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The medial axis is an attractive shape feature; however, its high
sensitivity to boundary noise hinders its use in many applications.
In order to overcome the sensitivity problem some regularization
has to be performed. Pruning is a family of medial axis regular-
ization processes, incorporated in most skeletonization and thin-
ning algorithms. Pruning algorithms usually appear in a variety
of application-dependent formulations. Inconsistent terminology
used until now prevented analysis and comparison of the vari-
ous pruning methods. Indeed many seemingly different algorithms
are in fact equivalent. In this paper we suggest the rate prun-
ing paradigm as a standard for pruning methods. The proposed
paradigm is a framework in which it is easy to analyze, compare, and
tailor new pruning methods. We analyze existing pruning methods,
propose two new methods, and compare the methods via a model-
based analysis. The theoretical analysis is supported by simulation
results of the various pruning methods. c© 1998 Academic Press

1. INTRODUCTION

The medial axis (axis curve and associated radius function)
is a mathematically well-defined, easily invertible shape rep-
resentation, which combines, in a unique way, local boundary
information with local region information. The axis curve is
a graphlike set in the shape composed of, generally smooth,
curve segments joined together in junctions. It constitutes an
intuitively appealing homotopic and thin version of the shape
[20], and, thus if a shape is simply connected, its axis curve has
the graph structure of a tree. These facts may explain why, de-
spite frequent shifts in methods and paradigms, the medial axis
has constantly maintained a central role in computer vision and
shape analysis research [1, 6, 23, 24, 32, 35, 42].

Using the medial axis for shape analysis has some drawbacks.
Most notably, viewed as a transform from the space of simple
closed curves (boundary curves of simply connected shapes) to
the metric space of tree-graph structures of curves (axis curves),
the metric in both spaces being the Hausdorff metric, the medial
axis transform is not continuous. In simple words, arbitrarily
small boundary fluctuations result in significant changes of the

∗ Work done while in the Department of Electrical Engineering at the Tech-
nion. Hewlett Packard Laboratories Israel, Technion City, Haifa 32000, Israel.
†Department of Computer Science, The Technion, Haifa 32000, Israel.

medial axis; see, e.g., Fig. 1. This problem is enhanced due
to the fact that irrespective of resolution, digital shapes have
an intrinsically rough boundary. It has already been speculated
[29, 31] that the technical problems arising from the extended
sensitivity to boundary noise play an important role in the reason
why, despite the many apparent advantages and the considerable
research effort invested in this direction, the use of the medial
axis in computer vision is still limited to a small number of
applications.

Some skeletonization algorithms (e.g., Voronoi skeletons)
yield axes that are often excessivelyhairy if no regularization is
performed [4, 8, 28, 33, 34]. We use the term “hairy” to describe
noise in the axis domain. The reason for that terminology is that
what usually happens to the axis of shapes whose boundary has
been affected by noise is that “noisy” axis segments protrude
from practically everywhere on the true axis curve to practically
everywhere on the boundary, which gives the impression of a
“hairy” skeleton.

It was indeed recognized, right from the beginning [23] that
in order to overcome the skeleton sensitivity problem, some reg-
ularization is necessary, either in the form of preprocessing of
the boundary, or directly on the resulting “hairy” axis. Until
recently [22], shape and boundary smoothing algorithms were
afflicted by topological changes; therefore most regularization
procedures were performed on the complete axis or during a
thinning operation. Regularization of given axes or during thin-
ning is calledpruning, since pruning of a hairy tree is indeed
called upon.

Pruning is thus an essential part of skeletonization and thin-
ning algorithms, and practically all skeletonization algorithms
designed for general shapes implement some type of pruning.
Nevertheless, most pruning methods rely on ad hoc heuristic
rules, which are invented and often reinvented in a variety of
equivalent application-driven formulations. There were only a
few attempts in the literature to analyze pruning methods and
rules [17, 27–29, 31, 34].

The analysis of pruning is difficult, as is the analysis of other
shape regularization methods. Indeed the regularization of me-
dial axes induces an implicit regularization or smoothing of the
shape and its boundaries. Thus, the choice of an optimal or even
a preferred pruning method is intimately related to a good under-
standing of boundary smoothness. Since the issues of what are
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FIG. 1. Small boundary fluctuations result in significant changes of the medial
axis.

smooth shapes, and how to perform good shape smoothing are
not yet resolved, we are bound to have many pruning methods.

Practically all pruning methods are based on defining an in-
trinsic significance measure for axis points. Variability in sig-
nificance measures is the major source for variability in pruning
methods. A secondary source of variability follows from dif-
ferent pruning paradigms, i.e. different ways to incorporate the
intrinsic significance measures in the pruning process.

The main goal of this paper is to introduce a standard frame-
work for pruning methods, which consists of a specific pruning
paradigm and a standard terminology for significance measures.
The proposed terminology should be flexible enough to accom-
modate all reasonable pruning methods, although some of them
correspond to irreconcilable interpretations of smoothness. A
terminology consistent across all applications will surely en-
hance the flow of information and enable comparison of different
pruning methods.

In this paper we also suggest two new pruning methods the
heuristics of which may be regarded, in some contexts, as im-
provements on existing methods. The suggested methods pro-
vide an example of how the proposed paradigm helps in the
understanding of pruning methods and in the tailoring of new
methods.

Section 2 contains some preliminaries: definitions, termino-
logy issues, and a short discussion of pruning versus shape
smoothing. In Section 3 we briefly review pruning methods. In
Section 4 we introduce three requirements for acceptable prun-
ing techniques. In Section 5 we suggest a pruning paradigm and a
standard terminology for significance measures that can accom-
modate all previously suggested acceptable pruning methods as
well as several others. Then using the proposed paradigm and
terminology, we introduce two new pruning methods in Section
6, and analyze them both theoretically and through simulations
in Section 7. We conclude with a summary in Section 8.

2. PRELIMINARIES

2.1. Definitions and Terminology

The medial axis Maximal disks in a planar shape are disks
in the shape not contained in any other disk in that shape. The
medial axis curve of a planar shape is the locus of centers of
maximal disks in that shape. The medial axis is composed of the
axis curve and an associated radius function, defined on the axis

curve, whose value is the radius of the corresponding maximal
disk [6]. In an equivalent definition of the medial axis, known as
the Prairie Fire model, one considers a fire front initiated simul-
taneously on all the boundaries and propagating with constant
speed inside the shape. In this context, the medial axis curve is
the locus of points where fire fronts originating from different
boundary points meet. The radius function, called the quench-
ing function in this model, is the time at which the fire front
reaches the quenching point [6]. Other equivalent definitions of
the medial axis may be found, e.g., in [23].

Pruning It can be shown [40] that it is difficult to determine
medial axis modification rules, in the sense that practically any
perturbation in the location of the axis curve or the value of the
radius function may result in an illegal axis function, i.e., an
axis-like description which does not correspond to any planar
shape. The only simple modification rules of legal axes for which
axis representations remain legal are: a uniform reduction of the
values of the radius function (an operation known as morpho-
logical erosion [41]) and arbitrary deletions of axis segments
that maintain axis connectivity. All pruning methods amount to
various strategies for deletion of “superfluous axis branches.”

Skeletonization and thinningIn this work we refer to both
skeletonization and thinning algorithms. In the literature the ter-
minology is sometimes ambiguous. The usual distinction be-
tween skeletonization and thinning is the following: The purpose
of skeletonization algorithms is to produce the exact medial axis,
whereas thinning algorithms aim at producing “thin versions”
of the shape and take the definition and properties of the me-
dial axis only as directional pointers as to how this goal should
be achieved. As a result in most thinning algorithms the width
information is not retained.

2.2. Pruning versus Shape Smoothing

Curvature flow smoothing [22] appears to gain wide accep-
tance in the computer vision community as a standard method
for smoothing planar shapes. In the Curvature Flow model [13,
16, 22, 30, 38] each boundary point moves in the direction of the
normal to the curve, with a velocity proportional to the curva-
ture. It has been shown that in this flow boundaries do not inter-
sect (i.e., shapes maintains their topology), star-shaped shapes
remain star-shaped, all nonconvex shapes become convex, and
finally evolve into circles [13, 15, 16]. Furthermore, connec-
tions have been made between it and some smoothing techniques
which were previously introduced in computer vision [25].

Most problems which seemed to prevent axis regularization
by shape smoothing were indeed alleviated by curvature flow
smoothing. We maintain, however, that there are still some sig-
nificant problems which inhibit the universal acceptance of cur-
vature flow for axis regularization.

1. Even after smoothing, thinning will be performed from
digitized data (either pixel samples or polygonal approximations
of the boundary), so that, unless one resorts to skeletonization
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FIG. 2. A new axis segment emerges as a consequence of boundary smoothing.

algorithms from smoothly described boundaries [18, 40], prun-
ing methods will still be necessary.

2. Smoothing of boundaries may result in some undesirable
effects on the axis. As in Fig. 2, boundary smoothing may pro-
duce new axis segments which may be highly undesired if, for
example, the axis is used for length estimation.

3. In all smoothing problems there is an assumption that there
exists some scale measure which makes it possible to discern
between data and noise; e.g., data has low frequency and noise is
high frequency, or data has large shape characteristics, whereas
noise is responsible for small details. The problem is that in every
scale measure there is usually a significant overlap between data
and noise contents. The skeleton pyramid of Ogniewicz [28, 29]
specifies two filtering degrees. The axis is pruned strongly and
the remaining axis segments are “unpruned” to regain their full
original details. This elegant solution of the data/noise detail
problem exists only in the axis pruning context.

3. EXISTING PRUNING METHODS

The significance measure used by the earliest pruning meth-
ods [6, 12, 23, 36] is the propagation velocity of the symmetry
axis in the Prairie Fire model. During the advance of the fire front
in the shape, axis points emerge continuously as fire fronts meet.
The velocityVp by which the axis unfolds is easily shown to de-
pend on the angleφ between the tangents at the corresponding
boundary points. The propagation velocity is

Vp = Vf

cos(φ/2)
, (1)

FIG. 3. Propagation velocity depends on the angle between the generating boundaries.

whereVf is the velocity of the fire fronts. The axis propagation
velocity varies between the fire propagation velocity whenφ = 0
and infinity whenφ = π ; see Fig. 3. Indeed, the angle between
generating boundaries of many hairy axis branches is low (see,
e.g., the dotted part in Fig. 1b).

The classic pruning paradigm, applied also in most papers us-
ing propagation velocity as the significance measure [6, 12, 19,
23, 36] is the threshold paradigm: all axis points whose signifi-
cance measure is low are deleted. Such pruning may, however,
result in disconnected axes, as can be seen in Fig. 1b, where the
dotted axis denotes low propagation velocity.

Various improved paradigms were suggested in order to over-
come the potential disconnections in the axis. In those paradigms
pruning is activated from the end points of the axis branches as
long as a certain condition is satisfied. Pruning is performed
either while the significance measure is decreasing or while it
is below a threshold [2, 4]. However, by making the resulting
axis connected, pruning ceases to be continuous; i.e., arbitrarily
small changes in the threshold of the significance measure may
result in significant changes of the pruned axis. An example of
this phenomenon is described in Fig. 4, where the effect of two
close threshold levels is depicted on a graph of the significance
measure versus axis arc length.

In many thinning algorithms pruning is performed during
thinning, by a relaxation of the condition for initializing new
axis segments. An axis segment is initialized when during ero-
sion, the curvature at some boundary point becomes significantly
large, and thus, if only larger curvatures are considered signifi-
cant, the initialization condition is relaxed. It is quite clear that
in boundary configurations as, for example, in Fig. 3, the local
curvature will stay constant during the erosion, its value de-
pending only on the relative angle of the generating boundaries:
low curvature in Fig. 3a, and larger in Fig. 3c. We may there-
fore conclude that in some sense, relaxation of axis initializa-
tion conditions through manipulation of curvature significance
is similar to pruning according to propagation velocity. In fact,
the paradigm of pruning during thinning is similar to pruning
paradigms deleting outer axis elements below a certain threshold
(see, e.g., [4]).
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FIG. 4. Two close threshold levels result in significantly different pruning
locations.

It has to be noted that, despite the above-mentioned similarity,
there is a fundamental difference between pruning of existing
axes and pruning during thinning. The decision to assign a pixel
to the axis or, alternatively, to erode it has a small local influence
on the boundary. Hence, axes resulting from increased pruning
levels during pruning are not always exactly included in less
pruned axes of the same shape. Still, we argue that it is gen-
erally possible and beneficial to unify terminology across this
dichotomy of pruning.

A different significance measure is the maximal thickness of
the implied erosion [3, 8, 17, 26, 37]. The effect of pruning on
the shape is a loss of a localized layer of shape near the boundary,
as if the shape has been locally eroded; see Fig. 5. Naturally, one
would not want to lose too much shape information in pruning. A
possible measure of the amount of shape information lost is the
maximal thickness of the eroded layer induced by pruning. Note
that for axis segments resulting from boundary perturbations,
extensive pruning results in only a limited loss of shape contents.

The thickness of the implied erosion significance measure
was used in several application-dependent formulations: The
significance measure of a pointq on an axis whose endpoint is
p is

R(p) + d(p, q) − R(q), (2)

where R(·) is the radius function on the axis andd(p, q) the

FIG. 5. The effect of pruning on the shape.

FIG. 6. The erosion thickness significance measure.

distance between pointsp andq (see Fig. 6). Note that this sig-
nificance measure is monotone (the radius functionR(q) can
never increase as much as the distance functiond; see, e.g,
[6, 35, 40]). Hence, the threshold paradigm can be applied with-
out danger of disconnection.

A different significance measure is related to the length ratio of
the axis and the boundary it unfolds: Hairy axis branches may be
characterized by the small amount of boundary they unfold (see,
e.g., Fig. 1b). In [27–29], Ogniewicz surveys pruning methods
and concludes that there are only a few significance measures
which can be used in conjunction with a simple thresholding
algorithm with no danger of disconnection. Such significance
measures viewed as a function over the axis curve have a single
local maximum on the axis. Ogniewicz suggests a set of signif-
icance measures for which the thresholding approach does not
disconnect the axis. All the suggested measures are variations
of the boundary/axis length ratio measure, i.e. the amount of
boundary unfolded by an axis segment.

Blum and Nagel [7] used a conceptually similar significance
measure. They suggested a differential measure∂ B(a)/∂a, where
a is the axis arc length parameter andB(a) the length of the
boundary unfolded by the axis segment reaching axis pointa.
Axis significance is determined by integration of the differen-
tial significance measure. Note that after integration Blum and
Nagel actually prune according to the boundary/axis length ratio
measure.

Other significance measures include the radius function and
the axis arc length function. In [10] smaller radii are deleted,
and in [33] all axis segments are uniformly shortened by a given
length (the maximal value of the radius function).

Several pruning methods incorporate boundary smoothing el-
ements into pruning: Arcelli [1] filtered chain codes with trian-
gular weights to induce a scale space over his thinning algorithm.
Dill et al. [11] used Gaussian weights. Pizeret al. [14, 31] used
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shape smoothing; consequently they had to deal with changes
in shape topology and with axis segments correspondence prob-
lems across scales. In [31] they, inevitably, resorted to manual
matching of axis segments across scales. (A conceptually similar
problem of axis segments correspondence across gray level sets
was solved in [14] using active surface models.) Ogniewicz [27]
used Gaussian smoothing of axis coordinates [21] and solved the
across-scales correspondence problems. In addition to present-
ing the first truly continuous, fully automatic axis scale space,
he also presented a method which indicates the natural scale of
the object.

4. ACCEPTABLE PRUNING METHODS

In this section we suggest three rules for acceptable pruning
methods, thereby setting the scene for the next section where a
pruning paradigm for acceptable pruning methods is presented.
We argue that pruning methods that do not comply with the
suggested rules are truly unacceptable and, therefore, it is not
important whether they may or may not be accommodated in
the suggested pruning paradigm.

The rules for acceptable pruning methods are:

1. An acceptable pruning method preserves topology; e.g., it
does not disconnect axes.

2. An acceptable pruning method is continuous; i.e., arbitrar-
ily small differences in pruning degree results in arbitrarily small
differences in the axes.

3. Significance measures are local on the axis; i.e., it is pos-
sible to evaluate the significance from local axis information.

From the short review of the last section it is clear that prun-
ing methods which use fire front propagation velocity as the
significance measure are not acceptable, since the correspond-
ing pruning methods are not continuous, or disconnect the axes.

As for the third rule, we chose to include it only because it con-
ceptually limits possible formulations of significance measures
to functions of the local axis description (primarily the radius
function and its derivatives), the standard terminology we wish
to advocate. In the next section we show that the third rule does
not, in itself, exclude any existing otherwise acceptable pruning
method.

5. STANDARDIZATION OF ACCEPTABLE
PRUNING METHODS

In this section we propose a unified terminology for accept-
able pruning methods. In the first subsection we present therate
pruning paradigmand advocate a specific terminology for sig-
nificance measures, and in the second subsection we translate
some of the existing pruning methods into the proposed standard
framework and terminology.

5.1. Standard Paradigm and Terminology

The rate pruning paradigm is a generalization of the pruning
method proposed by Blum and Nagel [7]. Instead, of setting a

threshold on axial significance the significance measure is used
as a cue for the local pruning rate. A high significance measure
indicates that pruning should be slow, whereas a low significance
measure indicates fast pruning. Rate pruning may be envisioned
as a parallel process “melting” the axis simultaneously from all
its end points. Formally:

• Pruning is a continuous process in time.
• Pruning is performed on all axis end points in parallel.
• The pruning velocity, or its rate, is determined locally on

each branch.
• The pruning rate is inversely proportional to the local sig-

nificance measure.
— Significance measures have to be nonnegative.
— If the significance measure is zero, the pruning rate is

considered infinite.
• Pruning of a segment terminates when it reaches and anni-

hilates into a junction.
• An annihilating axis segment, merges the remaining two

segments at the junction.
• The pruning duration parameterizes the pruning degree.

The rate pruning paradigm assures connectedness and conti-
nuity of the pruning, regardless of the incorporated significance
measures. Pruning is performed only on axis end points; hence,
connectivity is maintained. Discontinuity may only occur if the
significance measure becomes zero on a nontrivial axis interval.

In rate pruning, significance measures set the pruning rate. We
distinguish them from significance measures which are intended
to be used in threshold-based paradigms, and we refer to them
asdifferential significance measures.

5.2. Standard Terminology for Existing Methods

In this subsection we formulate the existing acceptable prun-
ing methods within the proposed standard framework and ter-
minology. We start with a standard formulation of a generic
acceptable pruning method: Assume we have some acceptable
pruning method and we want to find a differential significance
measure whose incorporation in the rate-pruning paradigm re-
sults in an identical pruning. It is always possible to formulate
the desired pruning as the following threshold pruning method:
Define the significance measureS of each axis point to be the
pruning degree at which the axis point is deleted. Since the de-
sired pruning method is acceptable, the significance measure
function has a single local maximum in the entire axis. We want
to find the pruning velocityV(x) for every pointx on the axis.
Note that by our construction

S(x) = t(x), (3)

wheret(x) is the time in whichx is pruned. The pruning process
should get to pointx in time t(x) so thatx = ∫ t(x) V(ξ )dξ , and
from (3),S(

∫ t V(ξ )dξ ) = t . SinceSis monotone, it is invertible,
and thus

∫ t V(ξ )dξ = S−1(t). Taking the derivative with respect



            
PRUNING MEDIAL AXES 161

to t we get

V(x) = ∂

∂t
S−1(t)

∣∣∣∣
t(x)

= 1

/
∂

∂x
S(x). (4)

We conclude that the differential significance measure required
for an equivalent standard pruning is

∂

∂x
S(x), (5)

the derivative of the significance measure for threshold pru-
ning.

Let us now formulate the differential significance measure
corresponding to pruning by erosion thickness. Given an axis
segment, what would be the maximal thickness of the erosion
layer induced by deleting a1-long segment off its end? In Fig. 6
assumeq = p + 1. If 1 is small enough, we may approxi-
mateR(p) = R(q−1) = R(q)−1 · Ra(q), whereRa = ∂ R/∂a.
Replacing d(p, q) = 1 in (2) we get that the thickness is
1 · (1 − Ra(q)). Hence the differential significance measure
corresponding to erosion thickness pruning has the following
local formulation:

1 − Ra. (6)

Note that sinceRa ≤ 1 (see, e.g., [7, 35, 40]), the differential
significance measure is indeed nonnegative.

In the basic boundary/axis length ratio pruning suggested by
Ogniewiczet al. [28, 29], the significance of an axis point is
the length of the shortest boundary segment connecting its two
generating points. The differential significance measure corre-
sponding to this method was already proposed by Blum and

FIG. 7. The differential boundary length (a), and the local chord (b).

Nagel [7]. In [7, 40] it was shown that the differential length
unfolded by the axis is

la =
(

1 − R2
a − RRaa√
1 − R2

a

+ K AR

)
,

ra =
(

1 − R2
a − RRaa√
1 − R2

a

− K AR

)
,

(7)

wherea, l , andr are the arc length parameters of the axis and
the boundary segments to its left and right, respectively,R the
axis radius function, andK A is the local axis curvature. Sub-
scripts denote derivatives; e.g.,la = ∂l/∂a, Ra = ∂ R/∂a, and
Raa = ∂2R/∂a2. The differential length is depicted in Fig. 7a.
The differential significance corresponding to the total boundary
length is, therefore,

Ba
1= la + ra = 2

1 − R2
a − RRaa√
1 − R2

a

. (8)

It may be shown [40] that the term 1− R2
a − RRaa is never

negative; hence, (8) is an acceptable differential significance
measure.

In [28, 29] Ogniewiczet al.propose several length ratio-based
significance measures; for example, the chord residual is the diff-
erence of the boundary length,B(a), and the length of the chord
connecting the two generating points. The length of the local
cord is easily shown to be

C(a) = 2R
√

1 − R2
a. (9)

Note [7] that Ra = cosθ , where θ is the azimuth of the
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generating points measured from the line tangent to the axis
(see Fig. 7b).

Differentiating (9), we obtain the differential significance me-
asure corresponding to the chord residual of Ogniewiczet al.
[28, 29],

Ba − Ca = 2(1− Ra)
1 − R2

a − RRaa√
1 − R2

a

. (10)

Implementing Ogniewicz’s residue pruning methods within
the rate-pruning paradigm has a small complication of time de-
lays, a phenomenon which has already been observed by Blum
and Nagel [7]. Time delays occur when the threshold signif-
icance is discontinuous. A step in the threshold significance
causes the differential significance to be undefined; however,
going back to (4) one can see that the velocity at step disconti-
nuities should be zero for a time period equivalent to the height
of the step.

6. NEW PRUNING METHODS

We would have liked to call this section “improved pruning
methods” but it would not be correct, since there is no way to
determine globally acceptable criteria for pruning quality. We
suggest the following pruning methods because they provide an
example of how the proposed rate pruning paradigm may help in
understanding pruning methods and in tailoring new methods.
The proposed methods are, naturally, based on different inter-
pretations of shape smoothness that may, in certain contexts, be
regarded as more appropriate than existing methods.

6.1. Erosion Area Pruning

Much the same as in maximal erosion thickness, one can
choose the prunedarea as the significance measure. An area-
based significance measure was lately suggested by Attaliet al.
[5], and previously, as context-dependent by Cordella and di
Baja [9]. The differential significance measure is the shaded
area of the differential crescent in Fig. 8, which as we shall see
may be approximated by the area of the rectangle whose height
and width are the height 2R

√
1 − R2

a, and maximal thickness
(1− Ra) of the crescent. The proposed erosion area significance
measure is, therefore,

2R
√

1 − R2
a · (1 − Ra). (11)

Let us derive the exact formula for the area. Consider the
same differential crescent only turned as in Fig. 9. The function
describing the top half of a circle isZ = √

R2 − x2. Let the
function of the top half of the axis circle1 close to the axis end
point beZ1 = √

R2 − x2. Approximating the radius at the axis
end point byR−1 · Ra we get the function of the top half of the
axis circle at the axis end pointZ2 = 1+

√
(R − 1 · Ra)2 − x2.

Note thatZ2 is biased by1 because the center of the circles are,

FIG. 8. The differential area and its approximation.

by our assumptions,1 apart. A first-order approximation ofZ2

for small1 givesZ2 = 1+√
R2 − x2 − R(1 · Ra/

√
R2 − x2)

and, hence,Z2− Z1 = 1(1− RRa/
√

R2 − x2). The differential
area is

∫
(Z2 − Z1)+ dx, whereF(x)+ = F(x), if F(x) ≥ 0, and

0 otherwise. Since range of (Z2 − Z1)+ is |x| ≤ R
√

1 − R2
a, the

differential area is

21

∫ R
√

1−R2
a

0

(
1 − RRa√

R2 − x2

)
dx

= 21R

(√
1 − R2

a − Ra sin−1
√

1 − R2
a

)
.

(12)

For small angles (Ra close to 1) we may approximate
sin−1

√
1 − R2

a
∼=

√
1 − R2

a, which renders the approximation
of (11). For large angles (Ra close to 0) the exact value of sin−1

does not matter, since it is multiplied byRa. We conclude that
the approximation of (11) is reasonable for allRa.

FIG. 9. The functionsZ1 andZ2.
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FIG. 10. Axis segment models, (a) constant width, (b) wedge, (c) small perturbation.

6.2. Boundary Smoothing-Based Pruning

In this subsection we propose a new pruning method which
is based on boundary smoothing. Previous boundary smoothing-
based pruning methods incorporated elements from various
shape and boundary smoothing techniques: smoothing of the
curvature function [1, 11], shape smoothing [31], and smooth-
ing of the boundary coordinates [27]. We incorporate elements
from the curvature flow smoothing [22] which seems recently
to gain the position of the preferred shape-smoothing method.

Suppose the boundary of a given shape evolves under a given
differential flow. The changing boundary induces a constant
change in the shape and its medial axis. Although smooth bound-
ary evolution does not guarantee smooth axis evolution, discon-
tinuities in the axial description are localized both in space and
time. In [39] a framework has been suggested to translate dif-
ferential boundary evolution rules to evolution rules of the axis
description. Evolving axes are described by a large set of rules:
A curve evolution rule for the axis curve, a rule for the radius
function, and boundary rules for both the axis curve and the
radius function at free axis end points, as well as at junctions.

It may be shown [39] that when the boundary evolves under
curvature flow, axis end points get deleted at a rate proportional
to

− 1

RaaR2
. (13)

In addition, the boundary condition for the radius function is

Ra = 1. (14)

Thus, at the endpointRa gets the maximal possible value (it is
always true that|Ra| ≤ 1) andRaa is nonpositive. Hence, the
rate (13) is, as required, nonnegative.

A straightforward interpretation of (13) as if the differential
significance measure should be−1/RaaR2 is wrong since we

ignore (14), and thus we can get, for example, negative signifi-
cance measures, where the localRaa is positive. We, therefore,
approximateRaa to be proportional to the difference between
the value of the localRa and its value at the endpoint where
Ra = 1, Raa

∼= (Ra −1)/1a. Since we want the approximation
to be scale invariant, we have to make1a proportional to the
scale. The local scale is determined by the radius function (see
also [17]); therefore, we approximateRaa ∼ (Ra − 1)/R. The
resulting pruning rate is 1/(1 − Ra)R, and the corresponding
differential significance measure is

R(1 − Ra). (15)

It is interesting to note that this significance measure is in some
sense halfway between the erosion thickness and the erosion
area significance measures (6), (11).

7. ANALYSIS AND RESULTS

In this section we analyze and compare simulation results
from different pruning methods: erosion thickness, boundary/
axis length ratio, erosion area, and boundary smoothing-based
pruning. In Subsection 7.1 we analyze results on a model shape,
and in Subsection 7.2 we compare simulation results of general
shapes.

7.1. Model-Based Analysis

The significance measures of all the above-mentioned prun-
ing methods depend only on the radius function.1 Hence it is
sufficient to compare their behavior on straight axes. We ana-
lyze and compare the pruning methods using the constant width,
wedge, and small perturbation axis models (see Fig. 10). In

1 There is no theoretical restriction prohibiting the use of local axis curve
features in significance measures.
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the small perturbation model we analyze only the asymptotic
behavior.

The wedge and the small perturbation models are two com-
mon models for boundary noise, and the constant width model
is a good model to study the scale dependence of the pruning
methods. The analysis of the models is based on the significance
measures derived from the radius functions of the modeled axes.

In the constant width model,

R(a) = R ⇒ Ra = Raa = 0. (16)

In the wedge model,

R(a) = a cos
φ

2
⇒

{
Ra = cos(φ/2)
Raa = 0.

(17)

In the small perturbation model,

R(a) =
√

(a − β)2 + α2 ∼= a − β

⇒



Ra = 1√
1 + (α/(a − β))

∼= 1 − α2

2(a − β)2√
1 − R2

a
∼= α

a − β

Raa = a2√
(a − β)2 + α2

3
∼= α2

(a − β)3
,

(18)

where the approximations are for largea values (a À α).
We arrive at a description of the differential significance mea-

sures of the axes as a function of the model parameters and pos-
sibly the axis arc length. The different significance measures are
summarized in Table 1.

To support the analysis we present some simulation results.
The input shape contains all the above-mentioned axis models.
It has two constant-width axis segments having different width
scales, two wedge segments with different opening anglesφ, a
small perturbation segment, and an inward depression feature.
The inward depression feature is the shapebackground dual of
the small perturbation feature.

TABLE 1
Differential Significance Measures

Pruning method Significance measure Constant Wedge (R(a) = cosφ
2 ) Perturb.

Eros. thickness 1 − Ra 1 1− cosφ
2

α2

2a2

B/A length ratio 1−R2
a−RRaa√
1−R2

a
1 sin φ

2 0

Erosion area R
√

1 − R2
a · (1 − Ra) R R(a) sin φ

2 (1 − cosφ
2 ) α3

2a2

Boundary smooth. R(1 − Ra) R R(a)(1 − cosφ
2 ) α2

2a

FIG. 11. Results of the pruning algorithms: (ET) erosion thickness; (LR)
boundary/ axis length ration; (EA) erosion area; (BS) boundary smoothing based
pruning.

The four pruning algorithms we applied are based on the four
pruning methods: erosion thickness (ET), boundary/axis length
ratio (LR), erosion area (EA), and boundary smoothing-based
pruning (BS). In Fig. 11, the simulation results for each prun-
ing method are presented in a separate row. Each row presents
four instances of increasingly pruned axes. The gray shapes in-
dicate the original shape and the black shapes are the shapes
corresponding to the pruned axes. We tried to present instances
of the same pruning degree in the four pruning methods. The
rule was: Each instance corresponds to1

5, 2
5, 3

5, and 4
5 of the
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pruning time needed to annihilate the axis segment of the narrow
wedge.

From the table and the simulation results in Fig. 11 we make
the following observations:

• General:
— As mentioned, the time synchronization across the meth-

ods in Fig. 11 is limited. We rescale the time according to the
time needed to annihilate a certain axis segment (the segment
corresponding to the narrow wedge). However, since the relative
significance of axis segments depends on the pruning method,
we can have different time correspondences, if we rescale time
according to other events.

— Note the uniform erosion thickness in the ET row of the
simulation results.

— The eroded boundary length and the erosion area are
not so apparent; however, they also seem to be uniform in their
corresponding rows of simulation results.

• Constant width:
— The ET and LR pruning methods are invariant to scale.

The constant significance value in the constant-width column of
the table indicates that wide axes are pruned at the same speed
as narrow axes.

— In the EA and BS pruning methods wide axes are more
significant than narrow axes, and thus they are pruned
slower.

— In the ET row of Fig. 11, the two constant-width axes
are pruned at the same rate.

— Equal rate pruning of constant-width axes cannot be no-
ticed in the LR column, because end points of constant-width
axes in LR pruning have zero velocity for a time period equal
to the length of the circular boundary segment corresponding
to the end point, i.e.π R. This time period, is, naturally, shorter
for narrow axes and longer for wide axes. Thus the LR pruning
may, after all, be considered as scale-dependent.

• Wedge:
— Significance of wedge axis segments is a function of the

wedge angleφ.
— In the ET and LR rows of Fig. 11, the thin wedge is more

significant than the thick wedge.
— Pruned wedge axes are scaled versions of each other

(excessively pruned axes are up-scaled versions of moderately
pruned axes); Fig. 12.

— Scale dependence may be identified in the EA and BS
rows of Fig. 11 during each wedge pruning: the pruning rate
is slowed. It may be noticed more easily across axis segments
that narrow axes have smaller radius values and are, hence, less
significant.

• Small perturbation:
— In the simulation results presented in Fig. 11 the axis

segments due to small perturbations are not very long and, thus,
should not be expected to correspond to the asymptotic results
in the table.

— As noted in the first observation, it is difficult to com-
pare pruning rates from the simulation results in Fig. 11. Still it

FIG. 12. Pruned wedge axes are scaled versions of each other.

seems that the ET and EA pruning methods eliminate the small
perturbation axes quicker than the other methods.

— If the small perturbation is polygonal as in the model
(Fig. 10c), the LR differential significance of axis points be-
comes zero once the axis corresponds to the two vertices (the
same vertices correspond to a long axis segment). In this sense
the LR method is optimal.

— To analyze the asymptotic results for small perturbation
let us return to the threshold prunings corresponding to the dif-
ferent pruning methods. The threshold significance measure is
the integral of the differential significance (5). The threshold
significance measures corresponding to the ET and EA methods
are, therefore, asymptotically similar to−1/a, and the threshold
significance of the BS method is asymptotically similar to log
a. Thus, small perturbation axes are pruned out by the ET and
EA methods in finite time, whereas in the BS method they can
exist for an arbitrarily long time if they are long enough.

• Inward depression:
— We do not analyze the pruning of axis defects caused by

inward depressions because pruning cannot really mend them.
— Usually an inward depression creates two axis segments

reaching it from two sides. Those superfluous segments are sim-
ilar to both segments created by small perturbations and wedge
segments.

7.2. Simulation Results

We applied the four pruning methods (ET, LR, EA, BS) to two
shapes: Man and Square (see Fig. 13). Both shapes are about 600
pixels wide. Figure 13a is about 350 pixels high, and Fig. 13b
is 450 pixels high. The skeletons were obtained using the Curve
Axis [40].

In Fig. 14 we present the first pruning hierarchy for each of
the methods. The first pruning hierarchy is obtained as follows:
First the shape is pruned for a certain time, in our case 10% of
the time needed to prune the entire axis. Then parts of the pruned
axes get “unpruned.” The unpruning process is initiated on every
end point of the pruned axis and progresses outward. Unpruning
reinstates the axis parts it scans. Arriving at a junction the un-
pruning process chooses a single branch in which it continues,
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FIG. 13. The two original shapesmanandsquare, with axes superimposed.

the other branch is not unpruned. From the two branches of a
junction, unpruning chooses the branch that lasted longer dur-
ing the pruning process. Unpruning continues until it tries to
unprune a point that was among the earliest to be pruned, in our
case less than 2% of the time needed to prune the entire axis.

As already mentioned, the issue of optimal smoothing has not
yet been settled. Moreover, in our opinion, optimal smoothing
cannot be objectively determined, mainly because human un-
derstanding of “reasonable smoothing” is subjective and almost
always context-dependent. Thus the goal of this subsection is
to point out the different interpretations of smoothing implied
by the various pruning methods, rather then to find “the best”
method.

The most visible difference in the simulation results of Fig. 14
is between scale-dependent and scale-independent pruning me-
thods. The ET and LR methods are scale-independent, conse-
quently elongated shape protrusions are considered significant
no matter how narrow they may be. This might be considered
good in shapes like the man shape of Fig. 13a, where relatively
small protrusions have contextual meanings of hands and fin-
gers. In context-free shapes as the square shape of Fig. 13b the
same feature might be considered a disadvantage.

The difference between the EA and BS methods is usually
unnoticeable. In some sense the EA method prunes faster (EA
differential significance measure is always smaller than the BS
measure since|Ra| < 1). The meaning of the above statement is
restricted since relative speed depends on how time is scaled. In
the presented simulation results the higher pruning rate brought
about the pruning of the axis segments corresponding to the base
of the man shape by the EA method. One of those segments has
been unpruned as can be seen in Fig. 14. The unpruning of this
specific segment is due to a negligible difference in the sig-
nificance measures of the two axis segments. This phenomenon

supports the incorporation of the original skeleton hierarchy sug-
gested by Ogniewicz [28, 29] which includes another parameter,
enabling the unpruning of two branches in a pruned junction if
their significance measures are similar.

We observe that in the LR method occasional groupings of
noisy axis branches may seem significant. Note that the un-
pruned noisy axis branches in the LR pruning of the square
shape in Fig. 14 are roots of such groupings. If some of those
branches would have terminated in junctions with the main axis
rather than joining together before they met the main axis, all of
them would have been deleted.

The increased significance of occasional groupings of axis
segments is due to the time delay at junctions. At a former junc-
tion the pruning process is delayed for a time period equivalent to
the boundary length corresponding to the formerly pruned axis
segment. Possible modifications to the time delay may alleviate
this artifact. The trivial no-delay possibility may cause unduly
fast pruning of hairy significant branches; however, replacing
the boundary length delay with a chord length delay may be
effective. These and other possibilities were not explored.

8. SUMMARY

Pruning methods are incorporated in many skeletonization
and thinning algorithms. Although they may seem different,
many pruning algorithms are equivalent methods reinvented and
restated in a variety of application-dependent formulations. The
inconsistent terminology prevents analysis and comparison of
the pruning methods.

In this paper we suggested the rate-pruning paradigm as a
standard for acceptable pruning methods. Acceptable pruning
methods are connected and continuous methods (i.e., result-
ing axes are connected and pruning is continuous in its degree
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FIG. 14. First pruning hierarchy, pruning large scale details of 10% and unpruning up to small scale details of 2%.
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parameter). The standard formulation is a framework in which
it is easy to tailor new pruning methods, and we have indeed
suggested two new pruning methods: The heuristics behind the
proposederosion areapruning is analogous to the heuristics
motivating the existingerosion thicknessmethod. The second
method we proposed is motivated by the curvature flow, a shape-
smoothing method which is currently considered as a possible
standard for shape smoothing.

In this paper we have also analyzed existing pruning methods.
To prove the flexibility of the suggested paradigm and terminol-
ogy we have reformulated existing acceptable pruning methods
in the proposed standard terminology. In the last section we
have analyzed and compared the proposed new pruning meth-
ods and some of the existing methods and presented their diverse
smoothing properties.

Note that we could have proposed the threshold-pruning
paradigm as a standard paradigm instead of the potentially more
difficult pruning rate paradigm. We did not choose to do so
because in this way it would not have been possible to fully
standardize the pruning terminology. Identical pruning meth-
ods could have been formulated in a variety of heuristic or
application-driven global formulations, as was shown to be the
case in many publications of existing pruning methods. Using
the rate-pruning paradigm it is possible to require truly local
formulation of differential significance measure.

The pruning framework proposed in this paper is indepen-
dent of the skeletonization method applied; however, it does
not require its application to be such. One has to keep in mind
that in many skeletonization algorithms the radius information
is not very accurate. In other applications (e.g., discrete skele-
tons of small shape parts) the spatial resolution precludes stable
derivatives of the radius function. In all those cases, application-
specific formulations of the various pruning methods are essen-
tial, but should preferably be designed and applied only as stable
approximations to the application-invariant formulations.
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