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 Probabilistic Pursuits on the Grid

 A. M. Bruckstein, C. L. Mallows, and I. A. Wagner

 1. INTRODUCTION: PROBABILISTIC PURSUIT. The paths of a sequence of

 a(ge)nts engaged in a sequence of continuous pursuits converge to the straight line

 between the origin and destination [2]. We consider a discrete setting where the

 a(ge)nts are only allowed to visit grid points and chase each other according to a

 probabilistic rule of motion, and prove a similar result: the average paths of ants in

 a chain of probabilistic pursuit converge rapidly to a straight line. This discrete

 model of pursuit leads to interesting results also in the context of linear and cyclic

 pursuits.

 Assume that a sequence of ants Ao A1, A2, . . . are released from the origin at

 times t = 0, 1\, 21\, . . ., (1\ being an integer > 1), and each ant moves on the

 integer grid in the plane so that An+1 chases or pursues An according to a

 probabilistic rule defined in the sequel. For sake of simplicity, consider that each

 ant measures time from its moment of release: if An+1 is at time t of its motion

 (i.e., on the tth point of its trajectory), then An is at time (t + 1\). A pursuing ant

 An + 1 stays one unit of time at a grid point An + l(t) = (Xn + l(t) Yn + 1(t)). Then

 it looks around, and decides where to move next according to the location

 An(t + I\) = (xn(t + 1\), yn(t + 1\)) of the pursued ant. Ant locations on the grid

 will be encoded as complex numbers: An(t) - xn(t) + jyn(t), where j = .

 Probabilistic pursuit is defined by the following rule. An+1 chooses its next

 position as one of its four nearest neighbor-points on the grid, under a probability

 distribution determined by its relative position with respect to the pursued ant.
 r nt

 nus

 An+l(t + 1) =An+l(t) + An+l(t + 1) (1)

 where An+lf ) are random variables taking values in {1, -1, j, -j} according to

 Prob { An + 1 ( t + 1 ) = sign( dx ) } = d ( 2)

 Prob { an+1( t + 1) = j sign(dy)} d

 where dx, dy are defined as

 dX = xn(t + I\)-Xn+l(t)

 dy = yn(t + I\) -Yn+l (t)

 and d = Idxl + Idyl is the "Manhattan distance" (the Manhattan norm of x + jy is

 defined as llx + iYll - llxll + llyll) between successive ants (see Figure 1). If d drops

 to zero at some time during An+1's pursuit of An the ants merge and continue An's

 pursuit of An_1. The preceding equations define a probabilistic pursuit in the

 complex plane, with pursuit steps biased according to the relative locations of the

 pursuer and pursued. The rule is trivial if l\ = 1, since then the pursuing ant

 follows the leader exactly.
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 Figure 1. The probabilistic model for ant pursuits on Z2.

 Figures 2-4 display simulation results of probabilistic pursuits for various initial
 trajectories. In each of these simulations we ran many pursuits with identical
 trajectories for Ao starting at (0,0) and ending at some grid point (a, b). The
 figures show the distribution of locations visited by certain ants, the grey level of
 each pixel being proportional to the number of times the ant visited that location.
 The ensemble-averaged path of the sample ants is depicted as a bold curve.

 :-

 .

 antAo antA] antAz

 ant As ant A1o ant Azo
 .... .. ..

 9''" ; X /\
 antAso mtAs3 antAIoo

 Probabilistic chain pursuit of 100 ants from (0, 0) to (20, 20)
 Gray level - Distribution of sites visited by sample ants
 Bold lines - the average path in 200 simulation runs
 Initial Manhattan distance - 5

 Figure 2. Probability distribution with a simple 'maze' initial path.
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 Initial Manhattan distance = 5

 Figure 3. Probability distribution with yet another 'maze' initial path.
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 Figure 4. Probability distribution with a self-crossing initial path.

 2. PATH CONVERGENCE TO STRAIGHT LINES. Assume that the first ant Ao

 travels along an arbitrary grid path from the origin to a + jb, where it stops

 (without loss of generality we assume that a 2 O, b 2 O). Then, for each n 2 O,

 An+1 pursues An following the probabilistic pursuit rule given by (1) and (2). Let
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 us define Ln as the (rectilinear) length of this path:
 Tn

 Ln = , ||An(t + 1) -An(t) 11,

 t=O

 which equals Tn-the total number of steps in the path of the nth ant.

 We shall show that the pursuit paths converge, in a sense, to the "straightest"
 line on the grid connecting the source O to the destination a + jb. This will be

 done in three stages: first we show that for any initial grid path taken by Ao the
 pursuit trajectories eventually become confined to the rectangle defined by O and
 a + jb, and are monotonic (of length a + b). Then we show that within the
 rectangle all monotonic paths have, in the limit, equal probability. This means that
 the points near the straight diagonal are more likely to be visited, and that the
 straight diagonal from O to a + jb is the average path in the limit. Then we show

 that the average path converges to the straight line vety fast.

 2.1. The Pursuit Paths become Monotonic. We first show that the trajectory An(t)
 eventually becomes monotonic. A discrete path is monotonic if it has no "back-
 tracking"-that is, bi(t) E {1, j} for all t during the pursuit.

 Lemma 1. LnX the Manhattan path-lengths of ants engaged in probabilistic pursuit, is
 a positive, non-increasing (hence convergent) sequence.

 Proof: Since Tn = Ln we show the claimed properties for Tn. Ant A+1 starts its

 journey exactly l\ units of time after An has started. After Tn units of time, An
 stops at the destination and at this point An+1 has made Tn - l\ steps along its
 trajectory. According to the probabilistic pursuit rules, thx distance between ants
 can never increase, hence when An stops, its pursuer An+l is at a distance < l\
 away from the destination. In the following /\f < l\ units of time, An+l decreases
 its distance from the destination by exactly one per unit of time. Therefore we
 have

 Ln+1 = Tn+1 = Tn-/\ + /\f < Tn-l\ + l\ = Tn = Ln

 and since the sequence Ln is also bounded below by a + b, it converges. f

 We next claim that if the path-length of an ant is greater than a + b, there is a
 positive probability that the path-length of the next ant decreases.

 Lemma 2

 ^ - 1 Lo

 Prob {Ln+1 < Ln-2 ILn > a + b} > L\

 Proof: Since an ant starts at O and finally arrives at a + jb, it is clear that for all n
 we must have

 Tn

 6n(t)=a+ib.

 t=O

 From the definition of probabilistic pursuit we see that An(t) E { _ 1, _ j}, and if

 Ln > a + b (as we assume) the path of An is necessarily non-monotonic, that is:
 there exist times t1, t2 such that An(t2) = - An(t1). Let us take (t1, t2) to be the

 earliest such interval, so that t2 is the first time (after t1) when An makes a
 "backtracking;" see Figure 5, in which we assume (without loss of generality) that

 at time t1 the ant An moves to the left, then up, and at time t2 to the right. Since
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 we require t2 to be the first "backtracking," An moves upwards monotonically
 between t1 + 1 and t2-1, for h steps, where h = t2 - t1 - 2. Since An+1(t) is A
 steps behind An at time tl it must be somewhere on the boundary of the square
 RThQPTSWE. Now from the figure it is clear under what conditions the distance
 between the ants decreases during the time interval (tl, t2). This happens if either
 (i) An+l(t) is located to the left of WT, in which case the distance decreases at
 time t1, or (ii) it is located to the right of V, in which case the distance decreases at
 time t2. Also, if An+l(t) is on SPQ the distance decreases sometime between tl
 and t2. The only chance to preserve the distance is when An+l happens to be
 located on the arc WRV at time tl; in this case An+l may first get to PR, and then
 follow An one step to the left of PR and later (after t2) to the right, without ever
 shortening the distance between them. However this is not sure to happen.
 Wherever An+1 starts from, there is the possibility that after it reaches PR it never
 makes a step to the left between t1 and t2. Let us denote by I the event 4'A"+l,
 once it has arrived on the line PE, stays there (at least) until time t2". As explained

 * t

 prevlously

 Prob { Ln + 1 < Ln} > Probt I} f

 To obtain a lower bound on the probability that I occurs, note that the probability
 that An+1 does not move left in a certain time in (t1,t2), according to the

 Possible locations for A(n +
 when the M-distance A is given \

 P

 A//""'''\\E

 .... o. '¢
 + h 3 *.
 ... . *+.

 S z ....... .. _* Af ) * . Q

 |A(t1)-A(t1) |-A R h

 Figure 5. An illustration of a non-monotonic ant path.
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 probabilistic pursuit rule, is proportional to the ratio of dy ((A - 1) in our case) to
 dx + dy (Z\ in our case). The event of staying on the line PR should repeat t2 - t

 times (or fewer if An+1 arrives on the line PR later than t1). Hence

 l l\-1 t2-tl

 Prob{I} 2 t : , (3)

 which is the probability that Anl stays on the line PR during an interval that is
 not longer than (tl, t2), given that An is hopping along the line IW. This effort by
 An l is eventually rewarded at time t2, when An turns right and the distance
 decreases by 2. Clearly,

 t2-t1 < Tn =Ln <LoS

 and hence the probability that the length of the (n + l)st path is shorter than that
 of the nth path by two (or more) units is bounded below by ((A - l)//\)Lo. L

 Note that if the distance between ants An+1 and An drops, it drops in quanta of

 two if An is not stationary at a + jb. The proof of Lemma 2 also shows that
 chasing an ant that moves along a non-monotonic path induces a positive probabil-
 ity for a drop in the distance between the ants.

 The next theorem shows that the pursuit path eventually becomes monotonic:
 Ln converges to a + b with probability 1. In general, a sequence of random
 variables {Xn} converges with probability 1 (or almost sureZy) to a value X (we write
 Xn X) if, given , 8 > O, there exists an nO(e, b) such that for all n > nO,
 Prob{lXn - Xl < a} > 1 - s.

 Theorem 1. There exist constants k1, k2 > O such that, given e > O, if

 { 1 \
 n > nO(e) = k1 + k2 * logt e X

 then

 Prob {Ln = a + b} > 1 - ,

 where Ln is the length of the path of An an a probabilistic pursuit from the oragan to
 a + jb.

 Proof: If Ln > a + b then there must have been at most sO = [Lo - (a + b)]/
 2 - 1 ants in the sequence Ao . . ., An for which a drop (of 2) in the distance to the
 pursued ant occurred, since a decrease in the distance between consecutive ants
 implies a decrease in the path length of the pursuing ant. Hence, there were at
 least n - sO ants with no decrease in distance. Lemma 2 ensures that each ant
 path can be viewed as the outcome of an experiment in which the distance-drop
 event occurs with a probability of at least p = ((lS - l)/l\)Lo. A sequence of ants
 engaged in a probabilistic pursuit is a series of trials, with outcomes that are either
 a "success" a drop in the inter-ant distance (which has a probability at least p),
 or a "failure"-the distance does not change. Define A to be the event "sO or
 fewer distance-drops in a chain of n ants".

 so

 Prob {Ln > a + b} = Prob{A} = E Prob {s successes up to n}
 s=O

 ( 1 ) ( P ) + + ( 5 ) ( 1 _ p ) s O
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 = (1 - p) E ( 5 )(1 - p)

 ( So ) S=o

 < (1 P) ( 5° ) (1 _ p)sO _ (1 p) n C1 C1q n

 Here C1, C2, and q < 1 are constants, independent of n and e. Since
 limnOOC1 * qn * nC2 = O, there exist constants C3, C4 such that

 for all n > C3, C1 * qn * nC2 < C4 * qn/2

 and in order to get

 ProbtA} <C4 qn/2<E

 it is sufficient to have

 210gC4 2 11\
 n > 1 + llogt-J t

 log- log-

 2.2. The Stationaly Path-Distribution is Uniform. The paths followed by succes-
 sive ants form a Markov chain, with the state-space being all paths from the origin
 to a + jb. Theorem 1 ensures that all paths longer than m = a + b are transitory.
 If we restrict to paths of length exactly m, we shall show that the chain is

 irreducible and aperiodic (and therefore ergodic), with the stationary distribution
 being uniform. If the initial path is monotone, the rule (2) has the following
 interpretation, which greatly simplifies some of the proofs we offer:

 Suppose we have a supply of black and white balls, and a series of urns UO, U1, U2, . . ., which
 initially are all empty. At time t = 1, 2, . . ., a + b an agent Ao places a ball, either white or
 black, into UO. At each time 1K, 1\ + 1,. . ., agent A1 takes a ball at random from UO (which at
 time A contains lv balls) and places it in U1. At each time 2lv, 2lv + 1, . . ., agent A2 takes a ball
 at random from U1 and places it in U2, and so on. For each urn, the number of balls it contains
 starts by rising from zero to /, stays there a while, and then decreases to zero.

 This description is equivalent to that of probabilistic pursuit, if we take a white ball

 for a right-step and a black ball for an up-step, and identify the position An(t) with
 w + jv where w (respectively, v) is the total number of white (respectively, black)
 balls this agent has seen by time t. The number of white (black) balls in urn Un_1
 corresponds to the x (y) position of An_1 relative to An. If An (t) = w + jv and
 An_1(t) = w + jv + x + jy, so that the urn Un_1 contains x white and y black
 balls, then the probability that An chooses a white ball (so that An(t + 1) =

 w + 1 + jv) is just x/(x + y).
 Let S be the set of monotonic paths from the origin to a + jb, and let X be the

 Markov chain with state-space S and transition probabilities induced by the
 probabilistic pursuit procedure.

 We first show that X is irreducible.

 Lemma 3. For any hvo paths s, s' E S there is a sequence of positive-probability
 transitions that leads from s to s'.

 Proof: One can interpret a monotonic path from O to a + jb as a sequence of

 a + b characters from the set {u, r}, where r refers to a "right" move and u to an
 '4Up" move. There are exactly a r's and b u's. It is easy to see that if, in the target's

 1997]  329 PROBA13ILISTIC PURSUITS ON THE GRID

This content downloaded from 132.68.36.165 on Mon, 08 Jan 2018 14:58:21 UTC
All use subject to http://about.jstor.org/terms



 path s, there is a u at time t, followed by an r at time t + 1, then there is a
 positive probability that the pursuer's path s' will be equal to s with the only
 exception that s' has an r at time t and a u at time t + 1. The set S of monotonic
 paths is closed under such "flip"operations given a path s E S, any other path in
 S can be reached from s by a sequence of (positive probability) "flip" transitions.
 Hence the chain is irreducible. E

 It is easy to see that X is aperiodic:

 Lemma 4. For any path s E S, Pss > °

 Proof: There is always some positive probability that the pursuer follows the
 pursued's path exactly. s

 Now we show

 Lemma 5. The uniform distribution over S is stationaty.

 Proof: The number of different paths from the origin to a + jb is

 I I ( a )

 For the uniform distribution of paths, the position at time t (starting from the

 origin at t = 0) is x + ty (where x + y = t) with probability

 Prob{xlm,t,a} = lSl (x)(a-x)

 This is the hypergeometric distribution, which governs the number of white balls
 (x) in a random sample of t balls chosen from an urn that contains a white and b
 black balls. Thus we can generate a random path by choosing balls sequentially at
 random from an urn that initially has a white and b black balls.

 Next consider the case when t + /\ < a + b. Suppose the path of the pursued
 ("target') ant, A1, is chosen uniformly from S, e.g., by drawing from an urn with a

 white and b black balls, and moving right on white and up on black. Using the
 "urn" representation, we can obtain the distribution over all possible paths for the
 kth ant by considering a sequence of urns U0, U1, . . ., Uk, . . . with the black and

 white balls being moved downstream according to the following rule:

 Start with UO containing a white and b black balls. At each time unit draw a ball at random
 from UO and place it into U1 until !V balls are accumulated there. Then also start moving
 randomly chosen balls from U1 to U2 until lv balls are in U2 and so forth.

 The distribution of paths for the kth ant is given by the distribution of ball-color

 sequences seen entering the urn Uk in this process. Disregarding the color of balls,
 by symmetry all (a + b)! sequences of balls are equally probable to appear as
 inputs to Uk. Hence the

 (a + b)! _ {a + bA

 a!b! \ a J

 possible sequences of black and white balls are also equiprobably seen entering the

 kth urn. !

 The property we have just proved is strongly related to the concept of exchange-

 ability, defined as follows (see [6, pp. 97-105]): A countable sequence of events
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 VlZ2Z... iS exchangeable if for any possible choice 1 < i1 < i2 < <ik of k
 subscripts, Prob(g1 rn 82 n1 n1 Vik)=pk depends only on k but not on the
 actual subscripts ij. If the event g is defined as "a white ball enters the last urn at
 time i", then the probability of having a such events does not depend on the order
 in which they occur, hence the sequence is exchangeable and all paths are
 equiprobable.

 The preceding result is quite general. In fact, if we take a sequence of urns with
 a white and b black balls in the first one and move them downstream, choosing
 balls at random from Ui to be placed into Ui+1, according to any given schedule
 ensuring that all balls pass through each urn, then all the possible color sequences
 of balls entering each urn have the same probability. This shows that for monotone
 pursuits one can vary the inter-ant intervals arbitrarily, and the paths of the ants

 engaged in pursuit will be uniformly distributed if the first ant chooses a path at

 random from (O, O) to (a, b). This also generalizes to higher dimensions (= more

 colors for balls). Thus the paths generated by this rule are also governed by a
 uniform stationary distribution.

 From Lemmas 3, 4, and 5 we have

 Theorem 2. X is an ergodic Markov chain and its unique stationazy distribution is
 .r

 unlJorn>.

 Two immediate corollaries of Theorem 2 are:

 Corollaxy 1. Assuming stationarity, the average path is the straight line from O to
 a + jb.

 Proof: A standard result for the hypergeometric distribution (4) is that E[xlm, t, a]
 = ta/m. a

 Corollaxy 2. Assuming stationarity, ants are usually vezy near the average path.

 Proof: For the hypergeometric distribution (4), the variance of x is

 V[xlm, t, a] = t(m - t)ab/(m - l)m2.

 Thus if a = am, b = /3m, and t = zm (where Ol + ,8 = 1) we have:

 V[x(t)] = ma/37(1 - 7) + 0(1).

 Suppose m is large. We can bound the probability that at time t the ant is
 outside a region of width me around the average, e being a number in (2 e 1) Using
 Chebyshev's inequality,1

 { at \
 Prob i x(t) -- 2 mei

 { at 2 2eA = Prob i x(t) - m > m J

 V[ x( t) ] (l j3T ( 1 - z ) ml -2 e + O( m 2 e ) > 0.

 lChebyshev's inequality ([5, p. 376]) says: let X be a random variable with expected value E[X] and

 variance V[X]. Then Prob{(X- E[X])2 2 a} < V[X]/a for any a > O.
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 Figure 6. Line widths for stationary distribution when a = 2b.

 The normalized width of the strip with positive probability is n6/oem, which clearly

 converges to zero when m oo. See Figure 6 for the line width in the stationary

 distributions for various values of m. O

 3. CONVERGENCE TO THE STRAIGHT LINE IS FAST. We now show that the
 average of the ant-paths converges to the straight line between source and
 destination exponentially fast.

 In the following, we ignore the initial non-monotonic transient, and assume that
 the leading ant Ao executes an arbitrary monotonic path. Let us define a new
 entity Dn (a determin-ant?) which progresses along the average path of An i.e.
 such that at each time t, Dn(t) = E[An(t)]. Then

 Dn(t + l\) -Dn+l(t)
 Dn+l(t + 1) = Dn+l(t) + l\

 (5)

 To justify this equation, note that the expectation of the step made by An+l at time t is

 E[An+l(t + 1)] - [An+l(t)] =

 Let us denote the average path of the ant An by the complex vector d=
 (d(O), d(l), d(2), . . ., d(m)), where m = a + b, and denote the path of the pursuing
 ant by d' = (d'(O), d'(l), d'(2), . . ., d'(m)). We measure the distance between these
 two paths by the maximum distance between any of their components, i.e.,

 dist(d,d') = max |d(i) - d'(i)|,
 O<i<m

 where 1 1 stands for the Euclidean distance. Now we can show that the average
 path approaches its linear limit exponentially fast.
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 Theorem 3

 dist(dnndoo) < ( _ ) (1 _ am-A)n (6)

 where oe= (A - 1)/1\.

 Proof: First we show that the limit average path, doo, is indeed the straight line. We
 can write the evolution equations as

 d(t + A)-d'(t)
 O < t < m-1N: d'(t + 1)-d'(t) =

 (7)
 d(m) - d'(t)

 m - A < t < m: d'(t + 1)-d'(t) = m - t

 with boundary conditions

 d(O) = d'(O) = O, d(m) = d'(m) = a + jb,

 where the denominators represent the Manhattan distances between An and Anls
 This distance is initially A, and stays constant until An reaches a + jb, whereupon
 the distance decreases by one per unit of time. Hence we can relate the vectors d
 and d' in the following way:

 d'(O)= d(O)

 Ad'(l) + (1-A)d'(O) = d(A)

 lvd'(2) + (1-!\)d'(l) = d(!\ + 1)

 Ad'(m - A + 1) + (1 - A)d'(m - A) = d(m)

 (l\ - l)d'(m - l + 2) + (2 - A)d'(m - /\ + 1) = d(m) (8)

 (!\ - 2)d'(m - l + 3) + (3 - A)d'(m - i\ + 2) = d(m)

 2d'(m - 1) + (- l)d'(m - 2) = d(m)

 d'(m)= d(m).

 A fixed point of this linear iterative process is a vector d such that d' = d. In

 such a vector, d(t + 1) - d(t) must be constant for all t. Otherwise, assume that
 there is a solution for which the sequence d(t + 1) - d(t) is not constant, and

 denote x(t) = Ad(t); the same argument holds for y(t) = Ad(t). Denote by to the
 smallest integer in [0, m - 2] such that the difference x(to + 1) - x(to) is an
 extremum either a minimum or a maximum. This difference is necessarily
 nonnegative since the path is monotonic. From (7) it follows that

 X( to + 3 ) - X( tO ) = 1 x (x( to + k) - x( to + k 1) )

 1 8

 =-E Ix(to+k) -X(to+k- 1)1*
 8 k=l
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 Hence

 min [x(to + k) - x(to + k - 1) l < |x(to + 1) - x(to)

 < max |x(to + k) -X(to + k - 1)|
 lik<8

 where 8 = min{/\, m - to} > 1. The last inequality is strict since not all the

 differences are equal. But this contradicts our assumption that x(to + 1) - x(to) is

 an extremum. Moreover, to cannot equal m - 1, since then both the minimum and

 maximum would occur at the same index, contradicting the assumption that the

 sequence is non-constant.

 Since d(O) and d(m) are not affected by the iterative process, the vector dn

 converges to a limit that is a sequence of points equi-spaced on the straight line

 from d(O) to d(m).

 We next show that the distance from the limit decreases exponentially fast. The

 set of difference equations (8) can be written as:

 4>d' = td,

 where the matrices 4> and t are

 4>(m+l) X(m+l)

 1
 1

 1 - A

 o
 .

 o'

 o

 o

 .

 o

 1 - A

 X * *

 * * ¢

 o

 o

 1 - A

 I

 A - 1

 I

 2-A A-1

 o

 -1 2

 o

 and

 < - A S >

 '1 0 *>* C

 o o ** c

 o o *** c
 .

 * * * ¢

 D

 * * * *

 o'

 ol

 o
 .

 o
 1

 o

 1

 o

 o

 o

 1

 o

 o

 o

 1

 o t(m+l) X(m+l)

 : 1 1
 A - 1

 : : 1
 iO ** 1,

 Note that 4> and t are independent of the specific path. Hence, the dynamics of

 the averaged ant-paths is described by

 d' = q>-l *td = Pd
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 i.e., a fixed matrix operator repeatedly acting on the average ant-path vector. Let

 us now sketch the form of this operator and derive a bound on its second-largest

 eigenvalue.

 With some algebraic manipulations, it can be found that

 o' 1

 ct

 ct2

 ct3

 cEp

 CE 2p

 CXm-A+l  Cg m - ^X3

 A - 1
 1

 A - 2

 t (^ - 1)(h - 2) }

 ... 1
 2

 O 1,

 ( ^ - 1 ) ( (^ - 1)(^ - 2) )

 with og = (I\ - 1)/1\ and ,8 = 1/1\, and hence
 L O O

 < /\ ,

 ' 1

 2

 am-A

 o

 a2p

 .

 o

 o

 am-A+l

 am-A+l ( )
 /\ - 1

 am-+1 ( j
 / - 1J
 .

 am-A+l { j
 \'\ - 11

 O

 *\ p
 2

 * * * _

 3
 * * * _

 A - 1

 * * A

 *A 0 1

 p ql-1|

 Note that the row sums of P are all 1.

 Since the fixed point of the process d' = P d is the straight line from d(O) to

 d(m), and is independent of the entries d(l), d(2), . . ., d(m - 1) in the initial d, we

 know that as n tends to infinity, pn approaches the form of two non-zero columns

 on left and right, all other entries being zeroes. In order to analyze the rate of

 convergence of this process, let us bound the value of pi(;n) the (i, j)th entry in pn.

 An observation we need for this purpose is that the sum of the central m -1

 entries in any row of P is bounded from above:

 m-l

 5£ Pik < 1 - Ogm ^ S
 k=l

 with equality achieved at the (m - I\ + l)th row of P. Using this observation and

 the fact that the top and bottom entries in the m - 1 central columns of pn are
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 am-AX3 / - 1 )

 t /\ - 3 \

 t A 1 J
 .

 ( A 1 )
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This content downloaded from 132.68.36.165 on Mon, 08 Jan 2018 14:58:21 UTC
All use subject to http://about.jstor.org/terms



 zero for all n, we have the following recursive argument:
 m-l

 Pi; = Pik * pkn;-1)

 k=l

 ' m - 1

 < k-1 Omkax {Pkj } (9)

 O < k < m { i }

 < ( 1 - 0 ) max { pknj 2) }

 < (1 - Otm _lS )n

 Hence, the magnitudes of all the entries of pn except for those in the leftmost and
 rightmost columns tend to zero rather quickly. Now let us consider the 0th and
 mth columns. Due to the special structure of P and the inequalities (9) we have
 that for all i, O < i < m,

 m-l

 p-(On) = p-(On 1) + E Pl(k Pko

 k=l

 -Pio + (m - 1)(1 _ Otm _A )n-1
 and

 00

 | Pio Pi(o) | < (m - 1) , (1 _ Ogm_^ )k
 k=n

 (]g m-^ (1 og ) ,

 i.e., the leftmost entries of pn approach their limit values exponentially fast, too.
 A similar argument holds for the entries of the rightmost column. We conclude

 that the effect of the initial conditions (i.e., of d(1), d(2),. . ., d(m - 1) in do)
 decays exponentially fast, and the average ant path converges to the straight line as
 expressed by (6). 0

 4. RELATED TOPICS. We now consider several extensions to the probabilistic
 pursuit model.

 4.1. Probabilistic Linear Pursuit. Consider two ants, the first of which, AoS is
 happily hopping along a straight line parallel to the y-axis: Ao(t) = r + jt, where r
 is a constant. A second ant, A1, is chasing AoS and both are traveling at the same
 speed. Using our probabilistic pursuit model, one can get an equation for the
 average trajectory of Al(t), similar to the corresponding deterministic results
 found in [1, pp. 251-253] and [4, pp. 113-127].

 Theorem 4. If Ao is launched from (r, O) at time O and is going upwards at speed 1,
 and if A1 is launched from (O, O) at time O and is pursuing Ao according to the
 probabilistic pursuit model, the average behavior of A1(t) is described by the curve

 r-x \
 log l

 y(x)= r J -x
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 Proof: Since the behavior of the ants can be described by the equations

 Ao(t) = r + jt

 Al(O) = O (10)

 A1(t) =A1(t-1) + 8(t),

 where 8(t) is the random variable defined in (2). Since the rectilinear distance
 between them is always r, the average y-coordinate of A1 at time t is

 t-1-Yt-
 Yt=Yt-1 + r

 with initial condition yO = O. Substituting og = (1 - r) S = rS and using the fact
 that xO = YO = O, it turns out that

 Yt = °tYt-1 + (t- 1) = °t(°tYt-2 + (t- 2)) + (t- 1) =

 t-l t-l 1 t

 t E Ak-l (t -k) = at-1 E ka k = r 1 - _ + t -r.
 k=l k-l r

 Solving (10) for xt, we get

 Xt = O{Xt_l + 1 = °t Xt-2 + °t + 1

 t-l 1-ogt / 1 t
 = Of.tXo + E Ak= = r-r|l--,

 k=O 1-0t \ r

 hence

 ( r-x )

 y(x) = r-1 x. g
 log

 r

 This result is quite similar to the one obtained for continuous linear pursuit
 [1, p. 251]:

 (X-r)2 C

 y(x) = 4c - 2 log(r-x) + c',

 where c, c' are constants. The difference is explained by the different measures of
 distance involved: in our model the ant moves toward its target with a constant
 speed, maintaining a constant Manhattan distance to it, but the length of the
 average step it takes in the direction of the target varies, while in [1] the pursuit is
 carried out with constant Euclidean velocity pointed at the chased ant. Note that
 the Euclidean ant is asymptotically at distance r/2 behind its target, while the
 Manhattan ant never decreases its distance below r. See Figure 7 for a graphic
 comparison of pursuit path induced by these two models.

 4.2. Probabilistic Cyclic Pursuit. Assume that A = {Ao,A1,. . An} is a set of
 ants, chasing each other cyclically, that is: A1 is chasing AoS A2 is chasing A1, etc.,
 and Ao is chasing An. The set A begins at positions A(O) at time t = O and then
 evolves on according to the probabilistic pursuit rules defined in the previous
 section.
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 Figure 7. Comparison of the Manhattan and Euclidean models of pursuit.

 Denote by Ct the Manhattan circumference of the set A:
 n

 Ct = E || Ai+l(t)-Ai(t) 11
 i=O

 where llu - vll denotes the Manhattan distance between points u and v. In [2] and
 [3] it was shown that ants engaged in deterministic cyclic pursuit always converge

 to a point of mutual encounter (and all captures are almost always simultaneous,

 see [7]). Here we shall show that the ants reach a limit cycle, each ant being not

 more than one unit of distance away from its chaser.

 Theorem 5. Ants engaged in cyclic probabilistic pursuit with initial distances

 dlS d2, . . . S dn converge to a limit cycle with circumference COO = Li=O (di mod 2).
 Moreover, this convergence is exponentially fast: for any given E > O, if t > to(E) =
 O(log(le)) then Prob{Ct = COO} > 1-E.

 Proof: Inter-ant distances never increase in probabilistic pursuit, hence Ct is a

 non-increasing positive, hence convergent, sequence. Arguments similar to those in

 the proof of Lemma 2 show that whenever the distance between two ants is greater

 than 1 there is a positive probability, bounded from below, for a decrease (by 2) in

 this distance, provided the pursued ants' path is non-monotonic. But, in the case of

 cyclic pursuit, the paths of all ants are obviously non-monotonic, since they all have
 infinite length and are confined to the "bounding box" of the initial configuration.

 Hence COO must correspond to a limiting pursuit configuration in which all

 distances are less than 2, proving the first part of the assertion of the theorem.
 To prove that the convergence is exponentially fast, note that, as in the proof of

 Lemma 2, the inter-ant distance drops by 2 with probability higher than

 ( 1 lengthofnon-monotonicrun ( 1 CO
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 (since C0 is an obvious upper bound on all such runs) each time a non-monotonic
 run occurs in the pursued ant's trajectory. But this happens at least once every C0
 steps (since the ant must stay within a bounding box of Manhattan perimeter of at
 most C0). Hence we have

 Prob{Ct+c0 < Ct-2lCt > C) 2 ( 2 )

 In order to get Prob {Ct = COO} > 1 - , we must (as in Theorem 1) have t of the
 order of log(1/E). E

 The limit cycle may be a polygon with (up to) n + 1 vertices, as long as the
 length of each edge is exactly one unit; see Figure 8 for an example. Such a

 polygon is stable since in this case each ant Ai+1 "replaces" the pursued one Ai,

 the overall shape is preserved. Figures 9-14 exhibit simulation examples of the
 probabilistic cyclic pursuit. For each of the initial configurations we show the

 evolution of the probability distribution calculated over a large number of experi-
 ments, as well as the actual ant locations in a single experiment. It would be
 interesting to investigate the relation between the shape of the initial polygon

 whose vertices are Ai(0), i = 0,1, . . ., n, and the shape of the limit cycle.

 5. CONCLUDING REMARKS. Many of the results of this paper continue to hold

 when the lag l\ is not held constant, but is allowed to vary from one ant to the
 next. We could also allow for the chasing ant to be guided by an ant other than the
 one immediately ahead. To achieve the asymptotic results, we need only ensure
 that eventually the current ant is many generations removed from the first one.
 Also we need to have 1\ 2 2 infinitely often at each stage of the walk.

 The results dis$ussed in this paper can be generalized to three (or more)
 dimensional space. The probability of An+1 moving along each axis will, in this

 . . * * * . * . * *

 . . . . . . . . . .

 ..... ..... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... .....

 . * * * * * * * * .

 . . . . . . . . . .
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 Figure 8. A possible limit cycle for a cyclic pursuit.
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 C@clic ants pursuit
 Number of Ants=8; Time= 100
 Number of experiments=SO;

 Figure 9. Probability distribution in cyclic pursuit-initial conElguration 1.

 t=86 t=99

 Cyclic ants pursuit

 Number of Ants=8; Time=100
 Result of one experiment out of 50;
 Initial M-distances=[ 13 14 13 20 47 54 27 40]
 Final M-distances= [ 1 0 1 0 1 0 1 0 ]

 Figure 10. A single run of cyclic pursuit-initial configuration 1.
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 t=89 t=104 t=ll9

 Cyclic ants pursuit
 Nymber of Ants=8; Time=120

 Result of one experiment out of 50;

 Initial M-distances=[ 20 20 20 20 20 20 20 20]

 Final M-distances= [ O O ° ° ° ° ° °l

 Figure 12. A single run of cyclic pursuit-initial configuration 2.
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 Cyclic ants pursuit
 Number of Ants=8; Time= 120
 Number of experiments=S0;

 Figure 11. Probability distribution in cyclic pursuit-initial configuration 2.
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 (@clic ants pursuit
 Number of Ants=8; Time=120
 Number of experiments=S0;

 Figure 13. Probability distribution in cyclic pursuit-initial configuration 3.

 t=O t=14 9

 :;31 ass

 t=44 t=59 t74

 t=89 t=104 t=119

 Cyclic ants pursuit
 Number of Ants=8; Time= 120
 Result of one experiment out of 50;

 Initial M-distances= [ 39 41 39 39 41 39 38 38]

 Final M-distances= [ 1 1 1 1 1 1 0 0]

 Figure 14. A single run of cyclic pursuit-initial configuration 3.
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 case, be proportional to the projection of the vector An - An+l along this axis.
 Ants obeying the probabilistic pursuit model have the property of moving, on

 the average, in the same direction as a continuous pursuit. However, their speed is
 not constant since it depends on the location of the chaser relative to the target.
 To overcome this problem, for purposes of approximating continuous pursuit, one
 might consider the following Euclidean probabilistic rule of pursuit:

 Px = Prob { 8n + 1 ( t + 1) = sign( dx ) } = 2 vdx2 + dy2

 Py = Prob {8n+l(t + 1) =j sign(dy)} = 2 gdx2 + dy2 (11)

 PO = Prob {8n+1(t + 1) = O} 2 vd2 + d2

 where dx = xn(t + /\ ) - xn + 1(t) and dy = yn(t + l\ ) - Yn + l(t) are defined as be-
 fore. The additional "Euclidization" factor does not affect the average direction of
 the chaserS but does normalize its velocity to 2 independent of the target's
 location: it is easy to veri:h,r that Px + Py + PO = 1 and that (pX2 + py2)1/2 = 2. It is
 an open question whether some or all of our results hold for this model. The main
 difficulty is caused by the non-zero probability for the chaser to stay at its current

 location, which means that the pursuit distance is not monotonically decreasing, as
 it is in the Manhattan case.

 ACKNOVVLEDGMENT. We wish to thank Bob Holt of AT & T-Bell Labs for his help in "debugging"

 an early version of this paper, Amir Dembo of the Technion for his contribution to the simplification of
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