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Abstract--The data obtained from a binary perspective projection of a convex planar set is equivalent 
to the data obtained by tactile measurements using a certain kind of geometric probe composed of two 
line probes rotating about a common axis point. The reconstruction of a convex polygon (with V vertices) 
using this type of data is considered and a measurement strategy which guarantees a unique reconstruction 
following no more than 3 V - 3  measurements is proposed. It is also shown that no strategy can 
achieve complete reconstruction using less than 3V-  3 measurements. Duality implies that the same 
reconstruction performance is achieved when probing with a composite finger probe. 

Geometric probing Robotics Computational geometry, 

I.  INTRODUCTION 

The advance of robotics and the need for intelligent 
systems that sense their environment and interact 
with it, are probably the main reasons for the increas- 
ing attention tactile measurements have recently 
drawn. This way of sensing, which requires direct 
contact between the object and the sensing device 
is natural to robotics which involves manipulating 
objects. Common sensing devices reveal partial 
information about the object 's  boundary such as a 
point on the edge, the normal to the edge at this 
point, a line tangent to the edge, etc. and are gen- 
erally called geometric probes. Probing strategies 
aimed to reconstruct an unknown convex polytope 
using a minimal number of measurements performed 
by various different kinds of geometric probes were 
developed and analysed. 1~-6) The two geometric 
probes most studied are finger probes and line 
probes. A finger probe is equivalent to a point mov- 
ing in a certain direction until it touches an object, 
where its position is recorded. Thus, one boundary 
point is provided by each measurement. A strategy 
for reconstructing a convex polygon with V vertices 
which requires no more than 3V + 1 finger probe 
measurements is given in reference (1), where it is 
also shown that no probing strategy can succeed in 
reconstructing the polygon by less than 3V such 
measurements. Under certain assumptions on the 
polygon, it is possible to reconstruct it using no more 
than 2V + 3 measurements,  as shown in reference 
(2). Generalizations of finger probing problems to 
higher dimensions are presented in reference (3). 

The problem of reconstructing a convex polygon 
using support line probes is dual to the problem of 
reconstruction from information provided by finger 
probes. 134) Here an infinite line is moved in the 
direction of its normal until it touches the object. 
then its position is recorded. Thus one tangent, with 
predetermined slope, is provided by each measure- 
ment. Probing in higher dimensions using hyperplane 
probes, is analyzed in references (3) and (5). It is 
also possible to reconstruct a convex polygon using 
its binary parallel projections. The problem is equiv- 
alent to probing with a composite probe made of two 
parallel lines (jaws) moving in opposite directions. 
A probing strategy which reconstructs a polygon by 
no more than 3 V -  2 such probings is presented in 
reference (6) where this number is also shown to be 
a lower bound to the performance of any strategy. 

In this paper we consider the reconstruction of a 
convex polygon from its one dimensional binary 
perspective projections. The data obtained from a 
single binary perspective view is the position of two 
lines Pt, P2 which pass through the focal point f and 
support (are tangent to) the unknown object (see 
Fig. la).  This data may be obtained also by a com- 
posite geometric probe in a form of a gripper with 
two nonparallel jaws rotating about an axis (see Fig, 
lb). We call the device providing such data, whether 
it is a mechanical device or an imaging system, a 
perspective probe. 

It is tempting to think that the more general pro- 
jection may lead to a significant improvement in the 
performance of the reconstruction procedure. This 
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Fig. 1. (a) Perspective imaging (projection) of a polygon. (b) A "gripper" geometric probe which gives 
the same data. 

hope is strengthened as the proof to the lower bound 
given for probing with parallel projections does not 
hold for the more general perspective projection. 
Unfortunately this is not the case, and the probing 
strategy described in this paper, which reconstructs 
a polygon by no more than 3V - 3 probings, is shown 
to be the optimal one. 

We consider a (different) composite probe made 
of two finger probes moving on the same line in 
opposite direction and show that the reconstruction 
of a convex polygon using these probes is a dual 
problem to the one presented, t3"4"7~ Hence the pro- 
posed probing strategy, the analysis of its per- 
formance and the lower bound may easily be 
transformed to apply to their dual counterpart. 

We start by formally presenting the problem and 
introducing some useful notations. Then relevant 
results developed in the contex of line probing are 
briefly given, and a consistency condition is stated. 
A lower bound on the number of probings required 
by any strategy follows in the next section. Then in 
Section 4 efficient probing strategies and their analy- 
sis are presented. The dual problem is described 
in Section 5. We conclude by presenting an open 
problem . 

2. THE PROBLEM 

2.1. The probing--a formal definition 

An unknown set S on the plane is the interior and 
boundary of a convex (unknown) polygon. Only the 
following data is available. For each specified point 
fj (known to be outside S), we are given two lines 
Pj~ = {.f[/~j~" -f - Pjk = 0}, k = 1, 2 satisfying 

=l j? E S s.t. B/k • ~f - Pjk = 0 (1) 

V.f E~ S /~/k • a? - Pi* ~ 0 (2) 

/~/k'L - P/k = 0. (3) 

The triple (fr  P/i, P/~) may be looked upon as a 
measurement done on the set S, where fj is a par- 
ameter of the measurement and Pjl and Pp are its 
results. The geometrical interpretation of the 
relations (1) + (3) is that P/~ and Pp are two lines 
which support (are tangent to) the set S and pass 
through the prespecified point)~ which is ensured to 
be outside S. This is the same kind of information 
obtained via binary perspective projection, hence 

this kind of measurement is called perspective pro- 
bing (see Fig. 1). (An assumption implicitly made is 
that the rough position and the size of the object are 
given s.t. at least one point outside S is known, and 
we can choose it for f~. In the next sub-section, the 
set Rj is defined and choosing~+ t outside it, ensures 
that it is also outside S.) 

2.2. A consistency condition 

After m measurements, the set Rm may be defined 

Rm = {xl Bj, • ~f - Pik -< 0 (4) 

] = 1 , 2  . . . . .  re;k= 1,2} 

Sometimes, we are interested in checking the con- 
sistency of the given data, i.e. we ask whether, for a 
given set of m measurements, there exists a convex 
set S which satisfies (1) + (3) for all of them. Clearly, 
the method by which the support lines Pj~, Pj2 
/' = 1 . . . . .  m were obtained is irrelevant in the con- 
text of conditions (1) (2). It follows that the con- 
sistency conditions developed for single line probing 
(see reference 5) with the trivial addition of checking 
(3) for all pairs (Pjj, P/;) will hold in this case too. 
These conditions are given below. 

Consistency condition. A given set of data {(fl. 
Pl=, Pz2), (f2, P2z, P22) . . . . .  (fro, Pml, Pro2)} is con- 
sistent IFF 

Pjk N R,, ~O I j= 1 , 2 , . . .  , m  
1 P/~Nfj:/=O / k =  1,2 

2.3. The reconstruction task 

From (2) and (4) it follows that S is always included 
in Rj, and that the sets R~ j =  1, 2 , . . .  satisfy 
Ri. t C Rj. By a clever choice of the pointsfr the sets 
R~ get smaller with increasingj until some Rj coincides 
with the unknown set S and the reconstruction is 
completed. 

An interactive probing strategy may be described 
as an adaptive rule for choosing the sequence of 
measurements. For a given set of m measurements 
{(.~, Pjl, Pp) J = 1, 2 . . . . .  m} either a decision is 
made that the set S has been uniquely determined 
(reconstructed) or a new measurement point f , , .  
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is chosen. The reconstruction condition proved in 
reference (5) for probing with single line probes does 
not depend on the method the support lines were 
achieved, hence it also applies here. 

R e c o n s t r u c t i o n  c o n d i t i o n .  For a given consistent 
set of data {fl, Pll ,  el2), (/'2, P21, P22) , ' ' "  , (f,,, 
P,~j, P,,:) there is only one set S which satisfies the 
data if at least three different support lines pass 
through each vertex of the set R,,. In this case each 
vertex of R,, is verified to be a vertex of S and S = 

R m . 

In the next section a lower bound on the number 
of probings required for reconstruction by any 
method is developed. 

3. A L O W E R  B O U N D  ON T H E  N U M B E R  O F  P R O B I N G S  

N E E D E D  F O R  R E C O N S T R U C T I O N  

In this section a lower bound on the number of 
perspective probings needed for reconstruction of a 
polygonal convex set with V vertices is shown to be 
3V - 3. The bound is obtained using an adversary 
object described below which would force any strat- 
egy to end up using many probings. 

We define three states depending on the infor- 
mation available in connection with Rj: state a is: "Rj 
has V V  verified vertices and one unverified", state b 

is "R / has V V  verified vertices and two neighboring 
unverified vertices" and state  c is "Rj has VV verified 
vertices and three neighboring unverified vertices". 
Starting from one state, we show that it is possible 
to find an object which either forces Rj to remain in 
this state or to change into one of the other states. 
This object denoted "'adversary object" is specified 
for every possible placement of fj in terms of the 
probing result. Suppose Rj_ ~ is in state a (see Fig. 
2a). Then, iffj is chosen not on the line I, a possible 
result is that both lines are tangent to verified verti- 
ces, and that Rj remains in state a. If ~ is chosen on 
the line I, a possible result is that, besides the support 
line that is tangent to a verified vertex, the other one 
defines two new vertices leading to Rj being in state 

b. In other words if R/_ ~ is in state  a, then for any 
placement of the point ~, there is a set S (adversary 
object), consistent with the assumptions and pre- 
vious probings, which implies that Rj either remains 
in state a or is changed into state b. Similarly, if Rj_ t 

is in state b (see Fig. 2b), there is an adversary object 
implying that R i either remains in state b or is changed 
into state  c. Suppose now that Rj_ j is in state c (see 
Fig. 2c). Iff j  is chosen to be in region I (or IV) then 
it is possible that both support lines are tangent to 
verified vertices and R / remains in state  c. If.~ is 
chosen on the line II, then it is possible that one line 
passes through A and C, and verifies C and the other 
is tangent to a verified vertex, thus Rj being in state 

a and V V  increased by one. Choosing ~ on the line 
VI is a symmetric case. If fj is chosen in region III, 
then it is possible that one line verifies C and the 

B C 

(o) (b) 

\ T /~. / \\ • ~ \ / / /  

CL-" -~ . . . .  O ~" 
B ~  o" A 

/ E 

(c) (d) 

• ver i f ied vertex 

Fig. 2. (a, b, c) States a, b and c. (d) If A C  is a side of S, 
then this probing results in a state which is equivalent to 

state a. 

o o 

I 

Fig. 3. A state diagram describing the three basic states 
and the possible changes according to the adversary object. 

other is tangent to a verified vertex (see Fig. 2d). In 
this case, we further specify the adversary object by 
stating that the line segment A C  is a side of the 
(adversary) object. It follows that no vertices exist 
between A and C. Therefore, with respect to finding 
and verifying the next vertices, R i has only one 
unverified vertex (D ' )  and is considered to be in state 

a. (The need for an additional probing to verify AC 
does not interfere with the proof of the lower bound). 
Hence Rj either remains in state c or is changed into 
state a with one additional verified vertex. 

The probing of the adversary object may be 
described by a state diagram given in Fig. 3, where 
each node represents a state and each arc stands for 
one probing. It is not difficult to see from the diagram 
that, starting from state a and using the adversary 
object, at least three probings are needed to verify 
each additional vertex. 

Assume that after the first two probings R2 is finite 
and has two verified vertices and one unverified. 
Denote this specific set by R~. Since R~' is in state 

a, then using the adversary object described below, 
at least 3(V - 2) additional probings are needed to 
verify the rest of the vertices of the set and one final 



1346 M. LINDENBAUM and A. BRUCKSTEIN 

additional probing is needed to delete the last single 
unverified vertex from R i and to complete the recon- 
struction. Hence, with the assumption, a lower 
bound of 2 + 3(V - 2) + 1 = 3V - 3 is established. 

It is shown now that this lower bound does not 
depend on the assumption above. After  the first two 
probings only four support lines were found. Hence 
R2 is finite with at most four vertices or infinite with 
at most three vertices. It is not difficult to see all non 
degenerate cases of R2 may be changed into R~ by 
additional support lines. Let n* and n be the minimal 
number of additional probings required by any strat- 
egy to reconstruct the object when R~ and R2 are 
given respectively. Assuming n* > n leads to a con- 
tradiction since the set may be reconstructed from 
R~ by n probing using the reconstruction scheme 
from R2 (and ignoring the support lines which change 
R2 to R~ ), thus the minimality of n* is established. 
Hence n* <-- n which implies that any lower bound 
on n* holds also for n, and that 3V - 3 is a lower 
bound to the number of perspective probings needed 
by any strategy to reconstruct a convex polygon with 
V vertices. 

4. T H E  P R O B I N G  S T R A T E G Y  

4.1. The probing principles 

In order to reconstruct the set (the polygon), one 
has to interactively modify the set Rj until it becomes 
identical to the set S, and to verify each of its vertices. 
A vertex is verified, i.e. is proved to be a vertex of 
S too, if three different support lines to pass through 
it. 

Consider for the moment probing with a single 
line rotating about an axis. Denote a line probing 
"'efficient" if its result, the support line P~, passes 
through some vertex of S that was not verified before 
(condition (1) implies that for each probing at least 
one vertex of S lies on Pi)- Suppose the recon- 
struction is complete,  i.e. Rj has V vertices and all 
have been verified. Then, clearly no more than 3V 
efficient probings could have been made. The design 
of the probing strategy should minimize the number 
of inefficient probings. This can be done by verifying 
the vertices according to their order along the bound- 
ary via the scheme described below. 

Consider the situation in which the vertex V, of 
Rj_ ~ is verified but other vertices, including the next 
two along the boundary of Rj_ I(CCW), Vi and V2, 
are not (see Fig. 4a). Choose f~ anywhere on the 
extension of VoV2. Only three results are possible: 

(a) Pi passes through Vi - Vi is verified (Fig. 4b). 
(b) Pj coincides with V,V 2 - V 2 is verified (Fig. 

4c). 
(c) P~ passes between V~ and V, V2---no vertex is 

verified (see Fig. 4d). (Note that at least one vertex 
o r s  must lie on the line segment V~ + J V~ + i (see Fig. 
4d)). 

In all three cases the line Pl passes through a 

" , .v ,  v , ,  _- 

' Vo / '1 

/ 

(al (bl 

fj ~fJ÷l f~ 

' / Vl*' 
Vo :7( )" 

/fj÷t / /  
// 

(d) (c) 
• verified vertex 

Fig. 4. (a) Choosing the axis point f, in a way which ensures 
efficient probing. (b) Case a: V~ is verified. (c) Case b: V2 
is verified. (d) Case c: no vertex is verified but there must 

be a vertex of S on the line segment VI;+ ~ V5 ÷ ~. 

vertex which was not verified before, hence choosing 
as shown ensures an efficient probing. Repeating 

the procedure ensures a sequence of efficient 
probing. Even if V2 would have been verified before, 
the probing may still be efficient if its result is (a) or 
(c). Therefore,  verifying all the vertices according to 
their order ensure that all probings but possibly the 
last one, are efficient. 

4.2. A basic probing algorithm 

4.2.1. The algorithm. We present two probing algor- 
ithms which differ only in the first few probings. The 
simpler one is described in this section. 

The first two probings are chosen s.t. R2 is finite. 
(This f lay be easily guaranteed iffl and f2 are chosen 
on the x-axis and the y-axis respectively and both of 
them are far enough from the origin). Then, until 
the first vertex (or vertices) is verified, unordered 
probing is done by placing ~ anywhere outside Rj_ j 

but not on the extension of its sides. 
After the first vertex is verified, ordered probing 

starts simultaneously in both CCW and CW direc- 
tions. Vcw and V~ cw are both initialized to the first 
vertex and V cw, V~ w, V cow and V~. cw are deter- 
mined. If there are more than one first vertex, one 
i s  chosen randomly. At each step -~/c'cw~T1c'w~,t j is 
checked whether it is already verified and while this 
is so, VCocw(v~ "w) is redefined, thus eliminating the 
re-verification of the first vertices. Choosing f,. in the 

cw c~ intersection between the lines V0 V2 and 
VccwV~cw ensures that both the CW probing and 
the CCW probing are efficient. This mode of probing, 
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denoted "double probing" is preferred but unfor- 
tunately is not always possible. When the number of 
unverified vertices is three or less and when these 
vertices are adjacent, the intersection point does not 
fall outside Rj_ i and cannot be chosen as ~. (These 
are states a, b and c described in the last section). As 
a rule double probing is done only if both probings 
are guaranteed to be efficient, and hence in these 
cases "single probing" is done, i.e. f / is  chosen any- 
where on the line V~CWV ccw (outside R)_ i) implying 
an efficient probing only in the CCW direction. The 
same situation may happen in the beginning of the 
ordered probing. After each probing, V~ w, V cw, 
Vcw, VCo cw, V ccw and V ccw are redefined and the 
probing continues until all vertices are verified. 

4.2.2. The number of  probings needed for recon- 
struction using the basic algorithm. Since no vertex 
is verified in the unordered probings except in the 
last one, it follows that two efficient line probings 
are done by each unordered probing (including the 
first two probings). The probing which verifies the 
first vertex may verify up to four vertices which may 
be adjacent on the boundary of Rj or may consist of 
two sets of adjacent vertices. In the latter case we 
denote the set of the initially verified vertices a split 
set, and assign the value 1 to the variable s, which is 
0 otherwise. When fj is chosen on the extension of 
the line segment V ccw ccw cw cw V2 (V0 V2 ), the probing 
is efficient unless the line probes pass through 
v~'CW(V cw) which is already verified. Since the ver- 
tices are verified according to their order along the 
boundary this may happen at most twice: when one 
of the first verified vertices which was not adjacent 
initially to the chosen first vertex is encountered 
(which may happen only is s = 1), and when a point 
verified by the opposite direction probing is encoun- 
tered (and then the reconstruction is done). Thus, 
if na double probings (including the unordered pro- 
bings) and ns single probings are done the number 
of efficient probings is not less than 2na + n, - s - 1. 
If reconstruction is obtained, the number of efficient 
probings is at most 3V, thus 

3 V > - 2 . n a + n ~ - s -  1. 

The first two probings result in a 4-sided R2. The 
third probing may lead to three different results: 

(a) No vertex is verified, R3 is a 6-sided polygon, 
and the next probing is a double probing implying 
na ~ 4 (see Fig. 5a). 

(b) The verified vertices are not split (s = 0), then 
nd --> 3 (see Fig. 5b for an example). 

(c) The verified vertices are split. In this case, by 
choosing f4 on the line AC (see Fig. 5), the next 
probing may be double and nd ~ 4, 

The number of probings, n, is bounded by the 
following formula 

A 

n = n s  +nd <--3V+s+ l - n d .  

For all three cases 

~c  (c) f3 B 

Fig. 5. First probings of the basic algorithm. 

n < 3 V - 2 .  

Thus, the algorithm presented is guaranteed to com- 
plete the reconstruction by no more than 3 V - 2  
probings, i.e. it makes only one more probing than 
the minimum determined by the lower bound. In the 
next section is is shown that by choosing the first 
probings more carefully, the algorithm achieves the 
bound. 

4.3. An advanced algorithm 

By choosing the first 5 probings in a more careful 
way, the algorithm may achieve the bound and 
become optimal. 

After the first probing, choose ]'2 inside the region 
I, thus implying that R2 is infinite with three vertices 
(see Fig. 6). ]'3 is placed on the extension of the 
segment AC yielding three possible results 

(a) One support line verifies the vertices A and C 
and the second defines two new vertices, s = 0. Note 
that there is one support line common to vertices A 
and C, thus the number of efficient probings resulting 
in support lines which pass either through A or 
through C is 5 (instead of 6). Hence, when the 
reconstruction is complete, no more than 3 V -  1 
efficient probings are done implying 

n = n s  +nd<--(3V - 1 ) + S +  l - - n d - - 3 V - - 3 .  

(b) NO vertex is verified. R3 is a 6-sided polygon. 
(The polygon ECDGAF in Fig. 6). If the result is 
the second one, place ]'4 in the intersection of DE 
and FG (see Fig. 6). Some outcomes are possible: 

(1) No vertex is verified. In this case the next 
probing is also double implying rid--> 5 and 
n < 3 V - 3 .  

(2) Only one support line verifies vertices. In this 
case s = 0 and since n d ~ 4 it follows that 
n < _ 3 V -  3. 

(3) One support line verifies two vertices (e.g. D 
and E) and the other proves only one (A). In 
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R I // x ' \  x 

/B ~ , - - ~ " . . .  4_/ 
i i f' /.--" "-. 

I -~/ts t fz . ~  

/ III 

F D . - - - '"  

'~fs fs 
Fig. 6. First probings of the advanced algorithm. 

\\ // / 

\ \  
\ \  

this case, an argument similar to the one in 
case(a) l e ads ton -<  ( 3 V - 1 ) + l + l - n a - <  
3 V -  3. 

(4) Both support lines verify two vertices each. 
The reconstruction is complete, n = 
4 _ < 3 - 4 - 3 = 9 .  

(5) Both support lines verify one vertex each (A 
and C). In this case placing f5 in the inter- 
section of the lines A E  and CG ensures a 
double efficient probing. Thus n d ~ 5 implying 
n < 3 V - 3 .  

The rest of the algorithm is similar to the basic 
algorithm described in the preceding section. The 
algorithm achieves the lower bound in the worst 
case, and is optimal in this sense. 

$. THE DUAL PROBLEM: PROBING WITH A 
BIDIRECTIONAL FINGER PROBE 

The reconstruction of polygonal sets using support 
line probing is dual to their reconstruction using 
finger probing. For a point x ~ 0 on the plane, let its 
dual be the lines D(x) which is perpendicular to 

1 
and whose distance from the origin is ~-~. For a 

polygon S with n vertices vi, the polygon D(S) whose 
n sides lie on the lines D(vi) is convex and is defined 
as the dual of S. It is straightforward to show that 
D(x) is a line which supports D(S) in a vertex iff x 
belongs to a side of S, i.e. the support line probe is 
the dual of a finger probe directed to the origin. 
Hence, it follows that any strategy for reconstructing 
a convex polygonal set using finger probing may be 
transformed into a strategy for reconstructing the 

Line , ~r~be~r 
probe ~ t 

cot ~ .... 
D 

< • I 

(o) (b) 

Fig. 7. A perspective probe (a) and its dual: the "opposite 
fingers" probe (b). 

dual set using support line probing. The performance 
of the new algorithm, as well as bounds on the 
performance of any algorithm may be deduced from 
their original counterpart. (3.4) 

We have chosen an opposite approach. After pre- 
senting the reconstruction problem using the com- 
posite perspective probes which consists of two 
support lines each, we present in this section a pro- 
bing strategy which uses the dual composite finger 
probes to reconstruct the convex polygon D(S). Con- 
sider one step of probing using a perspective probe. 
Choose a coordinate system which place the origin 
inside the unknown polygon S and the point fj on the 
positive x axis (see Fig. 7a). The upper line probe 
rotates about the point f~ counterclockwise until it 
supports the polygon S. At any angle O, it coincides 
with the line 

L(Oi) = {xl(sin 01,cos 01)" x - JLlsin 01 = 0} 

and its dual is the point 

1 
P(01) = D(L(Oj )) = ,--7-;, (1, cot 01 ). 

ILl 

(14) 

(15) 

Hence, the dual probe to the upper rotating support 
line is a finger (point) moving from y = +~,  on the 
straight line x = 1/1~1 in the negative y direction. 
similarly, the dual to the lower support line is a finger 
probe moving from y = - ~  on the same line x -- 
1/J~l in the positive y direction (see Fig. 7b). Thus, 
a probe with two "opposite fingers" is the dual to the 
perspective probe. 

After a number of boundary points P~, P2, " " • is 
obtained using finger probing, the plane is divided 
into three kinds of regions. The INSIDE region 
which is equal to CH(PI, P2,'" ") (CH = Convex 
Hull) contains only points which, by convexity, must 
be included in the unknown object. The OUTSIDE 
region contains only points which, by convexity, may 
not be included in the object. The MAYBE regions 
contain the rest of the points. (See Fig. 8b.) Gener- 
ally, each of the MAYBE regions is triangular and 
has one "external" vertex which does not touch the 
INSIDE region. (This statement is true neglecting 
infinite MAYBE regions which may appear only 
in the first few steps.) The reconstruction strategy 
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/ 

oCP,) - / 

M - Maybe  re~ion 

(a) (b) 

LINE PROBING 
D( P O, D( P~,) . . . .  measured tangents 

V~ cw. VC.W--verified vertices 

FINGER PROBING 
P~, P., . . . .  measured boundary points 

P3P4 = D(V(I['w). P2Ps = D(VC~W) -veri- 
fied edges 

PIP,E~, P4PsE:--MAYBE regions 
E~. E,---external vertices 

Fig. 8. Probing the set S with perspective probes (a) is dual to probing the set D(S) with "opposite 
fingers" probes (b). 

proposed by Cole and Yap °) suggests to direct almost 
all probings to the MAYBE regions through the 
external vertices. This strategy is proved to yield 
optimal results. 

Returning to the perspective line probing strategy, 
recall that in the ordered probing stage, fj is chosen 
to be collinear with V0 ccw and V cow. Duality implies 
that D(fj) = {(x, y)Ix = 1/[~l} intersect with the lines 
D(V ccw) and D(V ccw) in the same point which is 
the external vertex of the MAYBE region of D(S) 
(see Fig. 8). I f / i  is collinear also with VCo w and 
V cw, then the lower finger probe also passes through 
an external vertex of (another) MAYBE region. The 
dual strategy can be sketched as follows: until the 
first side is verified, choose randomly lines which 
pass through the origin (O) and probe along them 
from both directions. Then, from the verified side, 
proceed simultaneously in both CCW and CW direc- 
tion. In each step find the first MAYBE region to 
CCW (CW) and denote its outer vertex El(E:).  
Probe along the line ERE,, from both directions. If 
the two MAYBE regions are adjacent, the line EIE2 
does not pass through the MAYBE regions. There- 
fore, choose one of the vertices (El) and probe along 
the line ElO in the direction of the origin. This 
process is repeated until no MAYBE region exists 
and the reconstruction is complete. Duality implies 
that no more than 3V - 3 "'opposite fingers" probings 
are needed for reconstructing a convex polygon with 
V sides (and V vertices). It is also implied that no 
probing strategy using "opposite fingers" probe can 
reconstruct a polygon by less than 3V - 3 probings. 

6. DISCUSSION 

A new model of geometric probing is described 

Plq 23:12-D 

and analysed in the paper. This model describes the 
data obtained from a perspective shadow on one 
hand and from tactile sensing with a gripper on the 
other hand. The ability of the "perspective probing" 
to reconstruct the shape of a convex polygon was 
investigated. A probing strategy which uses at most 
3 V -  3 probings to reconstruct a polygon with V 
vertices was described, analysed and shown to be the 
optimal one. 

Based on duality, these results were extended and 
shown to hold also for probing with a composite 
finger probe. 

It is shown that probing with a perspective probe 
which is composed to two line probes does not give 
a significant improvement over probing with a single 
line probe. An open general question is whether 
probes composed of several line probes each may be 
used to reduce significantly the number of probing 
needed for reconstruction. 

SUMMARY 

The use of tactile sensing devices, or geometric 
probes, for gathering information about unknown 
objects was motivated mainly by robotics and has 
been the subject of much study during the past few 
years. Probing strategies aimed to reconstruct an 
unknown convex polytope using a minimal number 
of geometric probings were developed and analysed. 

In this paper we consider the reconstruction of a 
planar convex polygon using the perspective probe 
defined below. Two kinds of measurements may be 
included in a perspective probe model: mechanical 
tactile sensing with a hand composed of two jaws (a 
pair of line probes), and the 1D perspective pro- 
jection of the polygon. The mathematical description 
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which corresponds to both types of measurements is 
defined as follows: for an axis point specified outside 
the object, we are given the position of two lines 
passing through the axis point which are tangent to 
the unknown object. 

A probing strategy may be described as an adapt- 
ive rule for choosing the sequence of probings which 
depend on all results obtained in the past. Given a 
set of m probing's results, either a decision is made 
that the unknown set is already uniquely determined 
(reconstructed) or the axis point for the next probing 
is chosen. 

First we establish a lower bound on the per- 
formance of any probing strategy which uses such 
probes. We show that no probing strategy can recon- 
struct a polygon with V vertices by less than 3V - 3 
perspective probings (in the worst case). This bound 
is derived by introducing an adversary object, 
described via a state diagram, which forces any strat- 
egy to end up using a maximal number of probings. 

Then two probing strategies are proposed. The 
simpler first one is guaranteed to complete the recon- 
struction after no more than 3 V - 2  probings, i.e. 
it makes only one probing beyond the minimum 
determined by the lower bound. The second strategy 
is a little more complicated, but achieves the bound 
and hence is optimal. 

We consider also a (different) composite probe 
made of two finger probes moving on the same line in 
opposite direction and show that the reconstruction 
problem with these probes is dual to the one 
presented. Hence the proposed probing strategies, 
the analysis of their performance and the lower 
bound may easily be transformed to apply to their 
dual counterparts. 
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