}  ) a~AACY. 
Specify the results of the third probing to be the lines 

t k=L( fk3 ,  ak3,{A,C,  2}) k = l ,  2. 
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end 

state "1" } I state "2" state "3" 

state "11" 

(a) 

o ~ C 

A . . . . . . .  C A 

(b) 
Fig. 4. A state diagram describing the four basic states of the adversary object used in the proof  of 

theorem 2 and the transition between them. 

It is not difficult to see that all cases of R 3 are either similar to R* or may be 
changed into R* by additional support lines in a way which ensures that b is 
inside the object. Let n* and n be the minimal number of additional probings 
required by any strategy to reconstruct the object when R* and R 3 a r e  given 
respectively. Assuming n * >  n leads to a contradiction since the set may be 
reconstructed from R* by n probings using the reconstruction scheme from R 3 
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(and ignoring the support lines which change R 3 into R* ). Hence n >/n * > / 2 V -  4 
which implied that the total number of probings is lower bounded by 2 V -  1. [] 

6. Probing strategies 

6.1. TtIE PROBING PRINCIPLES 

In this section we suggest a probing strategy for  each of the probing models 
considered. The number  of probings required by the first strategy, which uses 
constrained line probes, does not exceed the corresponding lower bound, thus the 
strategy is optimal. The number of probings required by the second strategy, 
which uses unconstrained line probes, does not exceed the corresponding lower 
bound by more than a single probing, thus the strategy is almost optimal. 

The concepts of "efficient probing" and "semi-efficient probing" are central to 
the design of the strategies and to their analysis. Consider probing with a single 
(generalized) line probe. Denote the line probing "efficient" if its result, the 
support line L ( f ,  d, S), passes through some vertex of S that was not verified 
before. A vertex of Rs is verified if three support lines pass through it. Suppose 
the reconstruction is complete, i.e. Rj has V vertices which are all verified. Then, 
clearly no more than 3V efficient probings could have been made. The design of 
the probing strategy should minimize the number  of inefficient probings. 

Consider the unverified segment of length n, v0, v 1 . . . .  , v,, on+l, in Rj (in 
which %, v. are verified vertices and the rest of the vertices are not). If n > 1, 
then choosing the axis point f on the line roy 2 (outside R j) and the appropriate 
direction d implies that only three results are possible: either L(f,  d, s) includes 
vl or it includes v 2 or it passes between these two vertices. Note that at least one 
vertex of S, which is not a verified vertex of R j, lies on L(f,  d, s). Thus, in all 
three cases the probing is efficient. 

For n -- 1 the situation is different, v 2 is already a verified vertex and thus, if 
L(f,  d, s) coincides with roy 2 the probing is not efficient. This inefficiency is not 
due to our choice of ( f ,  d )  but is unavoidable for any probing which checks 
whether there is a vertex of S at v I or inside Avov~V 2. Note that if the axis point )7 
is chosen on roy 2 and the probing is inefficient, then the segment VoVlV 2 is 
deleted. Denote a probing "semi-efficient" if it either deletes a segment or is an 
efficient one (or both). Since each probing which deletes an unverified segment 
corresponds to a line L(f,  d, s) which coincides with an edge of the unknown 
polygonal object, it follows that no more than V such probings can exist and that 
the total number  of semi-efficient probings is upper-bounded by 4V. 

The basic principle of the probing strategy 
Choosing each of the axis points on the line %02. (or v~_lon+l) of some 

segment, as in the single probing presented above, is a common principle 
underlying both strategies. 
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6.2. A C O N S T R A I N E D  D O U B L E  P R O B I N G  S T R A T E G Y  

The strategy may be divided into two stages. Stage a starts with three 
prespecified probings and continues with random probings until the first vertex 
(vertices) is verified, and n~ probings are done. At most two segments, denoted 
V0, V1,..., V,+ 1 and V0', VI' , . . . ,  1I,;+1, exist for the rest of the probing process. 
Let s denote the number  of segments in the beginning of stage b (either s = 1 or 
s = 2). Stage b is based on trying to make both line probings, included in the 
composite probing, according to the basic principle. If two of the lines VoV z, 
Vn_lVn+l, VotV2 *, Vnt, lVnt,+l are different and intersect in a point outside R j_ 1, 
then a composite probing comprised of two line probings done according to the 
basic probing principle is possible. Let n a be the number  of these "double"  
probings. Unfortunately,  this condition is not always met and then only one of 
the two line probings which comprises the composite probing is done according 
to the basic probing principle and the other is not. Let ns be the number  of such 
"single" probings. 

S T R A T E G Y  A 

stage a (until the first vertex is verified) 
(1) Choose fl anywhere outside a circle of radius R centered in the origin 3. 
(2) Choose f2 anywhere inside the region I (see fig. 5). 
(3) Choose f3 on the line AC.  
If no vertex is verified yet, repeat until the first vertex is verified. 
(4) Choose the axis point fj anywhere outside 5 but not on any of the lines 

vv', where v, v' are vertices of R j _  1. 

stage b (until all vertices are verified) 
Repeat until all vertices are verified. 
(1) If two of the four lines VoV z, V,_1V,+ ~, Vo'V2', V,',_~V,;+~ are different 

and intersect in a point outside R j_ 1, choose fj to be the intersection 
point. 

(2) Else, choose fj anywhere outside Rj and on one of the lines VoV 2, 
v,,_,v.+,, vo'v2', v.'_Y.'+l. 

Each of the n ,  probings done in stage a yields two efficient probings. Each of 
the line probings done in stage b according to the basic principle is efficient 
unless it deletes a segment. As no new segments are created, it follows that at 
least 2n a + n s - s of the line probings done in stage b are efficient. Thus the total 
number of probings, n, satisfies 

n = n~ + n d + n s ~< ( #  of efficient p rob ings )+  s - n~ - n d .  ( 1 0 )  

If n~ = 3, then the strategy implies that A and C are verified by the third probing 
and that s --- 1. Since two vertices are verified by one line probing in this case, it 
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Fig. 5. First probing of strategy A. 

follows that the total number of efficient probing does not exceed 3 V -  1, thus 
n ~< ( 3 V -  1) + 1 - 3 - n d ~< 3 V -  3. If n a >~ 4, then either two segments are created 
in the fourth probing implying, in this case, at least one double probing in stage b 
( s  = 2 ,  n a  = 4 ,  n d >1 1) or only a single segment or none are created by the fourth 
probing (s = 1, n~ = 4 or n~ >~ 5). For all cases, n ~< 3 V -  3. The strategy achieves 
the lower bound in the worst case, and thus is optimal. 

6.3. A N  U N C O N S T R A I N E D  D O U B L E  P R O B I N G  S T R A T E G Y  

The strategy is similar to the previous one. It also starts, in stage a, with mostly 
random probings until a vertex is verified, and then proceeds, in stage b, in trying 
to optimize the information obtained from the probing. This is done by preferring 
that each line probing is done on different segment, and by following the basic 
principle, guaranteeing that nearly all line probings are semi-efficient. 
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STRATEGY B 

stage a (until the first vertex is verified) 
(1) Let f n  = (R,  O), f21 = ( - R ,  O) and both  corresponding directions be 

CW. 
Repeat  until  the first vertex is verified. 
(2) Let the new axis-point fkj (k  = 1, 2) be the previous axis points  J~k,j-1 

rotated by some angle s.t. they do not  lie on any of the extensions of the 
sides of R j_l. 

stage b (until all vertices are verified) 
Repeat  until  all vertices are verified. 
(1) If the number  of segments is two or more, choose two of them 

V 0 . . . .  , Vn+a; V 0, . . . .  , Vn;+l. Let the axis point  faj ( fzj)  be on the line 
V0V 2 (V0'V2') and specify the direction dl j  (dzj) s.t. the vertex V 1 (Va') is 
the first vertex crossed by the corresponding line probe. 

(2) If only one segment V0, . . . ,  V~+ 1 exists then let the axis point  f l j  (f2j)  
be on the line V0V 2 (V,_IVn+I) and specify the direction daj(d2j  ) s.t. V x 
(Vn) is the first vertex crossed by the corresponding line probe. 

Each of the line probings done in stage a is efficient and thus is also 
semi-efficient. In stage b, both  line probings in each double-probing are semi-effi- 
cient except possibly to the final probing, and then, at least one line probing is 
semi-efficient. Thus,  at least 2(n - 1) + 1 semi-efficient line probings are done  by 
n general double-probings.  Since the number  of semi-efficient line probings 
cannot  exceed 4V, it follows that  2(n - 1) + 1 ~< 4V and since n is an integer this 
implies n ~ 2V. Thus  the strategy is guaranteed to complete  the reconstruct ion by 
no more  than 2V probings, i.e. it makes at most  a single probing more  than the 
opt imal  number  given by the corresponding lower bound.  

7. Finger probing 

As ment ioned before, all results derived for the generalized line probes may  be 
transformed,  using duality, to similar results concerning finger probings.  

- The dual to the constrained double line probe (perspective probe) is a com- 
posite probe which consists of two finger probes moving on the same line 
toward each other (see fig. ld).  Denote  this probe a constrained double  finger 
probe. 

- The  dual to the general double line probe is a composi te  probe  which consists 
of two finger probes which may be specified arbitrarily and independent ly  (see 
fig. lf). Denote  this probe a general double finger probe. 



M. Lindenbaum, A. Bruckstein ,/Reconstruction of polygonal sets 

These results follow: 

359 

- Strategy A may be dualized into a probing strategy which ensures reconstruc- 
tion of a polygonal set with V vertices after no more than 3 V -  3 probings with 
the constrained double finger probe. 

- Stragegy B may be dualized into a probing strategy which ensures reconstruc- 
tion of a polygonal set with V vertices after no more than 2V probings with a 
general double finger probe. 

- At least 3 V -  3 probings using a constrained double finger probe are required 
by any strategy to reconstruct a polygon with V vertices. 

- At least 2 V -  1 probings using a general double finger probe are required by 
any strategy to reconstruct a polygon with V vertices. 

Although the generalized line probe is the dual of the (general) finger probe, 
the reconstruction corresponding problems are not exactly dual! Finger probings 
whose paths do not cross the object S are called external and correspond to line 
probings whose axis points lie inside D(S). Since such line probings are not 
allowed, it follows, from a strict point of view, that only finger probing strategies 
which do not include external probings are transformable to line probing strate- 
gies. This prohibits the direct inference of lower bounds for finger probing from 
the corresponding line probing bounds. However, as shown in [11], finger probing 
strategies which use external probings perform worse than strategies which do not 
use them, and thus this restriction does not interfere with transforming the 
bounds. 

8 .  D i s c u s s i o n  

This paper examines the question whether using a composite probe made of 
two line or finger probes, can improve the performance of reconstruction strate- 
gies. The analysis was done for generalized line probing and the corresponding 
finger probing results follow by duality. 

Unlike the traditional line probe, the generalized line probe is an exact dual of 
the (general) finger probe, thus any result obtained for finger probing is transfor- 
mable to generalized line probing and vice versa. Hence the difference between 
finger probing and line probing which was always present in earlier treatments of 
geometric probing can be eliminated by redefining the line probe. 

Two models were examined. The constrained double line probe which is a 
generalization of the composite probe proposed by Li [6] was shown to be 
incapable of giving any significant improvement in performance over single line 
probing (and over Li's probe). A strategy which reconstructs a polygon with V 
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vertices by no more than 3 V - 3  probings was presented and proved to be an 
optimal one. 

The constrained double probe dualizes to two finger probes moving along the 
same line. The information obtained from this probe includes the information 
obtained from the x-ray probe [7-9] which is the distance between the  two 
contact points. It follows that at least 3 V - 3  x-ray probing are necessary for 
reconstruction, improving the previous lower bound of 2V given by Edelsbrunner 
and Skiena [8]. 

Using the unconstrained double-probe with the proposed strategy B reduces 
the number of probings required to 2V, thus giving a significant improvement 
over single line probing. Not  every line probing may be used efficiently and the 
optimistic hope to reduce the number of probings by a factor of 2 and to obtain 
reconstruction after no more than - 1.5V probings is not achievable, as implied 
from the 2 V -  1 lower bound on the number of probings proved in this paper. 

These results raise the interesting question whether using composite probes 
made of more than two line probings may further reduce the number of probings 
required for reconstruction. We have proved the following surprising result: 

Define a k-probing to be a composite probing which consists of k line 
probings. Then, at least V k-probings are required by any strategy to 
reconstruct a polygon with V vertices, tm matter how large is k! 

The performance of composite finger and line probings gets a full treatment in 
[111. 
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