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Postprocessing of Compressed Images via
Sequential Denoising

Yehuda Dar, Alfred M. Bruckstein, Michael Elad, Fellow, IEEE, and Raja Giryes

Abstract— In this paper, we propose a novel postprocessing
technique for compression-artifact reduction. Our approach is
based on posing this task as an inverse problem, with a
regularization that leverages on existing state-of-the-art image
denoising algorithms. We rely on the recently proposed Plug-
and-Play Prior framework, suggesting the solution of general
inverse problems via alternating direction method of multipliers,
leading to a sequence of Gaussian denoising steps. A key feature
in our scheme is a linearization of the compression-decompression
process, so as to get a formulation that can be optimized.
In addition, we supply a thorough analysis of this linear
approximation for several basic compression procedures. The
proposed method is suitable for diverse compression techniques
that rely on transform coding. In particular, we demonstrate
impressive gains in image quality for several leading compression
methods—JPEG, JPEG2000, and HEVC.

Index Terms— Lossy compression, postprocessing, deblocking,
denoising, image restoration, Plug-and-Play Prior.

I. INTRODUCTION

BANDWIDTH and memory constraints play a crucial role
in transmission and storage systems. Various compression

methods are available in order to meet severe constraints on
the bit-cost in data representation. While some applications
require perfect reconstruction, some may tolerate inaccuracies
and can benefit from a reduced representation-cost. The latter
approach is known as lossy compression and is widely used
for representing a signal under bit-budget constraints while
allowing some errors in recovery. Accordingly, a variety of
techniques were standardized over the years for the lossy
compression of acoustic and visual signals.

Since lossy compression allows discrepancies between the
original and the reconstructed signals, the differences being
intentionally used in tradeoffs between bit-rate and quality.
The nature of the created artifacts depends on the compression
architecture. For example, block-based image compression
techniques suffer from blockiness effects that increase and
degrade the reconstruction as the bit-rate is reduced.

As artifacts are inherent in the lossy compression of signals,
a great number of artifact-reduction techniques were proposed
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over the years (e.g., [1]–[20] for image compression).
These methods usually focus on specific signal types
(e.g., image, video or audio) and sometimes even on specific
artifacts corresponding to certain compression designs
(e.g., deblocking procedures for images). Common image
compression techniques rely on transform-coding, where
image blocks are transformed, and the resultant transform-
coefficients are quantized according to their relative impor-
tance. The prominent artifacts of this architecture are [21]:
blockiness due to the separate treatment of non-overlapping
blocks; ringing caused by the effective elimination of high
frequency components, expressed as contours spreading along
sharp edges; and blurring that results from high-frequency
information loss. Postprocessing of compressed images are
subcategorized into two approaches [21]: enhancement of the
deteriorated signal by smoothing its artifacts (e.g., [1], [3]),
and restoration of the original signal samples (e.g., [2], [14]).

In this work we propose a novel postprocessing technique
for compression artifact reduction by a regularized restoration
of the original (precompressed) signal. Specifically, we formu-
late the compression postprocessing procedure as a regularized
inverse-problem for estimating the original signal given its
reconstructed form. We also approximate the (nonlinear!)
compression-decompression process by a linear operator, so as
to obtain a tractable inverse problem formulation. The intrigu-
ing approach of locally linearizing the non-differentiable com-
pression procedures is carefully analyzed, in order to utilize
it properly. Whereas many studies focus on corrections of
specific artifacts (e.g., image deblocking techniques [1], [3],
[5], [12]), our approach attempts to generally restore the
signal and thus implicitly repairs multiple artifacts. The major
strength of our method comes from the regularization used, as
we next explain.

Afonso et al. [22] proposed to efficiently solve regularized
inverse-problems in image processing using the alternating
direction method of multipliers (ADMM) [23]. Their approach
decouples the inversion and the regularization parts of the
optimization problem, which is in turn iteratively solved.
Venkatakrishnan et al. [24] further developed the use of the
ADMM by showing an equivalence between the regularization
step and denoising optimization problems. Their framework,
called “Plug-and-Play Priors”, is flexible, proposing the
replacement of the regularization step by a general-purpose
Gaussian image denoiser.

In this work we propose a compression postprocessing
algorithm by employing the Plug-and-Play Priors framework.
Furthermore, as denoising algorithms relying on sparse models
were found to be highly effective ones (e.g., K-SVD [25], [26],
BM3D [27]), we utilize a leading denoiser from this category.

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



DAR et al.: POSTPROCESSING OF COMPRESSED IMAGES VIA SEQUENTIAL DENOISING 3045

The Plug-and-Play Priors framework was proposed for general
inverse problems and was specifically demonstrated for recon-
struction of tomographic images. The novelty of our work with
respect to the original Plug-and-Play approach is that we apply
it for the task of compression-artifact reduction. Moreover, we
utilize it to address an inverse-problem for a forward-model
that is non-linear and non-differentiable.

Since we propose a method of postprocessing for a
variety of lossy-compression techniques, the algorithm
and its analysis are dealt within an abstract and general
setting. Following that, a thorough demonstration for image
compression is provided. Specifically, we show results for the
leading image compression standards: JPEG [28], JPEG2000
[29] and the still-image profile of the HEVC [30], [31],
offering the state-of-the-art performance [32]. While these
three compression methods rely on a block-based architecture
and a transform-coding approach, they differ as follows: JPEG
operates on 8×8 blocks and applies a discrete cosine transform
(DCT); JPEG2000 works on large blocks (tiles) of at least
128×128 pixels and utilizes a discrete wavelet transform
(DWT); in HEVC-stills the image is split into coding blocks
that are further partitioned using a quadtree structure, then
intra-prediction is performed and transform coding is applied
on the prediction residuals (where the transform is mainly
integer-approximations of the DCT at various sizes). Our
method is evaluated for a diversified set of compression
algorithms that span the range of the contemporary coding
concepts. Moreover, our postprocessing technique achieves
significant gains and usually outperforms the cutting-edge
methods for the examined compression standards.

This paper is organized as follows. In section II the
proposed postprocessing method is presented. In section III,
the compression linearization is mathematically analyzed
for simplified cases of quantization and transform coding.
Section IV presents image-compression experimental results
and compares them to those of competitive techniques.
Section V concludes this paper.

II. THE PROPOSED POSTPROCESSING STRATEGY

A. Problem Formulation Using ADMM

Let us consider a signal x ∈ R
N that undergoes a

compression-decompression procedure, C : R
N → R

N ,
resulting in the reconstructed signal y = C (x). For lossy
compression methods an error is introduced at a size that
depends on the bit-budget, the specific-signal characteristics,
and the compression algorithm. We aim at restoring the
precompressed signal x from the reconstructed y using the
following regularized inverse-problem:

x̂ = arg min
x

‖y − C (x)‖2
2 + βs (x) , (1)

where s (·) is a regularizer, which can be associated with
a given Gaussian denoiser, weighted by the parameter β.
For example, assuming that the image is piecewise constant
promotes the utilization of the popular total-variation
regularizer, s(x) = ||x||T V [33].

One should note that y and C (x) are two signals recon-
structed from compression, and therefore, the fidelity term

in Equation (1) expresses their distance. Notice that this is
substantially different from ‖y − x‖2

2 – whereas the latter has
compression artifacts as error, the one we deploy represents a
milder distortion. Throughout this paper we shall assume for
simplicity that the distortion between the two reconstructions,
y and C (x), is modeled as a white additive Gaussian noise,
leading to the �2 term used here. We should note, however, that
our scheme could be improved by using a better modeling of
the reconstructed-signal error, such as an �∞ on the transform
coefficients w.r.t. the quantization step-size (in the case of
transform coding).

Similar to [22] and [24], we develop an iterative algorithm
for the solution of (1). We start by applying variable splitting
that yields the following equivalent form of (1):

min
x,v

‖y − C (x)‖2
2 + βs (v)

subject to x = v, (2)

where v ∈ R
N is an additional vector due to the split. The

constrained problem (2) is addressed by forming an augmented
Lagrangian and its corresponding iterative solution (of its
scaled version) via the method of multipliers [23, Ch. 2], where
the i th iteration consists of

(
x̂i , v̂i

) = arg min
x,v

‖y − C (x)‖2
2 + βs (v)

+λ

2
‖x − v + ui‖2

2

ui+1 = ui + (
x̂i − v̂i

)
. (3)

Here ui ∈ R
n is the scaled dual-variable and λ is an auxiliary

parameter, both introduced in the Lagrangian.
Please note the following notation remark for a general

vector u. First, ui stands for vector u in the i th iteration.
On the other hand, u j represents the j th component (a scalar)
of the vector u. Finally, u( j )

i denotes the j th element of the
vector ui .

Approximating the joint optimization of x and v in (3),
using one iteration of alternating minimization, results in the
iterative solution in the ADMM form, where the i th iteration
consists of

x̂i = arg min
x

‖y − C (x)‖2
2 + λ

2
‖x − x̃i‖2

2 (4)

v̂i = arg min
v

λ

2
‖v − ṽi‖2

2 + βs (v) (5)

ui+1 = ui + (
x̂i − v̂i

)
. (6)

Here x̃i = v̂i−1 − ui and ṽi = x̂i + ui .
The regularization step (5) is of the form of a Gaussian

denoising optimization-problem (of a noise level determined
by β

/
λ) and therefore can be viewed as applying a denoising

algorithm to the signal ṽi . More specifically, this corresponds
to assuming that ṽi = v + w, where w is an i.i.d zero-mean
Gaussian vector with variance 1/λ (and a corresponding distri-
bution function denoted as pw(w)). In addition, v is assumed
to be drawn from a distribution ps(v) that is proportional
to exp(−βs(x)). Then, the Maximum A-Posteriori (MAP)
estimator of v from its (white Gaussian) noisy version ṽi is
formed as

v̂i = arg max
v

log pw(ṽi − v) + log ps(v), (7)
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which for the above defined distribution functions,
pw(·) and ps(·), is equivalent to (5) and, thus, establishes
the latter as a Gaussian denoising procedure. Indeed, the
Plug-and-Play Priors framework [24] suggests exactly this
strategy, replacing (5) with an independent denoiser; even one
that does not explicitly have in its formulation a minimization
problem of the form of (5). The deployment of a favorable
denoiser introduces valuable practical benefits to the design of
the proposed postprocessing procedure, and yields a powerful
generic method.

B. Linear Approximation of the Compression-Decompression
Procedure

Due to the high nonlinearity of C (x), we further simplify
the forward-model step (4) using a first-order Taylor
approximation of the compression-decompression function
around x̂i−1, i.e.,

Clin (x) = C
(
x̂i−1

) + dC (z)
dz

∣
∣
∣
∣
z=x̂i−1

· (
x − x̂i−1

)
(8)

where dC(z)
dz

∣∣
∣
z=x̂i−1

is the N × N Jacobian matrix of the

compression-decompression at the point x̂i−1.
Since the approximation of the Jacobian, dC(z)

dz , deeply
influences the restoration result and the computational cost,
this is a quite delicate task. First, C is a non-linear and even
non-differentiable function as the compression often relies on
quantization and/or thresholding. Second, we provide here a
generic technique, and therefore do not explicitly consider the
compression-decompression formulation.

Theoretically, the fact that C is non-differentiable would
prevent us from using its Jacobian for the optimization.
However, as its Jacobian has only a finite number of singulari-
ties, in practice we can rely on it as is done in other fields, e.g.,
in the training of neural networks that are composed of con-
catenations of non-differentiable non-linear operations [34].

For calculating the entries of the Jacobian, we rely on the
standard definition of the derivative, assuming that C is locally
linear. We justify this approach in the next section. As we
might be approximating the derivative in the neighborhood
of a non-differential point, we take several step-sizes in the
calculation of the derivative and average over all of them. This
leads to the following approximation to the kth column of the
Jacobian:

dC (z)
dzk

= 1

|Sδ|
∑

δ∈Sδ

C(z + δ · ek) − C(z − δ · ek)

2δ
, (9)

where ek is the kth standard direction vector, and Sδ is a
set of step lengths for approximating the derivative using the
standard definition (the set size is denoted as |Sδ|).

Due to the high nonlinearity of C , the linear approxima-
tion (8) is reasonable in a small neighborhood around the
approximating point x̂i−1. Accordingly, we further constrain
the distance of the solution from the linear-approximation

Algorithm 1 The Proposed Postprocessing Method

point by modifying (4) to

x̂i = arg min
x

‖y − Clin (x)‖2
2

+λ

2
‖x − x̃i‖2

2 + μ
∥
∥x − x̂i−1

∥
∥2

2 . (10)

The proposed generic method is summarized in Algorithm 1.

III. LINEAR APPROXIMATION–A CLOSER LOOK

The wide variety of lossy-compression methods yield a
range of diverse compression performances and features.
These often rely on the fundamental procedure of quantization,
which enables to trade-off representation-precision and cost
(in bits). The quantization concept is employed in various
forms, e.g., as a scalar/vector operation, using uniform/
non-uniform representation levels, and also in the extreme
case of thresholding where some data elements are completely
discarded (and the remaining are regularly quantized).
Furthermore, the statistical properties of the data affect the
quantizer performance, and indeed, the prevalent transform-
coding concept first considers the data in different orthogonal
basis that enables more efficient quantization.

In this section we study the linear approximation of the
scalar-quantization procedure, starting at its use for a sin-
gle variable and proceeding to transform coding of vectors,
where the transform-domain coefficients are independently
quantized. The analysis provided here sheds some clarifying
light on our linearization strategy that is generically applied
in the proposed technique to more complicated compression
methods.

A. Local Linear-Approximation of a Quantizer

Let us consider a general scalar quantization function q(x)
that maps the real-valued input x onto a discrete set of real-
valued representation levels. As q(x) is a non-differentiable
function we examine its linear approximation around the point
x0 in a limited interval defined by δ as

η(x0, δ) = [x0 − δ, x0 + δ] .1 (11)

1Here we mathematically study the problem for a given quantization
function that is used for calculating the approximation, and therefore a single
δ value is sufficient. However, in our generic algorithm we empirically utilize
a set of δ values in Equation (9) since the compression function is unknown.
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The studied approximation takes the general linear form of

q̃ (x) = ax + b (12)

where a and b are the linearization parameters. The approxi-
mation in (12) introduces an error that can be measured via the
Mean-Squared-Error (MSE) over the local interval η(x0, δ)

2:

L M SE S Q(
a, b; η (x0, δ)

)
� 1

2δ

x0+δ∫

x0−δ

(
q (x) − q̃ (x)

)2
dx

(13)

Substituting (12) in (13), then demanding parameter optimality
by

∂

∂a
L M SE S Q(

a, b; η (x0, δ)
) = 0

∂

∂b
L M SE S Q(

a, b; η (x0, δ)
) = 0, (14)

leads to the following optimal parameters:

a∗ = 3

δ2 (La − Lbx0) (15)

b∗ = Lb − 3x0

δ2 (La − Lbx0) (16)

where we defined

La � 1

2δ

x0+δ∫

x0−δ

xq (x) dx (17)

Lb � 1

2δ

x0+δ∫

x0−δ

q (x) dx . (18)

To better understand the values of these parameters, we shall
consider several simple cases.

B. The Case of Two-Level Quantization

We start by studying the elementary two-level quantizer that
takes the form of a step function (Fig. 1) as follows:

q2 (x) =
{−1/2, for x � 0

1/2, for x > 0
(19)

where the two output levels, r0 = −1/2 and r1 = 1/2, are
assigned according to the input sign. This canonic form is
useful to our discussion here, since it is an asymmetric func-
tion around the origin, and thus, will simplify the mathematical
analysis. Nevertheless, the form in (19) can be extended to any
two-level quantizer using shifts and scaling that adjust the step-
location and the two representation levels. Accordingly, the
results in this section are easily extended, e.g., by considering
the quadratic effect of the step-size scaling on the local MSE.

2We study the linearization error as a function of the approximation-interval
size, which is determined by δ. Clearly, by setting a sufficiently small δ we
get a zero approximation-error as we shall see hereafter. However, note that
the linearization error is not the only factor to consider for the selection of δ.
Therefore, we should bear in mind throughout the following derivation that
we do not present here an explicit method for selecting the value of δ but an
analysis of the local approximation-error of the quantizer as a function of δ.
Nevertheless, this mathematical analysis demonstrates the important principles
of linear approximation of quantizers and motivates the algorithmic design and
experimental settings that are presented in the following sections.

Fig. 1. Examples of scalar quantizers. (a) Two-level. (b) Uniform.

When the local interval is completely contained within
a single decision region, i.e. η(x0, δ) ⊂ [−∞, 0] or
η(x0, δ) ⊂ (0,∞], then q2 (x) is locally fixed on r0 or r1,
respectively, and therefore

La = 1

2δ

x0+δ∫

x0−δ

xri dx = x0ri (20)

Lb = 1

2δ

x0+δ∫

x0−δ

ri dx = ri (21)

for the respective i ∈ {0, 1}. Then setting (20) and (21) in (15)
and (16), respectively, induces the optimal values a∗ = 0 and
b∗ = ri , that of course accurately represent the locally flat
function with a corresponding zero local-MSE.

Now we turn to the more interesting case where the local
interval spans over the two decision regions, i.e., x0 − δ < 0
and x0 + δ > 0. Calculating again the optimal parameter
set (15)-(16) for this scenario requires to decompose the
integrals (17)-(18) to the two decision regions, yielding the
following optimal linearization parameters:

a∗ = 3

4δ

(
1 −

( x0

δ

)2
)

(22)

b∗ = 3x0

4δ

(( x0

δ

)2 − 1

3

)
(23)

and, using (13), the corresponding error (for δ > |x0|) is3

L M SE S Q(
a∗, b∗; η (x0, δ)

) =
1

16

(
1 + 3

( x0

δ

)2
)(

1 −
( x0

δ

)2
)

. (24)

One should note that on the limit of the global linear approx-
imation, i.e., when δ → ∞, the optimal parameters are

lim
δ→∞ a∗ = 0 (25)

lim
δ→∞ b∗ = 0. (26)

This asymptotic fitting to a constant-valued function is also
expressed in the numerical results in Fig. 2a-2b.

Let us study the optimal approximation for the non-trivial
case of δ > |x0|. First, we notice that the error tends to zero as
δ gets closer to |x0|. Second, The maximal error is obtained for
δ = √

3|x0| and its value is 1
12 . Moreover, for approximation

around the non-differentiable point, i.e. x0 = 0, the error is

3Recall that for δ < |x0| the approximation local-MSE is zero.
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Fig. 2. Optimal linearization of a normalized two-level quantizer as function of the local interval center (x0) and length (δ). (a) a∗. (b) b∗. (c) Local MSE.

a constant and, therefore, independent of δ. This interesting
observation is a special case of a more general behavior where
a constant error value is achieved for any (x0, δ) pair that is
on the line δ = c|x0| for some c ∈ [0,∞). This constant
local-MSE is due to the fixed ratio between the lengths of
the subintervals [x0 − δ, 0] and [0, x0 + δ], determining the
optimal approximation in this case. The latter analysis is
clearly exhibited in the numerical results in Fig. 2.

The numerical results also demonstrate the following behav-
ior of the approximation as function of δ. At the beginning, the
solution gradually considers the step by having an increasingly
steeper slope, then, the approximation begins to approach the
asymptotic solution of a flat line. It is also observed that
the approximation is useful (in terms of relatively low error)
when the interval size tends to be the minimal that contains
the discontinuity point, located here at 0. Furthermore, in
some sense, finding the best interval for approximating around
x0 	= 0 is like measuring the distance of x0 from the step.

C. The Case of Multi-Level Uniform Quantization

Let us extend the above analysis to a multi-level uniform
quantizer in the mid-riser form [35, p. 137] (Fig. 1b):

qu (x) = 
x� + 1

2
. (27)

Here the quantization step is of unit length, and accordingly
the i th decision region,

[
di , di+1) = [i, i + 1), maps the

input to the i th representation level ri = i + 1
2 . Note that

i is an integer that may be positive or negative. As in
the previous case, this normalized quantizer form yields a
simplified analysis that is, however, extendable to any uniform
quantizer by shifts and scaling.

The optimal local linear approximation for this uniform
quantizer is obtained by calculating (15)-(16) for the
formula in (27). Again, the solution depends on the interval
layout. In the simplest case, the considered interval is
completely contained within a single decision region, i.e.,
η(x0, δ) ⊂ [

di , di+1
]

for some i . Here q (x) = ri for any
x ∈ η(x0, δ). Clearly, the corresponding discussion for
the two-level quantizer (see section III-B) also holds here,
meaning that a∗ = 0 and b∗ = ri with a zero local-MSE.

Another scenario that coincides with the two-level quantizer
is when x0 − δ ∈ [

di−1, di
]

and x0 + δ ∈ [
di , di+1

]
,

i.e., the interval is spread over only two adjacent decision
regions. Indeed, the optimal parameters here are obtained
by appropriately shifting the results in (22)-(23). However,
note that the multi-level quantizer has two levels only for
δ < min {di+1 − x0, x0 − di−1} < 1.

Now we proceed to the main case, where the approximation
interval spans over more than two decision regions, i.e.,
x0 − δ ∈ [

di , di+1
]

and x0 + δ ∈ [
d j , d j+1

]
for j − i > 1.

First, we express the uniform quantization function as a sum
of shifted two-level quantizers:

qu (x) =
∞∑

τ=−∞
q2(x − τ ), (28)

where q2(·) was defined in (19). Then, using (28) we can
develop (17)-(18) to the following forms:

Lu
a =

∞∑

τ=−∞
Lτ

a (29)

Lu
b =

∞∑

τ=−∞
Lτ

b, (30)

where Lτ
a and Lτ

b are the corresponding values for the
two-level quantizer q2(x − τ ). These allow us to write
the optimal linearization parameters of the uniform quan-
tizer as the summation of the optimal parameters of the
shifted two-level quantizers, namely

a∗
u =

∞∑

τ=−∞
a∗
τ (31)

b∗
u =

∞∑

τ=−∞
b∗
τ , (32)

where a∗
τ and b∗

τ are the optimal linearization parameters
for q2(x − τ ) and are obtainable by shifting the expressions
in (22)-(23). This analytic relation between the linearization of
the uniform and the two-level quantizers is clearly exhibited
in the numerical results (see Fig. 3) in the form of a periodic
structure.

The numerical calculations (Fig. 3) also show convergence
to the global approximation parameters

lim
δ→∞ a∗

u = 1 (33)

lim
δ→∞ b∗

u = 0, (34)
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Fig. 3. Optimal linearization of a normalized uniform quantizer as function of the local interval center (x0) and length (δ). (a) a∗
u . (b) b∗

u . (c) Local MSE.

which imply lim
δ→∞ Clin (x) = x . In order to explain the results

in Fig. 3, we return to the interpretation of a multi-level quan-
tizer as a sum of shifted two-level quantizers (as expressed in
Eq. (28)). First, examining the case of approximation around
a decision level, shows that at each point of δ = k (for integer
k values), two additional representation levels are included in
the approximation (one on each side of the interval) and affect
the optimal approximation. Comparing Fig. 3 to Fig. 2 reveals
that the effect of each of these added representation levels is
like approximating a two-level quantizer around a point that
differs from its threshold level. Evaluating the approximation
around a point that is not a decision level (see Fig. 3 while con-
sidering non-integer x0 values) extends the previous behavior
by combining two unsynchronized periodic patterns, each of
them stems from a recurrent addition of representation levels
from a different side.

The MSE plot (Fig. 3c) shows that, for nontrivial inter-
vals that contain at least one non-differentiable point, the
minimal MSE is obtained for approximation over a small
interval that includes only the nearest decision level. This
somewhat resembles the underlying principle of the dithering
procedure [36], where the points within a quantization-cell
are differentiated by an added noise that statistically maps
them to neighboring cells according to their relative proximity.
Moreover, maximal MSE of 0.106 is obtained for δ = 0.67
and x0 = 1

2 + i (for i = 0,±1,±2, ...), where only the two
adjacent non-differentiable points affect the linearization. This
can also be shown analytically by setting the decompositions
in (28) and (31)-(32) into (13), resulting in

L M SE S Q
u

(
a∗, b∗; η (x0, δ)

) =
∞∑

τ=−∞
L M SE S Q

τ

(
a∗
τ , b∗

τ ; η (x0, δ)
)

+ 1

2δ

∞∑

τ,ν=−∞
τ 	=ν

x0+δ∫

x0−δ

(
q2(x − τ ) − a∗

τ x − b∗
τ

)

×(
q2(x − ν) − a∗

ν x − b∗
ν

)
dx, (35)

where L M SE S Q
τ

(
a∗
τ , b∗

τ ; η (x0, δ)
)

is the optimal LMSE for
q2(x − τ ) as available by shifting the expression in (24).

D. Transform Coding

We now turn to generalize the discussion to compression
of multidimensional signals by considering the widely used
concept of transform coding, where scalar quantization is
applied in the transform domain. We examine coding of an
N-length signal vector using a unitary transform, that can be
formulated as the vector-valued function

C (x) = UQ
(

UT x
)
, (36)

where x is the N ×1 signal to compress, U is an N ×N unitary
matrix, and Q (·) is a vector-valued quantization function that
scalarly quantizes the input components, i.e.,

Q (x) =
⎡

⎢
⎣

q (x1)
...

q (xN )

⎤

⎥
⎦ (37)

where q (·) is a single-variable scalar quantization function as
studied above, and xi is the i th component of the vector x.
Moreover, as the last definition exhibits, the discussion is
simplified by assuming identical quantization rules to all
vector components.

As scalar quantization is a building block of the transform
coding procedure (36), it imposes its non-differentiable nature
on C(x). Let us consider the linear approximation of C(x)
around the point x0 ∈ R

N in a limited neighborhood of a
high-dimensional cube defined by δ as

η(x0, δ) = {x | ‖x − x0‖∞ ≤ δ }. (38)

The approximation takes the general multidimensional linear
form of

C̃ (x) = Ax + b (39)

where A ∈ R
N×N and b ∈ R

N are the linearization parame-
ters. The local MSE of approximating the transform-coding
procedure around x0 is defined as

L M SET C(
A, b; η(x0, δ)

)
�

1

|η(x0, δ)|
∫

η(x0,δ)

∥
∥
∥C(x) − C̃ (x)

∥
∥
∥

2

2
dx (40)
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By substituting (39) in (40) and using the energy-preservation
property of unitary transforms, we get the equivalent error
expression in the transform-domain

1

|η̂(x0, δ)|
∫

η̂(x0,δ)

∥
∥
∥Q(x̂) − Âx̂ − b̂

∥
∥
∥

2

2
d x̂ (41)

where

x̂ = UT x

x̂0 = UT x0

Â = UT AU

b̂ = UT b

|η̂(x0, δ)| = |η(x0, δ)|. (42)

and the rotated approximation area (or volume), η̂, is defined
around x̂0 and may not have sides that are aligned with the
axes.

Let us generally define the local linearization error for com-
pression of a signal vector, x, by identical scalar quantization
of its components, xi :

L M SE S QV (
A, b; η̄

)
�

= 1

|η̄|
∫

η̄

‖Q(x) − Ax − b‖2
2dx

= 1

|η̄|
N∑

i=1

∫

η̄

(
q(xi) − aT

i x − bi

)2
dx (43)

where η̄ is an arbitrary shaped approximation area, and the last
equality relies on the separability of Q (·) and the L2-norm
definition.

Equations (41) and (43) clearly show that the MSE
of approximating transform-coding (41) reduces to the
linearization-error of scalar quantization of the transform coef-
ficients, namely,

L M SET C(
A, b; η(x0, δ)

)

= L M SE S QV
(

Â, b̂; η̂(x0, δ)
)

= 1

|η̂(x0, δ)|
N∑

i=1

∫

η̂(x0,δ)

(
q(x̂i) − âT

i x̂ − b̂i

)2
d x̂ (44)

where âT
i is the i th row of Â, and b̂i is the i th element of the

vector b̂.
While the separability of Q (·) was utilized to have integrals

in (44) that consider quantization of single transform-
coefficients, the integration is still over a multidimensional
area that is not necessarily separable (i.e., not aligned
with the axes). We can remedy this by starting from an
appropriately rotated area in the signal-domain, ηU (x0, δ),
such that its transform-domain counterpart is aligned with the
axes (see Fig. 4):

η̂U (x0, δ) = {
x̂

∣∣‖x̂ − x̂0‖∞ ≤ δ
}
. (45)

Note that ηU (x0, δ) is not necessarily the optimally shaped
approximation area as it is used here for the analytic
simplicity of having full separability in the transform domain.

Fig. 4. Transformation of the approximation area. Exemplified in R
2 for the

unitary transform of 45◦-rotation and a signal-domain area that is rotated in
accordance to the transform.

We continue our transform-domain analysis by adopting this
separable integration-area.

Recall that we look for the optimal linear approximation of
the signal-domain function C (x). This is obtainable by finding
the optimal transform-domain parameters Â∗ and b̂∗ and then
transforming them back to the signal domain. Following this
strategy we first pose the componentwise optimality demands
in the transform domain:

∂

∂ âi j
L M SE S QV

(
Â, b̂; η̂U (x0, δ)

)
= 0 for i, j = 1, ..., N

∂

∂ b̂i
L M SE S QV

(
Â, b̂; η̂U (x0, δ)

)
= 0 for i = 1, ..., N

(46)

Some calculations show that the solution satisfying the
optimality conditions consists of a diagonal matrix Â∗
(i.e., â∗

i j = 0 for i 	= j ) such that the parameter pair (â∗
ii , b̂∗

i )
is the one obtained for optimal approximation of a single-
variable quantizer over the interval [x̂(i)

0 − δ, x̂(i)
0 + δ] as gen-

erally given in (15)-(16). Then, the signal-domain parameters
are given as

A∗ = UÂ∗UT =
N∑

i=1

â∗
ii ui uT

i (47)

b∗ = Ub̂∗. (48)

where the last equality in (47) is due to the diagonality
of Â∗ and ui denotes the i th column of U. The correspond-
ing optimal error is equivalent in the signal and transform
domains, hence can be expressed in a simplified form as

L M SET C(
A∗, b∗; ηU (x0, δ)

)

= L M SE S QV
(

Â∗, b̂∗; η̂U (x0, δ)
)

= 1

2δ

N∑

i=1

x̂(i)
0 +δ∫

x̂(i)
0 −δ

(
q(x̂i) − â∗

ii x̂i − b̂∗
i

)2
d x̂

=
N∑

i=1

L M SE S Q
(

â∗
ii , b̂∗

i ; η(x̂(i)
0 , δ)

)
(49)

The last expression exhibits the approximation error of
transform-coding as the sum of the errors of the separate lin-
earization of the scalar quantization of the transform-domain
coefficients. Although the assumed scenario includes equal
quantization procedure for all the coefficients, the contributed
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Fig. 5. Overall MSE of optimal linearization of the exemplary transform
coding procedure (for signals in R

2 and equal transform-domain quantizers).

errors by the various elements are different as each has its
own scalar approximation-point x̂(i)

0 located differently with
respect to the quantization lattice.

Let us exemplify the latter analysis on a transform coder
of two-component signals (i.e., x ∈ R

2), that scalary applies
the normalized two-level quantizer that was studied above (see
Eq. (19)) on the two components in the domain of the 45◦-
rotation matrix that takes the 2×2 form of Uπ/4 = 1√

2

[
1 −1
1 1

]
.

The approximation is around x0 = Uπ/4x̂0 in a 45◦-rotated
square neighborhood defined by the ηU (x0, δ) (see Fig. 4).
We further define the first component of x̂0 to vary and

fix the second on the value of 15, i.e., x̂0 =
[

x̂(1)
0
15

]
. The

overall linearization error as function of δ and x̂(1)
0 (Fig. 5)

shows that it combines the errors of the scalar linearization
of the transform coefficients (Figs. 6e-6f). The corresponding
parameters in the signal domain (where the matrix A is not
necessarily diagonal) are given in Fig. 7. Again, the results
generalize the previous observations by demonstrating that
minimal MSE is obtained for approximation over the minimal
area that includes the nearest non-differentiable point of the
compression function (see Fig. 5).

We now further develop the discussed transform-coder to
the common procedure where the transform-coefficients are
uniformly quantized according to different step sizes, {�i }N

i=1,
getting coarser for higher frequencies, i.e., �i ≤ � j for
i < j . Let us consider N-length signal vectors and analyze
the linear approximation over the ηU (x0, δ) neighborhood,
where Â∗ is diagonal. Accordingly, in this case, quantization
of each transform-coefficient is linearized separately over a
one-dimensional interval of size 2δ. However, due to different
quantization-steps and approximation-points, the {â∗

ii }N
i=1 val-

ues vary. We simplify the discussion by approximating around
a vector x0 with components residing near the middle of the
scalar decision-regions of the transform-domain quantizers.
Then, relying on the above analysis of the one-dimensional
uniform quantizer, we note the following behavior of the
sequence {â∗

ii }N
i=1 for 2δ ≈ �K (K > 1). First, for some

integer L (1 ≤ L < K ), the relation �i � �K ≈ 2δ

Fig. 6. Transform domain parameters of the optimal linear approximation
of the exemplary transform coding procedure (for signals in R

2 and
equal transform-domain quantizers). (a)-(b) describe the diagonal elements
of the 2×2 matrix Â, and (c)-(d) show the values of b̂’s components.
(e)-(f) show the corresponding approximation errors of the two-
transform domain elements. (a) â∗

11. (b) â∗
22. (c) b̂∗

1 . (d) b̂∗
2 .

(e) L MS E SQ(â∗
11, b̂∗

1; η(x̂(1)
0 , δ)). (f) L MS E SQ (â∗

22, b̂∗
2; η(x̂(2)

0 , δ)).

holds for any i ≤ L, and therefore, the optimal parameters
are â∗

ii ≈ 1 and b̂∗
i ≈ 0. Second, for L < i ≤ K , the

2δ value is still greater than �i , however relatively closer,
hence, the corresponding â∗

ii values fluctuate. Finally, the
i > K coefficients have quantization steps that are greater
than 2δ, and accordingly, â∗

ii ≈ 0. The latter qualitative
analysis lets us to interpret the local-approximation of the
transform-coder, Â∗, as a low-pass filter that depends on δ and
the approximation point. Furthermore, the numerical results
(Fig. 8) demonstrate the above by showing preservation of
low frequencies, an unstable transition phase, and attenuation
of high-frequency components. Note that for too low or too
high values of δ the filter has a all-stop (Fig. 8a) or all-pass
(Fig. 8d) behavior, respectively.

We conclude by considering the signal-domain filter A∗
related to Â∗ by the inverse-transformation in (47). When the
compression utilizes the Discrete Fourier Transform (DFT)
and the approximation is over ηU (x0, δ), then the diag-
onal matrix Â∗ yields a circulant A∗. While the latter
involves complex-valued calculations, coding using Discrete
Cosine Transform (DCT) keeps the procedure over the reals.
The signal-domain filter, A∗, of the DCT-based coding is
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Fig. 7. Signal domain parameters of the optimal linear approximation of the
exemplary transform coding procedure (for signals in R

2 and equal transform-
domain quantizers). (a)-(d) describe the components of the 2x2 matrix A, and
(e)-(f) show the values of b’s components. (a) a∗

11. (b) a∗
12. (c) a∗

21. (d) a∗
22.

(e) b∗
1 . (f) b∗

2 .

exemplified in Fig. 9 showing an approximately Toeplitz
structure.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of the pro-
posed postprocessing method by presenting results obtained in
conjunction with various compression methods. We start by
considering the simplistic compression procedures of scalar
quantization and one-dimensional transform coding. Then, we
proceed to the leading image compression standards: JPEG,
JPEG2000 and the recent HEVC.

In all experiments we use the BM3D method [27] as the
denoiser. Since the proposed technique uses a well established
denoiser as a subroutine, we compare our method with a single
application of this denoiser as a postprocessing procedure. This
approach is further strengthened by endorsing the denoiser
with an oracle capability by searching for the best parameter
in terms of maximal PSNR result. More specifically, this oracle
denoiser optimizes its output PSNR based on the knowledge of
the precompressed image, a capability that cannot be applied
in a real postprocessing task.

The computational complexity of our method is mainly
determined by the complexity levels of the utilized denoiser

Fig. 8. Interpretation of a diagonal Â∗ as a transform-domain filter that
depends on δ. Here N = 32 and the i th quantization step is �i = 2i/4.
(a) δ = 0.5. (b) δ = 5. (c) δ = 50. (d) δ = 500.

Fig. 9. Interpretation of A∗ as a signal-domain filter that depends on δ.
Presented here for the case of δ = 50 from Fig. 8c, incorporated in a
DCT-based coding.

and the Jacobian estimation procedure. The latter fur-
ther depends on the implementation of the compression-
decompression method, as it is repeatedly applied according
to (9). In addition, equation (9) exhibits also the effect of the
size of the set Sδ utilized for approximating a single column
of the Jacobian. Since the number of Jacobian columns is
as the number of signal samples (denoted as N), a straight-
forward computation of the Jacobian is costly and requires
N calculations of (9). Furthermore, the Jacobian matrix is
of N × N size, and is often too large to allow accurate
solution of (10). Fortunately, the computational requirements
of the estimation of the entire Jacobian matrix can be relaxed
for many compression methods that operate independently on
adjacent blocks. Specifically, the Jacobian becomes a block-
diagonal matrix and, therefore, its columns can be arranged in
independent subsets for concurrent computation. This reduces
the number of compression-decompression applications to
the order of the block size. Moreover, the block-diagonal
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TABLE I

EXPERIMENTAL SETTINGS FOR THE EXAMINED COMPRESSION METHODS

structure of the Jacobian allows to decompose the computation
of (10) to handle each block separately. Furthermore, this
block-diagonal structure can be assumed even for compression
methods that do not conform with it (e.g., JPEG2000), and thus
somewhat compromising the postprocessing result, in order to
offer a reasonable run-time. The (possibly assumed) block size
of the compression procedure is denoted here as BH × BW ,
and yields a Jacobian with blocks of size BH BW × BH BW

along its main diagonal.
The code was implemented in Matlab. While the settings

differ for the various compression methods, a similar stopping
criterion is applied. In (3) we introduced the scaled dual-
variable of the i th iteration, ui ∈ R

n . We here denote
�ui = 1

N ‖ui − ui−1‖1 and set the algorithm termination
conditions to be at one of the following: �ui < 0.05,
�ui > �ui−1 or some maximal number of iterations attained.

The remaining parameters are set for each compression
method as specified in Table I. While the relation between
the parameters to the compression method is complex, one
can claim that the parameters express the non-differentiable
nature of the compression function. For example, HEVC
compression, which is an intricate compression method, needs
smaller δ values in the Jacobian approximation and a higher μ,
both constraining the linearization to be more local than
for the other simpler compression methods. Furthermore, the
parameter settings consider the compression bit-rate, as this
quantity reflects the complexity of the given image with
respect to the specific compression procedure. Accordingly,
the formulas in Table I were empirically determined to provide
an adequate performance.

A. Simplistic Compression Procedures

1) Scalar Quantization: We begin with the elementary
compression procedure of applying uniform scalar
quantization (as formulated in (27)) on the signal samples.
Motivated by the analysis in section III-C, we define
here the approximation interval to be no longer than the
quantization step �, as considering only the nearest non-
differentiable point yields a useful linearization. Accordingly,
the derivative (which is scalar here) is approximated using (9)
and Sδ = {0.1�k}5

k=1. Our technique achieved impressive
PSNR improvements (Table II) over the entire bit-rate range,
and consistently passed the oracle denoiser. Visually, the
false-contouring artifacts were significantly reduced (Fig. 10).

TABLE II

SIMPLISTIC EXPERIMENT: PSNR COMPARISON
FOR SCALAR QUANTIZATION

Fig. 10. Reconstruction of Lena (256x256) from scalar quantization at 4bpp.
(a) Scalar Quantization (34.64dB). (b) Postprocessing Result (37.41dB).

2) One-Dimensional Transform Coding: Now we extend the
examined compression method by performing scalar quan-
tization in the transform domain. Specifically, we split the
image into nonoverlapping one-dimensional vertical vectors
of 2 pixels. Then we compress them separately by transform
coding them using Uπ/4 = 1√

2

[
1 −1
1 1

]
, followed by apply-

ing uniform quantization with identical step size to all the
coefficients. We evaluated here the algorithm performance
for the two types of approximation area that were discussed
in section III-D: a square area aligned with the axes (i.e.,
η(x0, δ)), and a 45◦-rotated squared area (i.e., η̂U (x0, δ))
that allows to calculate the linearization in the transform
domain and then transforming the parameters back to the
signal domain using (47)-(48). Both options used square areas
of the same size by setting Sδ = {0.1�k}5

k=1, where � is
the quantizer step size in the transform domain. The two
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TABLE III

SIMPLISTIC EXPERIMENT: PSNR COMPARISON FOR TRANSFORM CODING OF TWO-COMPONENT VECTORS

TABLE IV

JPEG: RESULT COMPARISON

area types achieved better results than the oracle denoiser.
In that sense, our approach is somewhat robust to the area
shape (however, not necessarily to its size). In addition,
employing area that is aligned with the axes in the signal

domain consistently obtained higher PSNR than the rotated
area (Table III). The latter observation will motivate us to
use aligned-cubic approximation areas also for more complex
compression techniques that will follow next.
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Fig. 11. Reconstruction of Lena (512x512) from JPEG compression at
0.363bpp. (a) JPEG (32.96dB). (b) Postprocessing Result (34.32dB).

B. JPEG

This well known standard [28] is a relatively straight-
forward implementation of a two-dimensional transform cod-
ing on 8×8 blocks of the image. Specifically, the quantization
is performed in the DCT domain where each coefficient has its
own quantization step. As the JPEG extends the oversimplified
procedure in subsection IV-A2, our postprocessing method
is expected to provide good results here. Indeed, the exper-
iments show the impressive gains of the suggested method
that compete with the prominent techniques from [17], [18]
(see Table IV). The comparison to [17] and [18] indirectly
considers additional methods such as [1], [3], [14], and [37]
that were already surpassed by [17] and/or [18]. Moreover,
while many competitive methods (e.g., [1], [3], [14], and [17])
are mainly intended to low bit-rate compression, our method
handles the entire bit-rate range and excels for medium and
high bit-rates (Table IV). The thorough evaluation here is
based on PSNR values, as well as on the perceptual metric
of Structural Similarity (SSIM) [38].

Since JPEG applies transform coding on non-overlapping
8×8 blocks, its Jacobian matrix is indeed block diagonal.
In addition, the sufficiently small blocks provide a computa-
tionally efficient structure that does not need to be simplified
further. Consequently, the run-time of the JPEG postprocessing
(Matlab implementation) is rather reasonable and is usually
about 1-2 minutes for a 512×512 image.

C. JPEG2000

This efficient standard [29] applies transform coding in the
wavelet domain for relatively large signal blocks (also known
as tiles) of at least 128×128 size. Not only the tile size
affects the compression run-time, it also impairs the suggested
parallelism optimization, as it is beneficial for small block
sizes. Nevertheless, it is still recommended to reduce the
computational cost by concurrent computation of the Jacobian
columns in relatively large subgroups that inevitably contain
dependent elements. Our experiments included postprocessing
of images compressed using JPEG2000 compression (via
the Kakadu software [39]) without any tiling. However, the
Jacobian was estimated by assuming independent 8×8 blocks,
where this reduced accuracy yielded considerable relief in the
computational burden (the postprocessing took 5-8 minutes for

TABLE V

JPEG2000: COMPARISON OF PSNR GAINS AT LOW BIT-RATES

a 512×512 image). The reconstruction PSNR of our method
reached up to 0.7dB improvement of the JPEG2000 output
(e.g., see Fig. 12). The results in [19] and [20] were provided
to postprocessing of low bit-rate compression. Therefore, we
first compare our results to these from [19] and [20] (Table V)
according to their experimental settings, and then show results
for higher bit-rates where our method is even more effective
(Table VI). Table V exhibits that our method outperforms [19]
and competitive with the technique from [20]. In addition,
our results for higher bit-rates (Table VI) compete with the
oracle denoiser. These results are encouraging since the oracle
denoiser needs the precompressed image and, therefore, is not
suitable for the common compression applications. Further-
more, the results in Tables V and VI establish our technique
as suitable for a wide range of bit-rates. The restoration results
visually demonstrated the artifact reduction using our method,
specifically, handling of the ringing artifact (Fig. 12).

D. HEVC

This state-of-the-art coding standard offers a profile of still-
image compression [30], [31]. The HEVC applies spatial
hybrid-coding on the image by combining a rich prediction
capability with transform coding of the prediction residuals.
In addition, the image is divided into large blocks (also known
as coding units) that are further recursively partitioned into
rectangular blocks in various sizes. Therefore, our Jacobian
estimation is set to work on independent blocks of size 64×64,
and thus the corresponding run-time was higher than for
the previous compression methods. More specifically, post-
processing an HEVC-compressed image took several hours, in
contrast to few minutes as needed for the previous compression
methods. Accordingly, we stress that our purpose here is
to demonstrate the conceptual suitability of our method to
compression techniques that are significantly more intricate
than transform coding.

The results here are for HEVC-compression using the
software library in [40]. Again, our postprocessing results
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TABLE VI

JPEG2000: RESULT COMPARISON AT MEDIUM/HIGH BIT-RATES

Fig. 12. Reconstruction of Barbara (512x512) from JPEG2000 compression
at 0.40bpp. (a) JPEG2000 (30.79dB). (b) Postprocessing Result (31.51dB).
(c) JPEG2000 (Zoomed-in). (d) Postprocessing Result (Zoomed-in).

reached up to 0.3dB gain in PSNR and often exceeded the
oracle denoiser, as shown in the PSNR and SSIM comparison
in Table VII. Figure 13 visually demonstrates our method’s

TABLE VII

HEVC: RESULT COMPARISON

Fig. 13. Reconstruction of Lena (128x128 Portion) from HEVC compression
at 0.639bpp. (a) HEVC (32.71dB). (b) Postprocessing Result (32.92dB).

treatment of the delicate artifacts of the HEVC. To the best of
our knowledge, no other artifact-reduction techniques for the
HEVC still-image profile have been proposed yet, as it is a
recent standard.

To summarize this section, the extensive experiments estab-
lished the proposed compression-artifact reduction technique
as a generic method that achieves cutting-edge results for any
relevant image compression and over the entire bit-rate range.

V. CONCLUSION

In this paper we proposed a novel postprocessing method
for reducing artifacts in compressed images. The task
was formulated as a regularized inverse problem, that was
subsequently transformed into an iterative form by relying on
the ADMM and the Plug-and-Play frameworks. The resulting
generic algorithm separately treats the inversion and the
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regularization, where the latter is implemented by sequentially
applying an existing state-of-the-art Gaussian denoiser. For
practicality we simplified the inversion step by representing
the nonlinear compression-decompression procedure using
a linear approximation. Furthermore, we provided a
comprehensive mathematical analysis for linear approximation
of simplified quantization and transform-coding operations.
We demonstrated our approach for image compression and
presented experimental-results showing impressive gains,
that improve upon state-of-the-art postprocessing results for
leading image compression standards.
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