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The medial axis is an attractive shape feature; however, its high
sensitivity to boundary noise hinders its use in many applications.
In order to overcome the sensitivity problem some regularization
has to be performed. Pruning is a family of medial axis regular-
ization processes, incorporated in most skeletonization and thin-
ning algorithms. Pruning algorithms usually appear in a variety
of application-dependent formulations. Inconsistent terminology
used until now prevented analysis and comparison of the vari-
ous pruning methods. Indeed many seemingly different algorithms
are in fact equivalent. In this paper we suggest the rate prun-
ing paradigm as a standard for pruning methods. The proposed
paradigmisaframework in which itis easy toanalyze, compare, and
tailor new pruning methods. We analyze existing pruning methods,
propose two new methods, and compare the methods via a model-
based analysis. The theoretical analysis is supported by simulation
results of the various pruning methods. © 1998 Academic Press

1. INTRODUCTION

The medial axis (axis curve and associated radius functioq%\
is a mathematically well-defined, easily invertible shape rep-
resentation, which combines, in a unique way, local boundar
information with local region information. The axis curve i
a graphlike set in the shape composed of, generally smo
curve segments joined together in junctions. It constitutes %n
intuitively appealing homotopic and thin version of the shape
[20], and, thus if a shape is simply connected, its axis curve ha
the graph structure of a tree. These facts may explain why, de
spite frequent shifts in methods and paradigms, the medial axis
has constantly maintained a central role in computer vision agd

shape analysis research [1, 6, 23, 24, 32, 35, 42].

Using the medial axis for shape analysis has some drawba
Most notably, viewed as a transform from the space of simple
closed curves (boundary curves of simply connected shapes to)
the metric space of tree-graph structures of curves (axis curves
the metric in both spaces being the Hausdorff metric, the medid
axis transform is not continuous. In simple words, arbitraril
small boundary fluctuations result in significant changes of t
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medial axis; see, e.g., Fig. 1. This problem is enhanced due
to the fact that irrespective of resolution, digital shapes have
an intrinsically rough boundary. It has already been speculatec
[29, 31] that the technical problems arising from the extended
sensitivity to boundary noise play an important role in the reason
why, despite the many apparent advantages and the considerab
research effort invested in this direction, the use of the medial
axis in computer vision is still limited to a small number of
applications.

Some skeletonization algorithms (e.g., Voronoi skeletons)
yield axes that are often excessivabiry if no regularization is
performed [4, 8, 28, 33, 34]. We use the term “hairy” to describe
noise in the axis domain. The reason for that terminology is that
what usually happens to the axis of shapes whose boundary he
been affected by noise is that “noisy” axis segments protrude
from practically everywhere on the true axis curve to practically
everywhere on the boundary, which gives the impression of a
“hairy” skeleton.

It was indeed recognized, right from the beginning [23] that
in.order to overcome the skeleton sensitivity problem, some reg-
rization is necessary, either in the form of preprocessing of
e boundary, or directly on the resulting “hairy” axis. Until
rgcently [22], shape and boundary smoothing algorithms were
%tlﬂicted by topological changes; therefore most regularization
rocedures were performed on the complete axis or during &
inning operation. Regularization of given axes or during thin-
ning is calledpruning, since pruning of a hairy tree is indeed
alled upon.

“Pruning is thus an essential part of skeletonization and thin-
ning algorithms, and practically all skeletonization algorithms
esigned for general shapes implement some type of pruning
Nevertheless, most pruning methods rely on ad hoc heuristic
k?' hich i ted and oft i ted i iety of
rulés, which are invented and often reinvented in a variety o
uivalent application-driven formulations. There were only a
ules [17, 27-29, 31, 34].

he analysis of pruning is difficult, as is the analysis of other
hape regularization methods. Indeed the regularization of me
d?al axes induces an implicit regularization or smoothing of the

eﬁ attempts in the literature to analyze pruning methods and

* Work done while in the Department of Electrical Engineering at the Tecf?—hape and its boundaries. Thus, the choice of an optlmal orevel
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curve, whose value is the radius of the corresponding maxima
disk [6]. In an equivalent definition of the medial axis, known as
the Prairie Fire model, one considers a fire front initiated simul-
taneously on all the boundaries and propagating with constan
speed inside the shape. In this context, the medial axis curve i
the locus of points where fire fronts originating from different
a b boundary points meet. The radius function, called the quench
iar]g function in this model, is the time at which the fire front
reaches the quenching point [6]. Other equivalent definitions of
the medial axis may be found, e.g., in [23].

FIG.1. Smallboundary fluctuations result in significant changes of the medi
axis.

smooth shapes, and how to perform good shape smoothing arIgrumng It can be shown [40] that it is difficult to determine

not yet resolved, we are bound to have many pruning methode]?d'al axis modification rules, in the sense that practically any

Practically all pruning methods are based on defining an {pérturbation in the location of the axis curve or the value of the

trinsic significance measure for axis points. Variability in sigr-a(.j'us functlon_ may res_ult in an illegal axis function, i.e., an
axis-like description which does not correspond to any planai

nificance measures is the major source for variability in pruniré% : . :
o .shape. The only simple modification rules of legal axes for which
methods. A secondary source of variability follows from dif=

ferent pruning paradigms, i.e. different ways to incorporate t@é;ﬁéipgftsﬁgtgé?gss ;S:;?i':r:e(iil 2%;,{?;':?(;”;\:\/?;?':}2rthtg(
intrinsic significance measures in the pruning process. P P

logical erosion [41]) and arbitrary deletions of axis segments

The main goal of this paper is to introduce a standard framt at maintain axis connectivity. All pruning methods amount to
work for pruning methods, which consists of a specific pruning . : VILY- “ P 9 . ;
rious strategies for deletion of “superfluous axis branches.

paradigm and a standard terminology for significance measures.
The proposed terminology should be flexible enough to accom-skeletonization and thinningin this work we refer to both
modate all reasonable pruning methods, although some of theka|etonization and thinning algorithms. In the literature the ter-
correspond to irreconcilable interpretations of smoothness.iiinology is sometimes ambiguous. The usual distinction be-
terminology consistent across all applications will surely efween skeletonization and thinning is the following: The purpose
hance the flow of information and enable comparison of differegt skeletonization algorithms is to produce the exact medial axis
pruning methods. whereas thinning algorithms aim at producing “thin versions”
In this paper we also suggest two new pruning methods thethe shape and take the definition and properties of the me
heuristics of which may be regarded, in some contexts, as iffial axis only as directional pointers as to how this goal should

provements on existing methods. The suggested methods pj@-achieved. As a result in most thinning algorithms the width
vide an example of how the proposed paradigm helps in thgormation is not retained.

understanding of pruning methods and in the tailoring of new

methods. 2.2. Pruning versus Shape Smoothing
Section 2 contains some preliminaries: definitions, termino-

logy issues, and a short discussion of pruning versus shap&urvature flow smoothing [22] appears to gain wide accep-
smoothing. In Section 3 we briefly review pruning methods. jignce in thg computer vision community as a standard metho
Section 4 we introduce three requirements for acceptable priff-Smoothing planar shapes. In the Curvature Flow model [13,
ing techniques. In Section 5 we suggest a pruning paradigm antPa22. 30, 38] each bO‘_J”dafy p0|r_1t movesin the direction of the
standard terminology for significance measures that can accdiifmal to the curve, with a velocity proportional to the curva-

modate all previously suggested acceptable pruning methodd4€- It has been shown thatin this flow boundaries do not inter:
well as several others. Then using the proposed paradigm &4t (-, shapes maintains their topology), star-shaped shap
terminology, we introduce two new pruning methods in SectidffMain star-shaped, all nonconvex shapes become convex, ai
6, and analyze them both theoretically and through simulatioff@lly evolve into circles [13, 15, 16]. Furthermore, connec-

in Section 7. We conclude with a summary in Section 8. tonshave beenmade between itand some smoothing techniqu
which were previously introduced in computer vision [25].

2 PRELIMINARIES Most problems which seemed to prevent axis regularizatior

by shape smoothing were indeed alleviated by curvature flow

2.1. Definitions and Terminology smoothing. We maintain, however, that there are still some sig

, . , L . nificant problems which inhibit the universal acceptance of cur-
The medial axis Maximal disks in a planar shape are disk$4re flow for axis regularization.

in the shape not contained in any other disk in that shape. The

medial axis curve of a planar shape is the locus of centers ofl. Even after smoothing, thinning will be performed from
maximal disks in that shape. The medial axis is composed of tiligitized data (either pixel samples or polygonal approximations
axis curve and an associated radius function, defined on the aishe boundary), so that, unless one resorts to skeletonizatio
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whereV; is the velocity of the fire fronts. The axis propagation
velocity varies between the fire propagation velocity wea 0

and infinity whenp = r; see Fig. 3. Indeed, the angle between
generating boundaries of many hairy axis branches is low (see
e.g., the dotted part in Fig. 1b).

The classic pruning paradigm, applied also in most papers us
propagation velocity as the significance measure [6, 12, 19
36] is the threshold paradigm: all axis points whose signifi-

cance measure is low are deleted. Such pruning may, howeve
algorithms from smoothly described boundaries [18, 40], pruresultin disconnected axes, as can be seen in Fig. 1b, where tf
ing methods will still be necessary. dotted axis denotes low propagation velocity.

2. Smoothing of boundaries may result in some undesirableVarious improved paradigms were suggested in order to over-
effects on the axis. As in Fig. 2, boundary smoothing may préome the potential disconnections in the axis. In those paradigm:
duce new axis segments which may be highly undesired if, foruning is activated from the end points of the axis branches as
example, the axis is used for length estimation. long as a certain condition is satisfied. Pruning is performed

3. Inall smoothing problems there is an assumption that the¢éher while the significance measure is decreasing or while it
exists some scale measure which makes it possible to discérhelow a threshold [2, 4]. However, by making the resulting
between data and noise; e.g., data has low frequency and noigis connected, pruning ceases to be continuous; i.e., arbitraril
high frequency, or data has large shape characteristics, whessasll changes in the threshold of the significance measure ma
noise is responsible for small details. The problemis thatin evegsult in significant changes of the pruned axis. An example of
scale measure there is usually a significant overlap between dhia phenomenon is described in Fig. 4, where the effect of two
and noise contents. The skeleton pyramid of Ogniewicz [28, 2gpse threshold levels is depicted on a graph of the significance
specifies two filtering degrees. The axis is pruned strongly anteasure versus axis arc length.
the remaining axis segments are “unpruned” to regain their fullln many thinning algorithms pruning is performed during
original details. This elegant solution of the data/noise det&flinning, by a relaxation of the condition for initializing new

. n
FIG.2. Anewaxis segmentemerges as aconsequence of boundary smoothﬂﬁ.

problem exists only in the axis pruning context. axis segments. An axis segment is initialized when during ero-
sion, the curvature at some boundary point becomes significantly
3. EXISTING PRUNING METHODS large, and thus, if only larger curvatures are considered signifi-

cant, the initialization condition is relaxed. It is quite clear that

The significance measure used by the earliest pruning mehboundary configurations as, for example, in Fig. 3, the local
ods [6, 12, 23, 36] is the propagation velocity of the symmetiurvature will stay constant during the erosion, its value de-
axis in the Prairie Fire model. During the advance of the fire fropending only on the relative angle of the generating boundaries:
in the shape, axis points emerge continuously as fire fronts méeiv curvature in Fig. 3a, and larger in Fig. 3c. We may there-
The velocityV, by which the axis unfolds is easily shown to defore conclude that in some sense, relaxation of axis initializa-
pend on the anglg between the tangents at the correspondin@n conditions through manipulation of curvature significance

boundary points. The propagation velocity is is similar to pruning according to propagation velocity. In fact,
the paradigm of pruning during thinning is similar to pruning
V. — Vi 1 paradigms deleting outer axis elements below a certain threshol
P~ cos(pR) (see, e.g., [4]).
U ’
dlo
a b c

FIG. 3. Propagation velocity depends on the angle between the generating boundaries.
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It has to be noted that, despite the above-mentioned similarity™
there is a fundamental difference between pruning of existing
axes and pruning during thinning. The decision to assign a pixel
to the axis or, alternatively, to erode it has a small local influence
on the boundary. Hence, axes resulting from increased prunii§tance between pointsandq (see Fig. 6). Note that this sig-
levels during pruning are not always exactly included in lesfificance measure is monotone (the radius funcigg) can
pruned axes of the same shape. Still, we argue that it is g@@ver increase as much as the distance fundliosee, e.g,
erally possible and beneficial to unify terminology across thjg, 35, 40]). Hence, the threshold paradigm can be applied with.
dichotomy of pruning. out danger of disconnection.

A different significance measure is the maximal thickness of A different significance measure is related to the length ratio of
the implied erosion [3, 8, 17, 26, 37]. The effect of pruning ofhe axis and the boundary it unfolds: Hairy axis branches may bt
the shape is aloss of alocalized layer of shape near the boundghéracterized by the small amount of boundary they unfold (see
asifthe shape has been locally eroded; see Fig. 5. Naturally, @, Fig. 1b). In [27—29], Ogniewicz surveys pruning methods
would notwantto lose too much shape information in pruning. And concludes that there are only a few significance measure
possible measure of the amount of shape information lost is {ifiich can be used in conjunction with a simple thresholding
maximal thickness of the eroded layer induced by pruning. Noigyorithm with no danger of disconnection. Such significance
that for axis segments resulting from boundary perturbationfieasures viewed as a function over the axis curve have a sing|
extensive pruning resultsin Onlya limited loss OfShape Conte%a| maximum on the axis. Ogniewicz Suggests a set of Signif-

The thickness of the implied erosion significance measuiggnce measures for which the thresholding approach does n
was used in several application-dependent formulations: Tf@connect the axis. All the suggested measures are variatior
significance measure of a poigon an axis whose endpoint isef the boundary/axis length ratio measure, i.e. the amount o
pis boundary unfolded by an axis segment.

Blum and Nagel [7] used a conceptually similar significance
R(p) +d(p, q) — R(q), (2) measure. They suggested a differential measB(a)/da, where
a is the axis arc length parameter aB¢a) the length of the
where R(-) is the radius function on the axis addp, q) the boundary unfolded by the axis segment reaching axis @oint
Axis significance is determined by integration of the differen-
tial significance measure. Note that after integration Blum and
Nagel actually prune according to the boundary/axis length ratic
measure.

Other significance measures include the radius function anc
the axis arc length function. In [10] smaller radii are deleted,
and in [33] all axis segments are uniformly shortened by a giver
length (the maximal value of the radius function).

Several pruning methods incorporate boundary smoothing el
ements into pruning: Arcelli [1] filtered chain codes with trian-
gularweightstoinduce a scale space over his thinning algorithm
FIG.5. The effect of pruning on the shape. Dill etal.[11] used Gaussian weights. Pizdral.[14, 31] used

FIG. 6. The erosion thickness significance measure.
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shape smoothing; consequently they had to deal with changie®shold on axial significance the significance measure is use
in shape topology and with axis segments correspondence prad-a cue for the local pruning rate. A high significance measure
lems across scales. In [31] they, inevitably, resorted to maniradicates that pruning should be slow, whereas a low significance
matching of axis segments across scales. (A conceptually simitaeasure indicates fast pruning. Rate pruning may be envisione
problem of axis segments correspondence across gray level asta parallel process “melting” the axis simultaneously from all
was solved in [14] using active surface models.) Ogniewicz [2it§ end points. Formally:

used Gaussian smoothing of axis coordinates [21] and solved the o . I

across-scales correspondence problems. In addition to presenf— Prun!ng ISa continuous Process in tlme.. .

ing the first truly continuous, fully automatic axis scale space, * Pruning is performed on all axis end points in parallel.

he also presented a method which indicates the natural scale df |"€ Pruning velocity, or its rate, is determined locally on
the object. each branch.

e The pruning rate is inversely proportional to the local sig-
4. ACCEPTABLE PRUNING METHODS nificance measure.
— Significance measures have to be nonnegative.
In this section we suggest three rules for acceptable pruning —If the significance measure is zero, the pruning rate is
methods, thereby setting the scene for the next section whemasidered infinite.
pruning paradigm for acceptable pruning methods is presentede Pruning of a segment terminates when it reaches and anni
We argue that pruning methods that do not comply with thelates into a junction.
suggested rules are truly unacceptable and, therefore, it is noé An annihilating axis segment, merges the remaining two
important whether they may or may not be accommodatedsegments at the junction.
the suggested pruning paradigm. e The pruning duration parameterizes the pruning degree.

The rules for acceptable pruning methods are: _ .
The rate pruning paradigm assures connectedness and cont

1. Anacceptable pruning method preserves topology; e.g.nility of the pruning, regardless of the incorporated significance
does not disconnect axes. measures. Pruning is performed only on axis end points; hence
2. An acceptable pruning method is continuous; i.e., arbitrajonnectivity is maintained. Discontinuity may only occur if the
ily small differences in pruning degree results in arbitrarily smadignificance measure becomes zero on a nontrivial axis interval
differences in the axes. In rate pruning, significance measures set the pruning rate. We

3. Significance measures are local on the axis; i.e., it is pafistinguish them from significance measures which are intendec
sible to evaluate the significance from local axis information. to be used in threshold-based paradigms, and we refer to ther

From the short review of the last section it is clear that prufSdifferential significance measures.
ing methods which use fire front propagation velocity as the ) o
significance measure are not acceptable, since the correspohg- Standard Terminology for Existing Methods

ing pruning methods are not continuous, or disconnect the axesy, this subsection we formulate the existing acceptable prun-
Asforthe third rule, we chose toinclude itonly because it cofhg methods within the proposed standard framework and ter-
ceptually limits possible forrnulatlor?s _of S|gn.|f|cance Measur@ginology. We start with a standard formulation of a generic
to functions of the local axis description (primarily the radiugcceptable pruning method: Assume we have some acceptab
function and its derivatives), the standard terminology we wWigftuning method and we want to find a differential significance
to ad_vc_)cate. In the next section we show_ that the third rule d%%asure whose incorporation in the rate-pruning paradigm re-
not, initself, exclude any existing otherwise acceptable pruniggjts in an identical pruning. It is always possible to formulate
method. the desired pruning as the following threshold pruning method:
5 STANDARDIZATION OF ACCEPTABLE Deflne the S|gn|f|canqe meas@eof gach axis point t.o be the
pruning degree at which the axis point is deleted. Since the de-
PRUNING METHODS . . . L
sired pruning method is acceptable, the significance measur

In this section we propose a unified terminology for accepidnction has asingle local maximum in the entire axis. We want
able pruning methods. In the first subsection we presematae (© find the pruning velocity/ (x) for every pointx on the axis.
pruning paradigmand advocate a specific terminology for siglNOt€ that by our construction
nificance measures, and in the second subsection we translate
some of the existing pruning methods into the proposed standard S(x) = t(x), ©)
framework and terminology.

wheret(x) is the time in whichx is pruned. The pruning process

5.1. Standard Paradigm and Terminology should get to poink in time t(x) so thatx = j-t(X) V(£)dg, and

The rate pruning paradigm is a generalization of the prunifigm (3),S(/" V(§)d¢) = t. SinceSis monotone, itisinvertible,
method proposed by Blum and Nagel [7]. Instead, of settingaad thusft V(£)de = S(t). Taking the derivative with respect
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tot we get Nagel [7]. In [7, 40] it was shown that the differential length
unfolded by the axis is
) a
V)= =S )| =1/-—SKx). 4
00 =570 =1/s0 @ L R RRs
*) la=| —F——=— + KaR].
VI-R
We conclude that the differential significance measure required )]
for an equivalent standard pruning is o 1-R2—RRa R
a — \/l_—Rg A ’

ad
2S00, (5) |
X wherea, |, andr are the arc length parameters of the axis and
the derivative of the significance measure for threshold prhh-‘ﬁ? bour_wdary segments 1o ts left and rlghf[, respectiveihe
ning axis radius function, ané 5 is the local axis curvature. Sub-
| . e scripts denote derivatives; e.f,,= dl /da, R, = dR/da, and
Let us now formulate the differential significance merclsu)r%%’?Ia _ 92R/9a’. The differential length is depicted in Fig. 7a.

corresponding to pruning by erosion thickness. Given an a . T .
segment, what would be the maximal thickness of the erOSIPene differential significance corresponding to the total boundary

layer induced by deletingA-long segment off its end? In Fig. 6 ngth is, therefore,

assumeg=p + A. If A is small enough, we may approxi- A 1-R2—RR
mateR(p) = R(q— A) = R(q) — A - Ra(q), whereR, = d R/da. Ba=la+ra= Z—Za. (8)
Replacingd(p,q)=A in (2) we get that the thickness is v1-Rg

A - (1 — Ra(q)). Hence the differential significance measure

2 .
corresponding to erosion thickness pruning has the followifigmay be shown [40] that the term 1 R; — RRsa is never
local formulation: negative; hence, (8) is an acceptable differential significance

measure.
1-R, 6 In [28, 29] Ogniewiczt al.propose several length ratio-based
' significance measures; for example, the chord residual is the diff

Note that sinceR, < 1 (see, e.g., [7, 35, 40]), the differential€"€Nce of the boundary lengt(a), and the length of the chord
significance measure is indéed n’on;legétive ' connecting the two generating points. The length of the local

In the basic boundary/axis length ratio pruning suggested 89
Ogniewiczet al. [28, 29], the significance of an axis point is
the length of the shortest boundary segment connecting its two C(a) =2R/1- R:
generating points. The differential significance measure corre-
sponding to this method was already proposed by Blum ah@te [7] that Ry= cost, where 6 is the azimuth of the

rd is easily shown to be

9)

a b

FIG. 7. The differential boundary length (a), and the local chord (b).
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generating points measured from the line tangent to the axi: e
(see Fig. 7b). PP - st
Differentiating (9), we obtain the differential significance me- e )
asure corresponding to the chord residual of Ogniewical. _anll
[28, 29], f_,,---"
R
1- R2-RRa (10) ;/
1_ Rg . I.-' : B

Implementing Ogniewicz's residue pruning methods within ', ! [
the rate-pruning paradigm has a small complication of time de- *
lays, a phenomenon which has already been observed by Blui
and Nagel [7]. Time delays occur when the threshold signif- o
icance is discontinuous. A step in the threshold significance AML-R lr“"--.._____
causes the differential significance to be undefined; howevel-... = - e
going back to (4) one can see that the velocity at step disconti i
nuities should be zero for a time period equivalent to the heighr

of the step.

Ba — a:2(1_ Ra)

FIG. 8. The differential area and its approximation.

6. NEW PRUNING METHODS

We would have liked to call this section “improved pruningby our assumptions apart. A first-order approximation &,

methods” but it would not be correct, since there is no way {8, small A givesZ = A ++vRZ— x2— R(A - Ry/vV/RZ — x2)
determine globally acceptable criteria for pruning quality. Wg,y hencez,— 7, = A(1— RRy/vRZ = x2). The differential
suggest the following pruning methods because they provide g 5 is/(Z — Z1)+ dx, whereF (x), = F(x), if F(x) > 0, and

example of how the proposed rate pruning paradigm may helpgy . . _ . o
understanding pruning methods and in tailoring new metho I%fgi:tvizeérseg?: range of{ — Z1) is x| = Ry1 — R, the

The proposed methods are, naturally, based on different inter-

pretations of shape smoothness that may, in certain contexts, be RYIRE RR,
regarded as more appropriate than existing methods. 2A 1———%  )dx
0 R2 — x2 (12)
6.1. Erosion Area Pruning
=2AR(,/1- RZ2— Rysin*,/1— 2) :
Much the same as in maximal erosion thickness, one can ( R R

choose the prunedreaas the significance measure. An area- .
based significance measure was lately suggested by attlli For small _angles R, close to 1) we may approximate
[5], and previously, as context-dependent by Cordella and 9 /1 — RZ = /1 — RZ, which renders the approximation
Baja [9]. The differential significance measure is the shad&fi(11). For large anglesR; close to 0) the exact value of sih
area of the differential crescent in Fig. 8, which as we shall seees not matter, since it is multiplied 3. We conclude that
may be approximated by the area of the rectangle whose heifi approximation of (11) is reasonable for BY.

and width are the heightR2/1 — RZ, and maximal thickness
(1— Ry) of the crescent. The proposed erosion area significance
measure is, therefore,

2R,/1— R2-(1— Ry). (11)

Let us derive the exact formula for the area. Consider the
same differential crescent only turned as in Fig. 9. The function
describing the top half of a circle iE = +/RZ — x2. Let the
function of the top half of the axis circla close to the axis end
point beZ; = +/R2 — x2. Approximating the radius at the axis
end point byR— A - Ry we get the function of the top half of the -R- AR ) RIRT R X
axis circle at the axis end pois = A++/(R— A - Ry)2 — x2.
Note thatZ, is biased byA because the center of the circles are, FIG.9. The functionsZ; andZy.
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FIG.10. Axis segment models, (a) constant width, (b) wedge, (c) small perturbation.
6.2. Boundary Smoothing-Based Pruning ignore (14), and thus we can get, for example, negative signifi-

In this subsection we propose a new pruning method whiGh ce measures, where the loBa is positive. We, therefore,

is based on boundary smoothing. Previous boundary smoothia proximateRs, o be proportional to the difference between

based pruning methods incorporated elements from variofl_.;azbvaIue of the locaR, and its value at the endpoint where

shape and boundary smoothing techniques: smoothing of =1, Raa - (Rf"‘_ 1)/Aa. Since we want the approxmatlon
. . 0 be scale invariant, we have to makea proportional to the
curvature function [1, 11], shape smoothing [31], and smoot

ing of the boundary coordinates [27]. We incorporate elemer cale. The local scale is determined by the radius function (se
g y i P Pﬁ’so [17]); therefore, we approximai, ~ (R, — 1)/R. The

from the curvature flow smoothing [22] which seems recent : . : )
. o : sulting pruning rate is/I1 — Ry)R, and the corresponding
to gain the position of the preferred shape-smoothing method- ST ‘

ifferential significance measure is

Suppose the boundary of a given shape evolves under a given
differential flow. The changing boundary induces a constant
change inthe shape and its medial axis. Although smooth bound-

ary evolution does not guarantee smooth axis evolution, discon- . L _
tinuities in the axial description are localized both in space afidS INteresting to note that this significance measure is in some

time. In [39] a framework has been suggested to translate difS€ halfway between the erosion thickness and the erosic
ferential boundary evolution rules to evolution rules of the ax@ €2 significance measures (6), (11).

description. Evolving axes are described by a large set of rules:

A curve evolution rule for the axis curve, a rule for the radius 7. ANALYSIS AND RESULTS

function, and boundary rules for both the axis curve and the hi ) | q imulati It
radius function at free axis end points, as well as at junctions, In this section we analyze and compare simulation results

It may be shown [39] that when the boundary evolves unng,m different pruning methods: erosion thickness, boundary/

curvature flow, axis end points get deleted at a rate proportior%'s .Iength ratio, erosion area, and boundary smoothing-base
to pruning. In Subsection 7.1 we analyze results on a model shap:

and in Subsection 7.2 we compare simulation results of genere
1 shapes.
T RaRE @y
a

In addition, the boundary condition for the radius function is

R(1 — Ry). (15)

7.1. Model-Based Analysis

The significance measures of all the above-mentioned prun
ing methods depend only on the radius functiddence it is
Ra=1. (14)  sufficient to compare their behavior on straight axes. We ana

lyze and compare the pruning methods using the constant widtt

Thus, at the endpoirR, gets the maximal possible value (itisyeqge, and small perturbation axis models (see Fig. 10). Ir
always true thatR,| < 1) andR,; is honpositive. Hence, the

rate (13) is, as required, nonnegative.
. A .s.tralghtforward interpretation of (13)_ as if the q|fferent|al L There is no theoretical restriction prohibiting the use of local axis curve
significance measure should bd /R,,R? is wrong since we features in significance measures.
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the small perturbation model we analyze only the asymptotic
behavior.

The wedge and the small perturbation models are two com
mon models for boundary noise, and the constant width mode
is a good model to study the scale dependence of the prunin
methods. The analysis of the models is based on the significanc
measures derived from the radius functions of the modeled axe:

In the constant width model, .
R@=R = Ry=R.=0. (6
A w

In the wedge model,
_ ¢ Ra = c0s(¢/2)
R(a) = acosE = { Rus = O. a7)

In the small perturbation model,

R@ = v@-8P2+ae?2=a-p

1 a?

Ry = =1- Y e

JI+(@/(a—p) 2@ —B)
o
1- R
= R= o 5 (18)

a? o?

Raa = 3 = , FIG. 11. Results of the pruning algorithms: (ET) erosion thickness; (LR)

/(a _ ﬂ)z 12 (a— 5)3 boundary/ axis length ration; (EA) erosion area; (BS) boundary smoothing basec

pruning.

where the approximations are for largealues & > «).
We arrive at a description of the differential significance mea-
sures of the axes as a function of the model parameters and pog-he four pruning algorithms we applied are based on the four
sibly the axis arc length. The different significance measures gmeining methods: erosion thickness (ET), boundary/axis length
summarized in Table 1. ratio (LR), erosion area (EA), and boundary smoothing-based
To support the analysis we present some simulation resufsuning (BS). In Fig. 11, the simulation results for each prun-
The input shape contains all the above-mentioned axis modéig) method are presented in a separate row. Each row presen
It has two constant-width axis segments having different widfhur instances of increasingly pruned axes. The gray shapes in
scales, two wedge segments with different opening angles dicate the original shape and the black shapes are the shape
small perturbation segment, and an inward depression feati@rresponding to the pruned axes. We tried to present instance
The inward depression feature is the shapebackground duabbfhe same pruning degree in the four pruning methods. The

the small perturbation feature. rule was: Each instance correspond%ltcé, g andg of the

TABLE 1
Differential Significance Measures

Pruning method Significance measure Constant WeB(m) = cos%) Perturb.
Eros. thickness 1-Ra 1 1-cos$ %:2
B/A length ratio 1-RE RRa 1 sin¢ 0

V1-RZ 2
Erosion area R/I-RZ-(1—Ry) R R@)sin%(1 - cos?) 2%32
¢ 2
Boundary smooth. R(1- Ra) R R@)(1 - cos3) %
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pruning time needed to annihilate the axis segment of the narrow
wedge.

From the table and the simulation results in Fig. 11 we make
the following observations:

Scale Up
e General:

— As mentioned, the time synchronization across the meth-
ods in Fig. 11 is limited. We rescale the time according to the
time needed to annihilate a certain axis segment (the segment
corresponding to the narrow wedge). However, since the relative
significance of axis segments depends on the pruning method,
we can have different time correspondences, if we rescale time
according to other events. FIG.12. Pruned wedge axes are scaled versions of each other.

— Note the uniform erosion thickness in the ET row of the
simulation results.

—The eroded boundary length and the erosion area are

not so apparent; however, they also seem to be uniform in thefEMS that the ET and EA pruning methods eliminate the sma
corresponding rows of simulation results. perturbation axes quicker than the other methods.

e Constant width: —If the small perturbation is polygonal as in the model

— The ET and LR pruning methods are invariant to scalfig. 10c), the LR differgntial significance of axis poiqts be-
The constant significance value in the constant-width columngmes €ro once the axgs corrlespond_s to the two \I/ert#_:es (tr:
the table indicates that wide axes are pruned at the same s e vertices correspon to & long axis segment). In this sen:
as Narfow axes. the LR method is optimal.

—In the EA and BS pruning methods wide axes are more —To analyﬁe t?]e a.;yr;:jptoﬂc_results for smag_pertur?]auz_r;
significant than narrow axes, and thus they are prun;ed us retum to the threshold prunings corresponding to the di .
slower. erent pruning methods. The threshold significance measure i

—In the ET row of Fig. 11, the two constant-width axeéhe integral of the differential significance (5). The threshold
are pruned at the same rate. significance measures corresponding to the ET and EA method

— Equal rate pruning of constant-width axes cannot be nare. therefore, asymptotically similar+el /a, and the threshold

ticed in the LR column, because end points of constant-wid?.’f.'gmﬁc"jlnce of the BS method is asymptotically similar to log
axes in LR pruning have zero velocity for a time period equgr Thushs(rjna'll ?"er.turt?atlon a;]xes are prrL]JneBdSout bﬁ/ t:ehET an
to the length of the circular boundary segment correspondifg; met ods 'E_ |n|t_¢|a t:me, w er_?ar? n t el metho ht €y car
to the end point, i.er R. This time period, is, naturally, shorter€XISt for an arbitrarily long time if they are long enough.

for narrow axes and longer for wide axes. Thus the LR pruning' Inward depression: ) .
may, after all, be considered as scale-dependent. — We do not analyze the pruning of axis defects caused by
inward depressions because pruning cannot really mend them

Scale Down

e Wedge: ; . .
— Significance of wedge axis segments is a function ofthe U?“a”y an mvx_/ard depression creates two axis segmerjt.
wedge angle. reaching it from two sides. Those superfluous segments are sin

— Inthe ET and LR rows of Fig. 11, the thin wedge is morgar to both segments created by small perturbations and wedg

significant than the thick wedge. segments.
—Pruned wedge axes are scaled versions of each ot
(excessively pruned axes are up-scaled versions of modera
pruned axes); Fig. 12. We applied the four pruning methods (ET, LR, EA, BS) to two
— Scale dependence may be identified in the EA and BBapes: Man and Square (see Fig. 13). Both shapes are about 6
rows of Fig. 11 during each wedge pruning: the pruning rapxels wide. Figure 13a is about 350 pixels high, and Fig. 13b
is slowed. It may be noticed more easily across axis segmeistd50 pixels high. The skeletons were obtained using the Curve
that narrow axes have smaller radius values and are, hence, Fess [40].
significant. In Fig. 14 we present the first pruning hierarchy for each of
e Small perturbation: the methods. The first pruning hierarchy is obtained as follows:
—In the simulation results presented in Fig. 11 the axRirst the shape is pruned for a certain time, in our case 10% o
segments due to small perturbations are not very long and, thilng time needed to prune the entire axis. Then parts of the prune
should not be expected to correspond to the asymptotic resaites get “unpruned.” The unpruning process is initiated on even
in the table. end point of the pruned axis and progresses outward. Unprunin
—As noted in the first observation, it is difficult to com-reinstates the axis parts it scans. Arriving at a junction the un-
pare pruning rates from the simulation results in Fig. 11. Still fruning process chooses a single branch in which it continues

?e%i Simulation Results
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FIG. 13. The two original shapesianandsquare with axes superimposed.

the other branch is not unpruned. From the two branches of@pports the incorporation of the original skeleton hierarchy sug-
junction, unpruning chooses the branch that lasted longer dgested by Ogniewicz [28, 29] which includes another parameter,
ing the pruning process. Unpruning continues until it tries tenabling the unpruning of two branches in a pruned junction if
unprune a point that was among the earliest to be pruned, in thugir significance measures are similar.
case less than 2% of the time needed to prune the entire axis. We observe that in the LR method occasional groupings of
As already mentioned, the issue of optimal smoothing has maiisy axis branches may seem significant. Note that the un-
yet been settled. Moreover, in our opinion, optimal smoothirn@uned noisy axis branches in the LR pruning of the square
cannot be objectively determined, mainly because human wwhape in Fig. 14 are roots of such groupings. If some of those
derstanding of “reasonable smoothing” is subjective and almdstinches would have terminated in junctions with the main axis
always context-dependent. Thus the goal of this subsectiorrasher than joining together before they met the main axis, all of
to point out the different interpretations of smoothing impliethem would have been deleted.
by the various pruning methods, rather then to find “the best” The increased significance of occasional groupings of axis
method. segments is due to the time delay at junctions. At a former junc-
The mostvisible difference in the simulation results of Fig. 1don the pruning process is delayed for a time period equivalent to
is between scale-dependent and scale-independent pruning the-boundary length corresponding to the formerly pruned axis
thods. The ET and LR methods are scale-independent, corsegment. Possible modifications to the time delay may alleviate
quently elongated shape protrusions are considered significduig artifact. The trivial no-delay possibility may cause unduly
no matter how narrow they may be. This might be consideréakt pruning of hairy significant branches; however, replacing
good in shapes like the man shape of Fig. 13a, where relativéty boundary length delay with a chord length delay may be
small protrusions have contextual meanings of hands and feffective. These and other possibilities were not explored.
gers. In context-free shapes as the square shape of Fig. 13b the
same feature might be considered a disadvantage. 8. SUMMARY
The difference between the EA and BS methods is usually
unnoticeable. In some sense the EA method prunes faster (EAruning methods are incorporated in many skeletonization
differential significance measure is always smaller than the Bfd thinning algorithms. Although they may seem different,
measure sinciRa| < 1). The meaning of the above statement iany pruning algorithms are equivalent methods reinvented anc
restricted since relative speed depends on how time is scaledidstated in a variety of application-dependent formulations. The
the presented simulation results the higher pruning rate brougigonsistent terminology prevents analysis and comparison of
about the pruning of the axis segments corresponding to the basgepruning methods.
of the man shape by the EA method. One of those segments ha this paper we suggested the rate-pruning paradigm as :
been unpruned as can be seen in Fig. 14. The unpruning of #tisndard for acceptable pruning methods. Acceptable pruning
specific segment is due to a negligible difference in the sighethods are connected and continuous methods (i.e., resul
nificance measures of the two axis segments. This phenomefanaxes are connected and pruning is continuous in its degres
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ET

LR

EA

BS

FIG. 14. First pruning hierarchy, pruning large scale details of 10% and unpruning up to small scale details of 2%.
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parameter). The standard formulation is a framework in which. L. P. Cordella and G. Sanniti di Baja, Context dependent smoothing of

it is easy to tailor new pruning methods, and we have indeed figures represented by their medial axis transfornRiioc. of 8th ICPR,

suggested two new pruning methods: The heuristics behind the 1986, pp. 280-282. . _ N

proposederosion areapruning is analogous to the heuristicslo' E. R. Davies and A. P. N. Plummgr, Thinning algorithms: A critique and a
.. - . . new methodologyPattern Recognitl4, 1981, 53-63.

motivating the existingerosion thicknessethod. The second

. . 11. A. R. Dill, M. D. Levine, and P. B. Noble, Multiple resolution skeletons,
method we proposed is motivated by the curvature flow, a shape- | 0. on PAMS. 1987 495504

SmOOthmg method which IS. currently considered as a pOSSIlﬁe. R. O.Dudaand P. E. HaRattern Classification and Scene Analy¥iéley,
standa_rd for shape smoothing. o _ New York, 1973.

In this paper we _h_ave also analyzed eX|st|ng pruning methoq@: M. Gage and R. Hamilton, The shrinking of convex plane curves by the
To prove the flexibility of the suggested paradigm and terminol- heat equation). of Diff. Geometr23, 1986, 69-96.
ogy we have reformulated existing acceptable pruning methads J. M. Gauch and S. M. Pizer, The intensity axis of symmetry and its appli-
in the proposed standard terminology. In the last section we cation to image segmentatidiEE Trans. on PAMLS, 1993, 753-770.
have analyzed and compared the proposed new pruning méh-C. Gerhardt, Flow of nonconvex hypersurfaces into sphdresf, Diff.
ods and some of the existing methods and presented their diverse>e0metns2, 1990, 299-314,
smoothing properties. 16. M. Grayson, The heat equation shrinks embedded plane curves to rounc

. points,J. of Diff. Geometr26, 1987, 285-314.
Note that we could have proposed the threshold-prunlng ) . L
di tandard di instead of th tentiall 17. S.Hoand C. R. Dyer, Shape smoothing using medial axis prop¢#tes,

paradigm as a standard paradigm instead of the potentially moré 1, \c on pams, 1986, 512-520.
difficult pruning rate paradigm. We did not choose to do

. . ! . S& R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein, Skeletonization
because in this way it would not have been possible to fully ia distance maps and level se®/IU 62, 1995, 382-391.

standardize the pruning terminology. Identical pruning methg. F. Leymarie and M. D. Levine, Simulating the grassfire transform using an

ods could have been formulated in a variety of heuristic or active contour modelEEE Trans. on PAMIL4, 1992, 56-75.

application-driven global formulations, as was shown to be the. G. Matheron, Examples of topological properties of skeletonsnage

case in many publications of existing pruning methods. Using Analysis and Mathematical Morphologyheoretical Advance@l. Serra,

the rate-pruning paradigm it is possible to require truly local Ed-).Vol-2, Academic Press, San Diego, 1988.

formulation of differential significance measure. 21. E._Mokhtarian and A. K. Mackwqrth, S_cale-based description and recog-
The pruning framework proposed in this paper is indepen- rlntlon of planar curves and two-dimensional shapeEE Trans. PAMIB,

WOr _ : 986, 34-43.

dent of t_he-skeletqnlzgtlon method applied; however, .It d0§§ F. Mokhtarian and A. K. Mackworth, A theory of multiscale, curvature-

not require its application to be such. One has to keep in mind pased shape representation for planar cul&EE Trans. PAMIL4, 1992,

that in many skeletonization algorithms the radius information 789-805.

is not very accurate. In other applications (e.g., discrete skefa- U. Montanari, A method for obtaining skeletons using a quasi-euclidean

tons of small shape parts) the spatial resolution precludes stabledistance,). of the ACML8, 1968, 600-624.
derivatives of the radius function. In all those cases, applicatiotf- U. Montanari, Continuous skeletons from digitized imadesf the ACM

specific formulations of the various pruning methods are essen-

16, 1969, 534-549.

tial, but should preferably be designed and applied only as staP?e B- Merriman, J. Bence, and S. Ostigiffusion Generated Motion by Mean
approximations to the application-invariant formulations.

=
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